UCLA STAT 110 A

Applied Probability \& Statistics for Engineers

-Instructor: Ivo Dinov,

Asst. Prof. In Statistics and Neurology
-Teaching Assistant: Christopher Barr
University of California, Los Angeles, Fall 2004
http://www.stat.ucla.edu/~dinov/

Random Variable

For a given sample space S of some experiment, a random variable is any rule that associates a number with each outcome in S.

Types of Random Variables
A discrete random variable is an rv whose possible values either constitute a finite set or else can listed in an infinite sequence. A random variable is continuous if its set of possible values consists of an entire interval on a number line.

Parameter of a Probability Distribution

Suppose that $p(x)$ depends on a quantity that can be assigned any one of a number of possible values, each with different value determining a different probability distribution. Such a quantity is called a parameter of the distribution. The collection of all distributions for all different parameters is called a family of distributions.

Proposition

For any two numbers a and b with $a \leq b$, $P(a \leq X \leq b)=F(b)-F(a-)$
" a-" represents the largest possible X value that is strictly less than (<) a.

Note: For integers

$$
P(a \leq X \leq b)=F(b)-F(a-1)
$$

Probability Distribution
The probability distribution or probability mass function (pmf) of a discrete rv is defined for every number x by $p(x)=\mathrm{P}($ all $\mathrm{s} \in \mathrm{S}: \mathrm{X}(\mathrm{s})=\mathrm{x})$

Cumulative Distribution Function

The cumulative distribution function (cdf) $F(x)$ of a discrete rv variable X with pmf $p(x)$ is defined for every number by

$$
F(x)=P(X \leq x)=\sum_{y: y \leq x} p(y)
$$

For any number $x, F(x)$ is the probability that the observed value of X will be at most x.

Probability Distribution for the Random Variable X

A probability distribution for a random variable X :

The Expected Value of X

Let X be a discrete rv with set of possible values D and $\operatorname{pmf} p(x)$. The expected value or mean value of X, denoted $E(X)$ or μ_{X}, is

$$
E(X)=\mu_{X}=\sum_{x \in D} x \cdot p(x)
$$

Ex. Use the data below to find out the expected number of the number of credit cards that a student will possess.
In the at least one of each or at most 3 children example, where $\mathrm{X}=$ \{number of Girls $\}$ we have:

\boldsymbol{X}	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$
$\operatorname{pr}(x)$	$\frac{1}{8}$	$\frac{5}{8}$	$\frac{1}{8}$	$\frac{1}{8}$

$\mathrm{E}(X)=\sum_{x} x \mathrm{P}(x)$
$=0 \times \frac{1}{8}+1 \times \frac{5}{8}+2 \times \frac{1}{8}+3 \times \frac{1}{8}$
$=1.25$

Example

$x=\#$ credit cards

x	$P(x=X)$
0	0.08
1	0.28
2	0.38
3	0.16
4	0.06
5	0.03
6	0.01

$$
E(X)=x_{1} p_{1}+x_{2} p_{2}+\ldots+x_{n} p_{n}
$$

$$
=0(.08)+1(.28)+2(.38)+3(.16)
$$

$$
+4(.06)+5(.03)+6(.01)
$$

$$
=1.97
$$

$$
\text { About } 2 \text { credit cards }
$$

The Expected Value of a Function
If the rv X has the set of possible values D and $\operatorname{pmf} p(x)$, then the expected value of any function $h(x)$, denoted $E[h(X)]$ or $\mu_{h(X)}$, is

$$
E[h(X)]=\sum_{D} h(x) \cdot p(x)
$$

Rules of the Expected Value

$$
E(a X+b)=a \cdot E(X)+b
$$

This leads to the following:

1. For any constant a,

$$
E(a X)=a \cdot E(X) .
$$

2. For any constant b,

$$
E(X+b)=E(X)+b .
$$

The Variance and Standard Deviation

Let X have pmf $p(x)$, and expected value μ Then the variance of X, denoted $V(X)$ (or σ_{X}^{2} or σ^{2}), is

$$
V(X)=\sum_{D}(x-\mu)^{2} \cdot p(x)=E\left[(X-\mu)^{2}\right]
$$

The standard deviation (SD) of X is

$$
\sigma_{X}=\sqrt{\sigma_{X}^{2}}
$$

$$
\begin{aligned}
& V(X)=.08(12-21)^{2}+.15(18-21)^{2}+.31(20-21)^{2} \\
& +.08(22-21)^{2}+.15(24-21)^{2}+.23(25-21)^{2} \\
& V(X)=13.25 \\
& \sigma=\sqrt{V(X)}=\sqrt{13.25} \approx 3.64
\end{aligned}
$$

Rules of Variance

$$
\begin{aligned}
& V(a X+b)=\sigma_{a X+b}^{2}=a^{2} \cdot \sigma_{X}^{2} \\
& \text { and } \sigma_{a X+b}=|a| \cdot \sigma_{X}
\end{aligned}
$$

This leads to the following:

1. $\sigma_{a X}^{2}=a^{2} \cdot \sigma_{X}^{2}, \sigma_{a X}=|a| \cdot \sigma_{X}$
2. $\sigma_{X+b}^{2}=\sigma_{X}^{2}$

Ex. The quiz scores for a particular student are given below:
$22,25,20,18,12,20,24,20,20,25,24,25,18$
Find the variance and standard deviation.

Value	12	18	20	22	24	25
Frequency	1	2	4	1	2	3
Probability	.08	.15	.31	.08	.15	.23

$\mu=21$
$V(X)=p_{1}\left(x_{1}-\mu\right)^{2}+p_{2}\left(x_{2}-\mu\right)^{2}+\ldots+p_{n}\left(x_{n}-\mu\right)^{2}$
$\sigma=\sqrt{V(X)}$

Shortcut Formula for Variance

$$
\begin{aligned}
V(X)=\sigma^{2} & =\left[\sum_{D} x^{2} \cdot p(x)\right]-\mu^{2} \\
& =E\left(X^{2}\right)-[E(X)]^{2}
\end{aligned}
$$

Linear Scaling (affine transformations) $a X+b$

For any constants a and b, the expectation of the RV $a \boldsymbol{X}+b$ is equal to the sum of the product of a and the expectation of the RV X and the constant b.

$$
\mathrm{E}(a \boldsymbol{X}+b)=\boldsymbol{a} \mathrm{E}(\boldsymbol{X})+b
$$

And similarly for the standard deviation (b, an additive factor, does not affect the SD).

$$
\operatorname{SD}(a \boldsymbol{X}+b)=|\boldsymbol{a}| \operatorname{SD}(\boldsymbol{X})
$$

Means and Variances for (in)dependent Variables!

- Means:
- Independent/Dependent Variables $\{\mathrm{X} 1, \mathrm{X} 2, \mathrm{X} 3, \ldots, \mathrm{X} 10\}$
$\mathrm{E}(\mathrm{X} 1+\mathrm{X} 2+\mathrm{X} 3+\ldots+\mathrm{X} 10)=\mathrm{E}(\mathrm{X} 1)+\mathrm{E}(\mathrm{X} 2)+\mathrm{E}(\mathrm{X} 3)+\ldots+\mathrm{E}(\mathrm{X} 10)$
- Variances:
- Independent Variables $\{\mathrm{X} 1, \mathrm{X} 2, \mathrm{X} 3, \ldots, \mathrm{X} 10\}$, variances add-up $\frac{\operatorname{Var}(\mathrm{X} 1+\mathrm{X} 2+\mathrm{X} 3+\ldots+\mathrm{X} 10)=}{\operatorname{Var}(\mathbf{X} 1)+\mathbf{V a r}(\mathbf{X}}$
$\underline{\operatorname{Var}(\mathbf{X} 1)+\operatorname{Var}(\mathbf{X} 2)+\operatorname{Var}(X 3)+\ldots+\operatorname{Var}(\mathbf{X} 1)}$
- Dependent Variables $\{\mathrm{X} 1, \mathrm{X} 2\}$

Variance contingent on the variable dependences, E.g., If $\mathrm{X} 2=2 \mathrm{X} 1+5$,

$$
\begin{aligned}
& \operatorname{Var}(X 1+X 2)=\operatorname{Var}(X 1+2 X 1+5)= \\
& \operatorname{Var}(3 X 1+5)=\operatorname{Var}(3 X 1)=9 \operatorname{Var}(X 1)
\end{aligned}
$$

Linear Scaling (affine transformations) $a X+b$
Example:
$\mathrm{E}(a \boldsymbol{X}+b)=\boldsymbol{a} \mathrm{E}(\boldsymbol{X})+b \quad \mathrm{SD}(a \boldsymbol{X}+b)=|\boldsymbol{a}| \mathrm{SD}(\boldsymbol{X})$

1. $\mathrm{X}=\{-1,2,0,3,4,0,-2,1\} ; P(X=x)=1 / 8$, for each X
2. $\mathrm{Y}=2 \mathrm{X}-5=\{-7,-1,-5,1,3,-5,-9,-3\}$
3. $E(X)=$
4. $\mathrm{E}(\mathrm{Y})=$
5. Does $\mathrm{E}(\mathrm{X})=2 \mathrm{E}(\mathrm{X})-5$?
6. Compute $\operatorname{SD}(\mathrm{X}), \mathrm{SD}(\mathrm{Y})$. Does $\mathrm{SD}(\mathrm{Y})=2 \mathrm{SD}(\mathrm{X})$?

Linear Scaling (affine transformations) $a X+b$

And why do we care?

$$
\mathrm{E}(a \boldsymbol{X}+b)=\boldsymbol{a} \mathrm{E}(\boldsymbol{X})+b \quad \mathrm{SD}(a \boldsymbol{X}+b)=|\boldsymbol{a}| \mathrm{SD}(\boldsymbol{X})
$$

-E.g., say the rules for the game of chance we saw before change and the new pay-off is as follows: $\{\$ 0, \$ 1.50, \$ 3\}$, with probabilities of $\{0.6,0.3,0.1\}$, as before. What is the newly expected return of the game? Remember the old expectation was equal to the entrance fee of $\$ 1.50$, and the game was fair!

$$
Y=3(X-1) / 2
$$

$\{\$ 1, \$ 2, \$ 3\} \rightarrow\{\$ 0, \$ 1.50, \$ 3\}$,
$\mathrm{E}(\mathrm{Y})=3 / 2 \mathrm{E}(\mathrm{X})-3 / 2=3 / 4=\$ 0.75$
And the game became clearly biased. Note how easy it is to compute $\mathrm{E}(\mathrm{Y})$.

Binomial Experiment

An experiment for which the following four conditions are satisfied is called a binomial experiment.

1. The experiment consists of a sequence of n trials, where n is fixed in advance of the experiment.

Binomial Experiment

Suppose each trial of an experiment can result in S or F, but the sampling is without replacement from a population of size N. If the sample size n is at most 5% of the population size, the experiment can be analyzed as though it were exactly a binomial experiment.

Binomial Random Variable

Given a binomial experiment consisting of n trials, the binomial random variable X associated with this experiment is defined as
$X=$ the number of S 's among n trials

Computation of a
Binomial pmf
$b(x ; n, p)=\binom{n}{x} p^{x}(1-p)^{n-x}$ $0 \leq x \leq n$

Ex. A card is drawn from a standard 52-card deck. If drawing a club is considered a success, find the probability of
a. exactly one success in 4 draws (with replacement).

$$
p=1 / 4 ; q=1-1 / 4=3 / 4
$$

$$
\binom{4}{1}\left(\frac{1}{4}\right)^{1}\left(\frac{3}{4}\right)^{3} \approx 0.422
$$

b. no successes in 5 draws (with replacement).

$$
\binom{5}{0}\left(\frac{1}{4}\right)^{0}\left(\frac{3}{4}\right)^{5} \approx 0.237
$$

Mean and Variance

For $X \sim \operatorname{Bin}(n, p)$, then $E(X)=n p$,
$V(X)=n p(1-p)=n p q, \sigma_{X}=\sqrt{n p q}$
(where $q=1-p$).

Ex. If the probability of a student successfully passing this course (C or better) is 0.82 , find the probability that given 8 students
a. all 8 pass. $\quad\binom{8}{8}(0.82)^{8}(0.18)^{0} \approx 0.2044$
b. none pass. $\binom{8}{0}(0.82)^{0}(0.18)^{8} \approx 0.0000011$
c. at least 6 pass.
$\binom{8}{6}(0.82)^{6}(0.18)^{2}+\binom{8}{7}(0.82)^{7}(0.18)^{1}+\binom{8}{8}(0.82)^{8}(0.18)^{0}$
$\approx 0.2758+0.3590+0.2044=0.8392$

Notation for cdf

For $X \sim \operatorname{Bin}(n, p)$, the cdf will be denoted by

$$
\begin{array}{r}
P(X \leq x)=B(x ; n, p)=\sum_{y=0}^{x} b(y ; n, p) \\
x=0,1,2, \ldots n
\end{array}
$$

Ex. 5 cards are drawn, with replacement, from a standard 52-card deck. If drawing a club is considered a success, find the mean, variance, and standard deviation of X (where X is the number of successes).

$$
p=1 / 4 ; q=1-1 / 4=3 / 4
$$

$\mu=n p=5\left(\frac{1}{4}\right)=1.25$
$V(X)=n p q=5\left(\frac{1}{4}\right)\left(\frac{3}{4}\right)=0.9375$

The Hypergeometric Distribution

The three assumptions that lead to a hypergeometric distribution:

1. The population or set to be sampled consists of N individuals, objects, or elements (a finite population).

If X is the number of S 's in a completely random sample of size n drawn from a population consisting of M 's and ($N-M$) F 's, then the probability distribution of X, called the hypergeometric distribution, is
given by
$P(X=x)=h(x ; n, M, N)=\frac{\binom{M}{x}\binom{N-M}{n-x}}{\binom{N}{n}}$
$\max (0, n-N+M) \leq x \leq \min (n, M)$
Slide 45

The Negative Binomial Distribution

The negative binomial rv and distribution are based on an experiment satisfying the following four conditions:

1. The experiment consists of a sequence of independent trials.
2. Each trial can result in a success (S) or a failure (F).
3. The probability of success is constant from trial to trial, so $P(S$ on trial $i)=p$ for $i=1,2,3, \ldots$
4. The experiment continues until a total of r successes have been observed, where r is a specified positive integer.

pmf of a Negative Binomial

The pmf of the negative binomial rv X with parameters $r=$ number of S 's and $p=P(S)$ is
$N B(x ; r, p)=\binom{x+r-1}{r-1} p^{r}(1-p)^{x}$
$x=0,1,2, \ldots$

Hypergeometric Distribution \& Binomial

- Binomial approximation to Hyperheometric
$\square \frac{n}{N}$ is small (usually <0.1), then $\frac{M}{N} \approx p$

Ex: 4,000 out of 10,000 residents are against a new tax. 15 residents are selected at random.
$P($ at most 7 favor the new tax $)=$?

Poisson Distribution

A random variable X is said to have a Poisson distribution with parameter $\lambda(\lambda>0)$, if the pmf of X is

$$
p(x ; \lambda)=\frac{e^{-\lambda} \lambda^{x}}{x!} \quad x=0,1,2 \ldots
$$

The Poisson Distribution as a Limit

Suppose that in the binomial pmf $b(x ; n, p)$, we let $n \rightarrow \infty$ and $p \rightarrow 0$ in such a way that $n p$ approaches a value $\lambda>0$. Then $b(x ; n, p) \rightarrow p(x ; \lambda)$.

Poisson Distribution Mean and Variance

If X has a Poisson distribution with parameter λ, then

$$
E(X)=V(X)=\lambda
$$

2. The probability of more than one event during Δt is $o(\Delta t)$.
3. The number of events during the time interval Δt is independent of the number that occurred prior to this time interval.

Poisson Distribution

Poisson Distribution - Definition

$P_{k}(t)=e^{-\alpha t} \cdot(\alpha t)^{k} / k!$, so that the number of pulses (events) during a time interval of length t is a Poisson rv with parameter $\lambda=\alpha t$. The expected number of pulses (events) during any such time interval is αt, so the expected number during a unit time interval is α.

Used to model counts - number of arrivals (k) on a given interval ...

- The Poisson distribution is also sometimes referred to as the distribution of rare events. Examples of Poisson distributed variables are number of accidents per person, number of sweepstakes won per person, or the number of catastrophic defects found in a production process.

Hypergeometric Distribution \& Binomial

- Binomial approximation to Hyperheometric
- $\frac{n}{N}$ is small (usually <0.1), then $\frac{M}{N} \approx p$

Ex: 4,000 out of 10,000 residents are against a new tax. 15 residents are selected at random.
$P($ at most 7 favor the new tax $)=$?
Poisson Distribution - Mean

$$
\begin{aligned}
& \text { - Used to model counts - number of arrivals (k) on a } \\
& \text { given interval ... } \\
& \text { - } \mathrm{Y} \sim \operatorname{Poisson}(\lambda) \text {, then } \mathrm{P}(\mathrm{Y}=\mathrm{k})=\frac{\lambda^{k} \mathrm{e}^{-\lambda}}{k!}, \mathrm{k}=0,1,2, \ldots \\
& \text { - Mean of } \mathrm{Y}, \mu_{\mathrm{Y}}=\lambda \text {, since } \\
& E(Y)=\sum_{k=0}^{\infty} k \frac{\lambda^{k} \mathrm{e}^{-\lambda}}{k!}=\mathrm{e}^{-\lambda} \sum_{k=0}^{\infty} \frac{k \lambda^{k}}{k!}=\mathrm{e}^{-\lambda} \sum_{k=1}^{\infty} \frac{\lambda^{k}}{(k-1)!}= \\
& =\lambda \mathrm{e}^{-\lambda} \sum_{k=1}^{\infty} \frac{\lambda^{k-1}}{(k-1)!}=\lambda \mathrm{e}^{-\lambda} \sum_{k=0}^{\infty} \frac{\lambda^{k}}{k!}=\lambda \mathrm{e}^{-\lambda} \mathrm{e}^{\lambda}=\lambda
\end{aligned}
$$

Poisson Distribution - Example

- For example, suppose that Y denotes the number of blocked shots in a randomly sampled game for the UCLA Bruins men's basketball team. Poisson distribution with mean=4 may be used to model Y.

Poisson as an approximation to Binomial

- Rule of thumb is that approximation is good if: models, with $\lim \left(\mathrm{n}_{\mathrm{n}}\right) \rightarrow \lambda$, as $\mathrm{n} \rightarrow$ infinity.
- For each $0<=y<=n$, if $Y_{n} \sim \operatorname{Binomial}\left(n, p_{n}\right)$, then
- $P\left(Y_{n}=y\right)=$
$\binom{n}{y} p_{n}{ }^{y}\left(1-p_{n}\right)^{n-y}$
$\binom{n}{y} p_{n}^{y}\left(1-p_{n}\right)^{n-y} \xrightarrow[\substack{n \longrightarrow \infty \\ n \times P_{n} \longrightarrow}]{\text { WHY? }} \frac{\lambda^{y} e^{-\lambda}}{y!}$
- Thus, Binomial $\left(\mathrm{n}, \mathrm{p}_{\mathrm{n}}\right) \rightarrow \xrightarrow{n \times p_{n} \longrightarrow \lambda} \operatorname{Poisson}(\lambda)$

Slide 69 Stat 110A, UCLA, Ivo Dinov

$$
\begin{aligned}
& n>=100 \\
& p<=0.01 \\
& \lambda=n p<=20
\end{aligned}
$$

- Then, Binomial $\left(\mathrm{n}, \mathrm{p}_{\mathrm{n}}\right) \rightarrow \operatorname{Poisson}(\lambda)$

