UCLA STAT 110 A

Applied Probability \& Statistics for
Engineers

-Instructor: Ivo Dinov,

Asst. Prof. In Statistics and Neurology
-Teaching Assistant: Christopher Barr
University of California, Los Angeles, Fall 2004 http://www.stat.ucla.edu/~dinov/

5.1

Jointly Distributed Random Variables

Marginal Probability Mass Functions
The marginal probability mass
functions of X and Y, denoted $p_{X}(x)$ and $p_{Y}(y)$ are given by
$p_{X}(x)=\sum_{y} p(x, y) \quad p_{Y}(y)=\sum_{x} p(x, y)$

Chapter 5

Joint Probability Distributions and Random Samples

Joint Probability Mass Function

Let X and Y be two discrete rv's defined on the sample space of an experiment. The joint probability mass function $p(x, y)$ is defined for each pair of numbers (x, y) by

$$
p(x, y)=P(X=x \text { and } Y=y)
$$

Let A be the set consisting of pairs of (x, y) values, then

$$
P[(X, Y) \in A]=\sum_{(x, y) \in A} \sum_{n} p(x, y)
$$

Joint Probability Density Function

Let X and Y be continuous rv's. Then $f(x, y)$ is a joint probability density function for X and Y if for any two-dimensional set A

$$
P[(X, Y) \in A]=\iint_{A} f(x, y) d x d y
$$

If A is the two-dimensional rectangle $\{(x, y): a \leq x \leq b, c \leq y \leq d\}$,

$$
P[(X, Y) \in A]=\int_{\substack{a \\ \text { Slide } 6}}^{b} f(x, y) d y d x
$$

Independent Random Variables

Two random variables X and Y are said to be independent if for every pair of x and y values

$$
p(x, y)=p_{X}(x) \cdot p_{Y}(y)
$$

when X and Y are discrete or

$$
f(x, y)=f_{X}(x) \cdot f_{Y}(y)
$$

when X and Y are continuous. If the conditions are not satisfied for all (x, y) then X and Y are dependent.

Independence - More Than Two Random Variables

The random variables $X_{1}, X_{2}, \ldots, X_{n}$ are independent if for every subset $X_{i_{1}}, X_{i_{2}}, \ldots, X_{i_{n}}$ of the variables, the joint pmf or pdf of the subset is equal to the product of the marginal pmf's or pdf's.

Marginal Probability Density Functions

The marginal probability density functions of X and Y, denoted $f_{X}(x)$ and $f_{Y}(y)$, are given by

$$
\begin{array}{ll}
f_{X}(x)=\int_{-\infty}^{\infty} f(x, y) d y & \text { for }-\infty<x<\infty \\
f_{Y}(y)=\int_{-\infty}^{\infty} f(x, y) d x & \text { for }-\infty<y<\infty
\end{array}
$$

More Than Two Random Variables

If $X_{1}, X_{2}, \ldots, X_{n}$ are all discrete random variables, the joint pmf of the variables is the function

$$
p\left(x_{1}, \ldots, x_{n}\right)=P\left(X_{1}=x_{1}, \ldots, X_{n}=x_{n}\right)
$$

If the variables are continuous, the joint pdf is the function f such that for any n intervals [a_{1}, b_{1}],
$\ldots,\left[a_{n}, b_{n}\right], P\left(a_{1} \leq X_{1} \leq b_{1}, \ldots, a_{n} \leq X_{n} \leq b_{n}\right)$

$$
=\int_{a_{1}}^{b_{1}} \ldots \int_{a_{n}}^{b_{n}} f\left(x_{1}, \ldots, x_{n}\right) d x_{n} \ldots d x_{1}
$$

Conditional Probability Function

Let X and Y be two continuous rv's with joint pdf $f(x, y)$ and marginal $X \operatorname{pdf} f_{X}(x)$. Then for any X value x for which $f_{X}(x)>0$, the conditional probability density function of Y given that $X=x$ is

$$
f_{Y \mid X}(y \mid x)=\frac{f(x, y)}{f_{X}(x)} \quad-\infty<y<\infty
$$

If X and Y are discrete, replacing pdf's by pmf's gives the conditional probability mass function of Y when $X=x$.

Marginal probability distributions (Cont.)

- If X and Y are discrete random variables with joint probability mass function $f_{X Y}(x, y)$, then the marginal

$$
\begin{aligned}
& \text { probability mass function of } X \text { and } Y \text { are } \\
& f_{X}(x)=P(X=x)=\sum_{y \in R_{X}} f_{X Y}(x, y) \\
& f_{Y}(y)=P(Y=y)=\sum_{x \in R y} f_{X, Y}(x, y)
\end{aligned}
$$

$$
V(X)=\sigma^{2} x=\sum_{x}\left(x-\mu_{X}\right)^{2} f_{X}(x)=\sum_{x}\left(x-\mu_{X}\right)^{2} \sum_{y \in R_{X}} f_{X Y}(x, y)
$$

where R_{x} denotes the set of all points in the range of (X, Y) for which $X=x$ and $R y$ denotes the set of all

$$
=\sum_{x} \sum_{y \in R_{X}}\left(x-\mu_{X}\right)^{2} f_{X Y}(x, y)=\sum_{(x, y) \in R}\left(x-\mu_{X}\right)^{2} f_{X Y}(x, y)
$$ points in the range of (X, Y) for which $Y=y$

Joint probability mass function - example
The joint density, $\mathbf{P}\{\boldsymbol{X}, \boldsymbol{Y}\}$, of the number of minutes waiting to catch the first fish, \boldsymbol{X},

Mean and Variance

- If the marginal probability distribution of X has the probability function $\mathrm{f}(\mathrm{x})_{\text {, th }}$ then

$$
E(X)=\mu_{X}=\sum_{x} x f_{X}(x)=\sum_{x} x\left(\sum_{y \in R_{x}} f_{X Y}(x, y)\right)=\sum_{x} \sum_{y \in R_{x}} x f_{X Y}(x, y)
$$

$$
=\sum_{R} x f_{X Y}^{x}(x, y)
$$

- $R=$ Set of all points in the range of (X, Y).

Conditional probability (Cont.)

Because a conditional probability mass function $f_{Y \mid x}(y)$ is a probability mass function for all y in R_{y}, the following properties are satisfied:
(1) $f_{Y \mid x}(y) \geq 0$
(2) $\sum_{R_{y}} f_{Y \mid X}(y)=1$
(3) $P(Y=y \mid X=x)=f_{Y \mid x}(y)$

Conditional probability (Cont.)

- Let R_{x} denote the set of all points in the range of (X, Y) for which $\mathrm{X}=\mathrm{x}$. The conditional mean of Y given $X=x$, denoted as $E(Y \mid x)$ or $\mu_{Y \mid x}$, is

$$
E(\mathrm{Y} \mid \mathrm{x})=\sum_{R_{x}} y f_{\mathrm{Y} \mid \mathrm{x}}(y)
$$

- And the conditional variance of Y given $X=x$, denoted as $\mathrm{V}(\mathrm{Y} \mid \mathrm{x})$ or $\sigma_{\mathrm{Y} \mid \mathrm{x}}^{2}$ is

$$
V(\mathrm{Y} \mid \mathrm{x})=\sum_{R_{x}}\left(y-\mu_{\mathrm{Y} \mid \mathrm{x}}\right)^{2} f_{\mathrm{Y} \mid \mathrm{x}}(y)=\sum_{R_{x}} y^{2} f_{\mathrm{Y} \mid \mathrm{x}}(y)-\mu_{\mathrm{Y} \mid \mathrm{X}}^{2}
$$

Independence

- For discrete random variables X and Y , if any one of the following properties is true, the others are also true, and X and Y are independent.
(1) $f_{X Y}(x, y)=f_{X}(x) f_{Y}(y) \quad$ for all x and y
(2) $f_{Y \mid x}(y)=f_{Y}(y)$ for all x and y with $f_{X}(x)>0$
(3) $f_{X \mid y}(y)=f_{X}(x)$ for all x and y with $f_{Y}(y)>0$
(4) $\mathrm{P}(\mathrm{X} \in \mathrm{A}, \mathrm{Y} \in \mathrm{B})=\mathrm{P}(\mathrm{X} \in \mathrm{A}) \mathrm{P}(\mathrm{Y} \in \mathrm{B})$ for any sets A and B in the range of X and Y respectively.

Expected Value

Let X and Y be jointly distributed rv's with pmf $p(\mathrm{x}, \mathrm{y})$ or $\operatorname{pdf} f(\mathrm{x}, \mathrm{y})$ according to whether the variables are discrete or continuous. Then the expected value of a function $h(X, Y)$, denoted $E[h(X, Y)]$ or $\mu_{h(X, Y)}$
is $\int \sum \sum h(x, y) \cdot p(x, y) \quad$ discrete Correlation

Covariance

The covariance between two rv's X and Y is
$\operatorname{Cov}(X, Y)=E\left[\left(X-\mu_{X}\right)\left(Y-\mu_{Y}\right)\right]$
$\int \sum_{x} \sum_{y}\left(x-\mu_{X}\right)\left(y-\mu_{Y}\right) p(x, y) \quad$ discrete $=\left\{\begin{array}{l}x \\ \infty\end{array}\right.$
$\int_{-\infty}^{\infty} \int_{-\infty}^{\infty}\left(x-\mu_{X}\right)\left(y-\mu_{Y}\right) f(x, y) d x d y$ continuous

Short-cut Formula for Covariance

$$
\operatorname{Cov}(X, Y)=E(X Y)-\mu_{X} \cdot \mu_{Y}
$$

Correlation

The correlation coefficient of X and Y, denoted by $\operatorname{Corr}(X, Y), \rho_{X, Y}$, or just ρ, is defined by

$$
\rho_{X, Y}=\frac{\operatorname{Cov}(X, Y)}{\sigma_{X} \cdot \sigma_{Y}}
$$

Correlation Proposition

1. If a and c are either both positive or both negative, $\operatorname{Corr}(a X+b, c Y+d)=\operatorname{Corr}(X, Y)$
2. $\operatorname{Corr}(\mathrm{X}, \mathrm{Y})=\operatorname{Corr}(\mathrm{Y}, \mathrm{X})$
3. For any two rv's X and Y,

$$
-1 \leq \operatorname{Corr}(X, Y) \leq 1
$$

5.3
 Statistics and their Distributions

Statistic

A statistic is any quantity whose value can be calculated from sample data. Prior to obtaining data, there is uncertainty as to what value of any particular statistic will result. A statistic is a random variable denoted by an uppercase letter; a lowercase letter is used to represent the calculated or observed value of the statistic.

Random Samples

The rv's X_{1}, \ldots, X_{n} are said to form a (simple random sample of size n if

1. The X_{i} 's are independent rv's.
2. Every X_{i} has the same probability distribution.

Simulation Experiments

The following characteristics must be specified:

1. The statistic of interest.
2. The population distribution.
3. The sample size n.
4. The number of replications k.

Using the Sample Mean

Let X_{1}, \ldots, X_{n} be a random sample from a distribution with mean value μ and standard deviation σ. Then

$$
\begin{aligned}
& \text { 1. } E(\bar{X})=\mu_{\bar{X}}=\mu \\
& \text { 2. } V(\bar{X})=\sigma_{\bar{X}}^{2}=\sigma^{2} / n
\end{aligned}
$$

In addition, with $T_{\mathrm{o}}=X_{1}+\ldots+X_{n}$, $E\left(T_{o}\right)=n \mu, V\left(T_{o}\right)=n \sigma^{2}$, and $\sigma_{T_{o}}=\sqrt{n} \sigma$.

Normal Population Distribution

Let X_{1}, \ldots, X_{n} be a random sample from a normal distribution with mean value μ and standard deviation σ. Then for any n, \bar{X} is normally distributed, as is T_{o}.

The Central Limit Theorem

Approximate Lognormal Distribution

Let X_{1}, \ldots, X_{n} be a random sample from a distribution for which only positive values are possible $\left[P\left(X_{i}>0\right)=1\right]$. Then if n is sufficiently large, the product $Y=X_{1} X_{2} \ldots X_{n}$ has approximately a lognormal distribution.

Independence

- For discrete random variables X and Y , if any one of the following properties is true, the others are also true, and X and Y are independent.
(1) $f_{X Y}(x, y)=f_{X}(x) f_{Y}(y) \quad$ for all x and y
(2) $f_{Y \mid x}(y)=f_{Y}(y)$ for all x and y with $f_{X}(x)>0$
(3) $f_{X \mid y}(y)=f_{X}(x)$ for all x and y with $f_{Y}(y)>0$
(4) $\mathrm{P}(\mathrm{X} \in \mathrm{A}, \mathrm{Y} \in \mathrm{B})=\mathrm{P}(\mathrm{X} \in \mathrm{A}) \mathrm{P}(\mathrm{Y} \in \mathrm{B})$ for any sets A and B in the range of X and Y respectively.

Recall we looked at the sampling distribution of \bar{X}

- For the sample mean calculated from a random sample, $\mathrm{E}(\bar{X})=\mu$ and $\operatorname{SD}(\bar{X})=\sigma / \sqrt{n}$, provided $\bar{X}=\left(\mathrm{X}_{1}+\mathrm{X}_{2}+\ldots+\mathrm{X}_{\mathrm{n}}\right) / n$, and $\mathrm{X}_{\mathrm{k}} \sim \mathrm{N}(\mu, \sigma)$. Then
- $\bar{X} \sim \mathrm{~N}\left(\mu, \frac{\sigma}{\sqrt{n}}\right)$. And variability from sample to sample in the sample-means is given by the variability of the individual observations divided by the square root of the sample-size. In a way, averaging decreases variailily.

Central Limit Theorem theoretical formulation

Let $\left\{X_{,}, X_{2}, \ldots, X_{k}, \ldots.\right\}$ be a sequence of independent observations from one specific random process. Let and $E(X)=\mu$ and $S D(X)=\sigma$ and both be finite $(0<\sigma<\infty ;|\mu|<\infty)$. If $\overline{X_{n}}=\frac{1}{n} \sum_{k=1}^{n} X$, sample-avg,
Then \bar{X} has a distribution which approaches $\mathrm{N}\left(\mu, \sigma^{2} / n\right)$, as $n \rightarrow \infty$.

Linear Combination

Given a collection of n random variables X_{1}, \ldots, X_{n} and n numerical constants a_{1}, \ldots, a_{n}, the rv

$$
Y=a_{1} X_{1}+\ldots+a_{n} X_{n}=\sum_{i=1}^{n} a_{i} X_{i}
$$

is called a linear combination of the X_{i} 's.

Expected Value of a Linear Combination

Let X_{1}, \ldots, X_{n} have mean values $\mu_{1}, \mu_{2}, \ldots, \mu_{n}$ and variances of $\sigma_{1}^{2}, \sigma_{2}^{2}, \ldots, \sigma_{n}^{2}$, respectively

Whether or not the X_{i} 's are independent,

$$
\begin{aligned}
E\left(a_{1} X_{1}+\ldots+a_{n} X_{n}\right) & =a_{1} E\left(X_{1}\right)+\ldots+a_{n} E\left(X_{n}\right) \\
& =a_{1} \mu_{1}+\ldots+a_{n} \mu_{n}
\end{aligned}
$$

Variance of a Linear Combination

For any X_{1}, \ldots, X_{n},
$V\left(a_{1} X_{1}+\ldots+a_{n} X_{n}\right)=\sum_{i=1}^{n} \sum_{j=1}^{n} a_{i} a_{j} \operatorname{Cov}\left(X_{i}, X_{j}\right)$

Difference Between Normal Random

 VariablesIf $X_{1}, X_{2}, \ldots X_{n}$ are independent, normally distributed rv's, then any linear combination of the X_{i} 's also has a normal distribution. The difference $X_{1}-X_{2}$ between two independent, normally distributed variables is itself normally distributed.

Variance of a Linear Combination

If X_{1}, \ldots, X_{n} are independent,
$V\left(a_{1} X_{1}+\ldots+a_{n} X_{n}\right)=a_{1}^{2} V\left(X_{1}\right)+\ldots+a_{n}^{2} V\left(X_{n}\right)$

$$
=a_{1}^{2} \sigma_{1}^{2}+\ldots+a_{n}^{2} \sigma_{n}^{2}
$$

and
$\sigma_{a_{1} X_{1}+\ldots+a_{n} X_{n}}=\sqrt{a_{1}^{2} \sigma_{1}^{2}+\ldots+a_{n}^{2} \sigma_{n}^{2}}$

Difference Between Two Random Variables

$E\left(X_{1}-X_{2}\right)=E\left(X_{1}\right)-E\left(X_{2}\right)$
and, if X_{1} and X_{2} are independent,
$V\left(X_{1}-X_{2}\right)=V\left(X_{1}\right)+V\left(X_{2}\right)$

