UCLA STAT 110 A

Applied Probability \& Statistics for
Engineers

-Instructor: Ivo Dinov,

Asst. Prof. In Statistics and Neurology
-Teaching Assistant: Christopher Barr
University of California, Los Angeles, Fall 2004 http://www.stat.ucla.edu/~dinov/

What is Statistics? A practical example
- Demography: Uncertain population forecasts by Nico Keilman, Wolfgang Lutz, et al., Nature $412,490-491$ (2001) Traditional population forecasts made by statistical agencies do not quantify uncertainty. But demographers and statisticians have developed methods to calculate probabilistic forecasts. - The demographic future of any human population is uncertain, but some of the many possible trajectories are more probable than others. So, forecast demographics of a population, e.g., size by 2100, should include two elements: a range of possible outcomes, and a probability attached to that range.
Stat lloa, UCLA, Ivo Dinov

Year	Median world and regional population sizes (mililions)				
	2000	2025	2050	2075	2100
World total	6,055	7,827 $19-8459$	${ }^{8} 8797$	8.951	8.414
North Atrica	173	(19-854	${ }_{(2,347-10,443)}^{311}$	${ }_{(6,636-11,662)}^{336}$	$\begin{gathered} (5,577-12,123 \\ 333 \end{gathered}$
		(228-285)	(249-378)	(238-443)	(215-484)
Sub-Saharan Africa	611	976	1,319	1,522	1.500
		(856-1,100)	(1,010-1,701)	(1,021-2,194)	(878-2,450)
North America	${ }^{14}$			${ }^{(343-565)}$	${ }_{\text {(313-631) }}{ }^{454}$
Latin America	515	709	840	${ }^{904}$	${ }^{934}$
		(643-775)	(679-1,005)	(647-1,202)	(585-1,383)
Central Asia	50	$\begin{gathered} 81 \\ (73-90) \end{gathered}$	$\begin{gathered} 100 \\ (80-121) \end{gathered}$	$\begin{gathered} 107 \\ (76-145) \end{gathered}$	$\begin{gathered} (66-159) \\ (66) \end{gathered}$
Middle East	172	285	368	413	413
		(252-318)	(301-445)	(296-544)	(259-597)
South Asia	1,367	1,940	2,249	2,242	1,958
China region	1,408	${ }_{(1,735-608}^{(1,154)}$	(1,795-2,776)	${ }_{(1,528-3,082}{ }^{(1,225)}$	$\begin{gathered} (1,186-3,035) \\ 1,250 \end{gathered}$
		(1,494-1,714)	(1,305-1,849)	(1,003-1,884)	(765-1,870)
Pacific Asia	476			$\begin{gathered} 702 \\ (509-937) \end{gathered}$	$\begin{gathered} 654 \\ (410-949) \end{gathered}$
Pacific OECD	150	155			123
		(144-165)	(125-174)	(100-175)	(79-173)
Western Europe	456	${ }^{4788}$	470	${ }^{433}$	7-568)
Eastern Europe	121	${ }_{(445-508)}^{117}$	${ }^{(399-549)}$	[321-562] 87	${ }^{\text {[257-568] }} 74$
		(109-125)	${ }_{(08-124)}^{\text {(87) }}$	(61-118)	${ }^{(44-115)}$
European part of the tormer USSR	236	$\begin{gathered} 218 \\ (203-234) \end{gathered}$	$\begin{gathered} 187 \\ (154-225) \end{gathered}$	$\begin{gathered} { }^{159} \\ (110-216) \end{gathered}$	$\begin{gathered} (85-218) \\ (141) \end{gathered}$

What is Statistics?

- Together, ranges/probabilities constitute a prediction interval for the population. There are trade-offs between greater certainty (higher odds) and better precision (narrower intervals). Why?
- For instance, the next table shows an estimate that the odds are 4 to 1 (an 80% chance) that the world's population, now at 6.1 billion, will be in the range [$5.6: 12.1]$ billion in the year 2100. Odds of 19 to 1 (a 95% chance) result in a wider interval: [4.3 : 14.4] billion.

Year	Median	
	2000	2025
World total	6,055	$\begin{gathered} 7,827 \\ (7,219-8,459) \end{gathered}$
North Africa	173	$\begin{gathered} 257 \\ (228-285) \end{gathered}$
Sub-Saharan Africa	611	$\begin{gathered} 976 \\ (856-1,100) \end{gathered}$
North America	314	$\begin{gathered} 379 \\ (351-410) \end{gathered}$
Latin America		$\begin{gathered} 709 \\ (643-775) \end{gathered}$
Central Asia	56	$\begin{gathered} 81 \\ (73-90) \end{gathered}$
Middle East	172	$\begin{gathered} 285 \\ (252-318) \end{gathered}$

What is Statistics?

-So, during the 1990s, researchers developed methods for making probabilistic population forecasts, the aim of which is to calculate prediction intervals for every variable of interest. Examples include population forecasts for the USA, AU, DE, FIN and the Netherlands; these forecasts comprised prediction intervals for variables such as age structure, average number of children per woman, immigration flow, disease epidemics.

- We need accurate probabilistic population forecasts for the whole world, and its 13 large division regions (see Table). The conclusion is that there is an estimated 85% chance that the world's population will stop growing before 2100. Accurate?

Chapter 1: Intro \& Descriptive Stats

- Variation in data
- Data Distributions
- Stationary and (dynamic) non-stationary processes
- Causes of Variation

Newtonial science vs. chaotic science

- Article by Robert May, Nature, vol. 411, June 21, 2001
- Science we encounter at schools deals with crisp certainties (e.g., prediction of planetary orbits, the periodic table as a descriptor of all elements, equations describing area, volume, velocity, position, etc.)
- As soon as uncertainty comes in the picture it shakes the foundation of the deterministic science, because only probabilistic statements can be made in describing a phenomenon (e.g., roulette wheels, chaotic dynamic weather predictions, Geiger counter, earthquakes, etc.)
- What is then science all about - describing absolutely certain events and laws alone, or describing more general phenomena in terms of their behavior and chance of occurring? Or may be both!

Experiments vs. observational studies for comparing the effects of treatments

- In an Experiment
\square experimenter determines which units receive which treatments. (ideally using some form of random allocation)
- Observational study - useful when can't design a controlled randomized study
\square compare units that happen to have received each of the treatments
- Ideal for describing relationships between different characteristics in a population.
often useful for identifying possible causes of effects, but cannot reliably establish causation.
- Only properly designed and executed experiments can reliably demonstrate causation.

Sources of non-sampling errors

- Selection bias:

Arises when the population sampled is not exactly the population of interest.

- Self-selection:

People themselves decide whether or not to be surveyed. Results akin to severe non-response.

- Non-response bias:

Non-respondents often behave or think differently from respondents

- low response rates can lead to huge biases

Immigration Example

- We could take all members of the population in the US at the time, who were entitled to vote in national elections. This may exclude the young, the illegal immigrants, those people in prisons and people legally committed to mental institutions. It would include any other permanent residents of the US, whether or not they were citizens, and citizens living overseas.
- You might want to be more, or less, restrictive. In practice, one would probably sample from something like the electoral
- districts [that subset of people who fit the eligibility criteria for voting and who have registered to do so].
Q Should the goals of the study influence your survey

Poll Example

A survey of High School principals taken after a widespread change in the public school system revealed that 20% of them were under stressreliefe medication, and almost 50% had seen a doctor in the past 6 mo.s with stress complains. The survey was compiled from 250 questionnaires returned out of 2500 sent out. How reliable the results of this experiment are and why?

Experimental vs. Observation study

- A researcher wants to evaluate IQ levels are related to person's height. 100 people are are randomly selected and grouped into 5 bins: [0:50), [50;100), [100:150], [150:200), [200:250] cm in height. The subjects undertook a IQ exam and the results are analyzed.
- Another researcher wants to assess the bleaching effects of 10 laundry detergents on 3 different colors (R, G, B). The laundry detergents are randomly selected and applied to 10 pieces of cloth. The discoloration is finally evaluated.

Experimental vs. Observation study

- For each study, describe what treatment is being compared and what response is being measured to compare the treatments.
- Which of the studies would be described as experiments and which would be described as observational studies?
- For the studies that are observational, could an experiment have been carried out instead? If not, briefly explain why not.
- For the studies that are experiments, briefly discuss what forms of blinding would be possible to be used.
- In which of the studies has blocking been used? Briefly describe what was blocked and why it was blocked.

Mean, Median, Mode, Quartiles, 5\# summary

The sample mean is the average of all numeric obs's

- The sample median is the obs. at the index $(n+1) / 2$ (note take avg of the 2 obs's in the middle for fractions like 23.5), of the observations ordered by size (small-to-large)?
- The sample median usually preferred to the sample mean for skewed data?

0\%。
mean
$\stackrel{100}{+}$

- Under what circumstances may quoting a single center (be it mean or median) not make sense?(multi-modal)
- What can we say about the sample mean of a qualitative variable? (meaningless)

The five-number summery $=\left(\operatorname{Min}, \mathrm{Q}_{1}, \mathrm{Med}, \mathrm{Q}_{3}, \mathrm{Max}\right)$

Experimental vs. Observation study

- What is the treatment and what is the response?

1. Treatment is height (as a bin). Response is IQ score.
2. Treatment is laundry detergent. Response is discoloration.

- Experiment or observational study?

1. Observational - compare obs's (IQ) which happen to have the treatment (height). 2. Experimental - experimenter controls which treatment is applied to which

- For the observational studies, can we conduct an experiment?

1. This could not be done as an experiment - it would require the experimenter to decide the (natural) height (treatment) of the subjects (units).

- For the experiments, is there blinding?

2. The only form of blinding possible would be for the technicians measuring the .
Is there blocking?
3. \& 2. No blocking. Say, if there are two laundry machines with different cycles of operation and if we want to block we'll need to randomize which laundry toes whiehretoth/detergenteombinationsibbeause differenees in faunntry eyetes are
aknown Source of variation.

Quantiles (vs. quartiles)

- The $\mathbf{q}^{\text {th }}$ quantile ($100 \times \mathbf{q}^{\text {th }}$ percentile) is a value, in the range of our data, so that proportion of at least \mathbf{q} of the data lies at or below it and a proportion of at least (1-q) lies at or above it.
- E.X., $X=\{1,2,3,4,5,6,7,8,9,10\}$. The $\mathbf{2 0}{ }^{\text {th }}$ percentile (0.2 quartile) is the value 2 , since 20% of the data is below it and 80% above it. The $70^{\text {th }}$ percentile is the value 7 , etc.
- We could have also selected $\mathbf{2 . 5}$ and $\mathbf{7 . 5}$ for the $\mathbf{2 0}{ }^{\text {th }}$ and $70^{\text {th }}$ percentile, above. There is no agreement on the exact definitions of quantiles.

Measures of variability (deviation)

- Mean Absolute Deviation (MAD) -

$$
M A D=\frac{1}{n-1} \sum_{i=1}^{n}\left|y_{i}-\bar{y}\right|
$$

- Variance -

$$
\operatorname{Var}=s^{2}=\frac{1}{n-1} \sum_{i=1}^{n}\left(y_{i}-\bar{y}\right)^{2}
$$

$$
\quad \text { Standard Deviation }-~=\sqrt{\text { Var }}=s=\sqrt{\frac{1}{n-1} \sum_{i=1}^{n}\left(y_{i}-\bar{y}\right)^{2}}
$$

Bar Chart

List all possible categories the data is classified in! Represents the frequency of occurrence of the data in each category

- Example: Number of engineering students enrolled in different majors:

Data Distribution

- E.g., $\{1,2,2,3,-1,0,0,1,2,3,4,3,3,1,2,1,4,6,3\}$

Stationarity of Processes

- Does the variability of the data change significantly as more data is collected (say between different time points, different physical locations, etc.)?
- Stationary process is a data-generating mechanism for which the distribution of the resulting data does NOT change appreciably as more data is being observed.
- Non-Stationary process is a data-generating mechanism for which the distribution of the resulting data DOES change as more data is being observed.
- E.g., Grades (over time), Air quality (in different regions in the US), Geiger counter (time), Species Extinction (long-times). Other examples?

Stationary or Non-Stationary Process?

- To assess stationarity:

- Rigorous assessment: A stationary process has a constant mean, variance, and autocorrelation through time/space.
- Visual assessment: (Plot the data - observed vs. time/place

Causes of Variation in Data

- Cause of variation is the reason/mechanism that introduces some of the observed variation in the data.
- Kinds of causes of variation:

■ Common cause - the inherited fluctuations in a process, e.g., Geiger counter variances, random arrival time variances
■ Special causes - periodically/cyclically arising variances, e.g., temp measures vary with season, wake-up times vary specially with day-of-week (weekends most people sleep longer), different machine settings/protocols (MRI imaging).

Trimmed, Winsorized means and Resistancy
Example - Trimmed, Winsorized means and Resistancy

- K-times trimmed mean
- Winsorized k-times mean: $\bar{y}_{i k}=\frac{1}{n-2 k} \sum_{i=k+1}^{n-k} y_{(i)}$ $\bar{y}_{w k}=\frac{1}{n}\left[(k+1) y_{(k+1)}+\sum_{i=k+2}^{n-k-1} y_{(i)}+(k+1) y_{(n-k)}\right]$
- Data: $\{-11,2,-1,0,1,2,0,-1,15,100\}, \mathbf{n}=10, \underline{\mathbf{S a y} \mathbf{k}=\mathbf{2}}$
- Ordered statistics $\mathrm{y}_{(\mathrm{i})}:\{-11,-1,-1,0,0,1,2,2,15,100\}$
$\bar{y}=\frac{1}{10}[-11-1+\ldots+15+100]=107 / 10 \sim 11$
$\bar{y}_{t k}=\frac{1}{10-4}(-1+0+0+1+2+2)=4 / 6$
$\bar{y}_{\text {wk }}=\frac{1}{10}[3(-1)+(0+0+1+2)+3 \times 2]=3 / 5$
- Winsorized k-times mean:
$\bar{y}_{w k}=\frac{1}{n}\left[(k+1) y_{(k+1)}+\sum_{i=k+2}^{n-k-1} y_{(i)}+(k+1) y_{(n-k)}\right]$
- A data-driven parameter estimate is said to be resistant if it does not greatly change in the presence of outliers.

Order

- K-times trimmed mean

$$
\bar{y}_{t k}=\frac{1}{n-2 k} \sum_{i=k+1}^{n-k} y_{(i)}
$$

Slide 51 Stat 110a, UCLA, Ivo Dinov

