

	F	ying helm	et sizes for	NZ Air Force	e			
M	leasure	the head-size	e of all air fo	rce recruits. Usir	ng			
cł	neaper c	ardboard or	more expens	sive metal caliper	rs. Are			
th	there systematic differences in the two measuring							
m	methods? Again paired comparisons							
	inculous. Again, pared comparisons.							
TABLE 10.1.: Air Force Head Sizes								
Reci	ru	(mm)	Metal (mm)	Difference (Card-metal	Sign di differenc			
	1	146	145	1	+			
	2	151	153	- 2	-			
	3	163	161	2	+			
	4	152	151	1	+			
	5	151	145	6	+			
	6	161	150	1				

Helme	t sizes for I	NZ Air For	ce – compl	ete table
TABLE 10.1	.: Air Fo	rce Head Sizes		
Recru:	Cardboard (mm)	Metal (mm)	Difference (Card-metal	Sign of difference
1	146	145	1	+
2	151	153	-2	
3	163	161	2	+
4	152	151	1	+
5	151	145	6	+
6	151	150	1	+
7	149	150	-1	
8	166	163	3	+
9	149	147	2	+
10	155	154	1	+
11	155	150	5	+
12	156	156	0	0
13	162	161	1	+
14	150	152	-2	-
15	156	154	2	+
16	158	154	4	+
17	149	147	2	+
18	163	160	3	+

Comparing two means for independent samples

- 1. How sensitive is the two-sample *t*-test to non-Normality in the data? (The 2-sample T-tests and CI's are even more robust than the 1-sample tests, against non-Normality, particularly when the shapes of the 2 distributions are similar and $n_1=n_2=n$, even for small n, remember $df=n_1+n_2-2$.
- 3. Are there nonparametric alternatives to the *two-sample t-test*? (Wilcoxon rank-sum-test, Mann-Witney test, equivalent tests, same Pvalues.)
- 4. What <u>difference</u> is there between the <u>quantities tested</u> <u>and estimated</u> by the two-sample *t*-procedures and the nonparametric equivalent? (Non-parametric tests are based on ordering, not size, of the data and hence use median, not mean, for the average. The equality of 2 means is tested and $CI(\mu_1^-, \mu_1^-)$.

We know how to analyze 1 & 2 sample data. How about if we have than 2 samples – One-way ANOVA, *F*-test

One-way ANOVA refers to the situation of having one factor (or categorical variable) which defines group membership – e.g., comparing 4 reading methods, effects of different reading methods on reading comprehension, data: 50 – 13/14 y/o students tested.

Hypotheses for the one-way analysis-of-variance F-test

<u>Null hypothesis</u>: All of the underlying true means are identical. <u>Alternative</u>: Differences exist between some of the true means. Comparing 4 reading methods Comparing 4 reading methods, effects of different reading methods on reading comprehension, data: 50 – 13/14 y/o students tested. -Mapping: using diagrams to relate main points in text; -Scanning: reading the intro and skimming for an overview before reading details; -Mapping and Scanning; -Neither. Table below shows increases in test scores, of 4 groups of students taking similar exams twice, w/ & w/o using a reading technique. Research question: Are the results better for students using mapping, scanning or both?

Computer output	
One-way Analysis of Variance	٦
Analysis of Variance for Increase F-statistic P-value	
Source DF SS MS F P Grp 3 27.06 9.02 4.45 0.008 Error 46 93.35 2.03 2.03 Anova Table Total 49 120.41 Image: Control of the second se	
Individual 95% CIs For Mean Level N Mean StDev MapScan 22 1.459 1.544 MapOnly 12 1.233 1.441 (+) Scanonly 7 0.914 1.302 (+) Neither 9 -0.556 1.135 (+)	
Pooled StDev = 1.425 -1.0 0.0 1.0 2.	+ 0
Figure 10.3.2 Minitab analysis of variance output for reading ages	
Click AS STATUTE FOR A DAMA	

	Form of	a typic	al ANOV.	A table	
TABLE 10.3	3.2 Typical Analys	sis-of-Varia	nce Table for Or	ne-Way ANOVA	۱
	Sum of		Mean sum		
Source	squares	df	of S quares ^a	F-statistic	P-value
Between	$\sum n_i (\bar{x}_i - \bar{x}_i)^2$	<i>k</i> -1	s_B^2	$f_0 = s_B^2 / s_W^2$	$\operatorname{pr}(F \ge f_0)$
Within	$\sum (n_i - 1)s_i^2$	n _{tot} - k	s_W^2		
Total	$\sum \sum (x_{ij} - \bar{x})^2$	n _{tot} - 1			
^a Mean sum of	f squares = (sum of	squares)/df			
• The ind pop	e <i>F</i> -test statis ependent san pulations, N(µ	tic, <i>f</i> ₀ , ap ples eac ι _i , σ), no	plies when h from k No te <u>same var</u>	we have ormal iance is ass	umed.
			Slide 48 st	TAT 13. UCLA, Ivo Dino	v

	F-test assumptions
1. 5	Samples are independent, physically independent
2. S	Sample Normal distributions, especially sensitive for small n_i , number of observations, $N(\mu_i, \sigma)$.
3. S	Standard deviations should be equal within all
s	samples, $\sigma_1 = \sigma_2 = \sigma_3 = \dots \sigma_{n_k} = \sigma$. (1/2 <= $\sigma_k / \sigma_j <= 2$)
How For the	r to check/validate these assumptions for your data? e reading-score improvement data: ndecendence is clear since different groups of students are used
- E - S	and pendence is clear since unreferring fours of students are used. Job-plots of group data show no evidence of non-Normality. Jample SD's are very similar, hence we assume population SD's are
S	imilar.

Review

- 1. What is an one-way analysis of variance? (compare means of several groups of independent samples.)
- 2. When do we use the one-way ANOVA *F*-test? $(\{N(\mu_i, \sigma)\}_i^k)$
- What null hypothesis does it test? What is the alternative hypothesis? (all underlying true means are identical; at least 2 are different.)
- Qualitatively, how does the *F*-test obtain evidence against H₀? (separation between sample means/intra-sample variability).
- Qualitatively, what type of information is captured by the numerator of the *F*-statistic? What about the denominator? (variability-of-sample-means/variability-within-samples).

Slide 62 STAT 13, UCLA, Ivo Dinov

- 6. Qualitatively, what values of f_0 provide evidence against H_0 ? (unusually large f_0 if H_0 is true.)
- 7. What does a large *P*-value from the *F*-test tell us about differences between means? How about a small *P*-value? (diff's between sample means can be explained by sampling variation.)
- 8. What does a small P-value tell us about which means differ from one another? about how big the differences between means are? (nothing about which/size, only indicates real diff's exist, between at least some sample means.)
- 9. How do we obtain information about the sizes of differences between means? (need confidence intervals.)

Slide 63 STAT 13. UCLA. Ivo 1

Review

- 10.What assumptions are made by the theory on which the *F*-test is based upon? How important is each of these assumptions in practice? (1.Sample independence critical; 2.Normal data robust, if sample-sizes are large; 3.Equal SD's not too bad if $\sigma_{max}/\sigma_{min} \ll 2$.)
- 11. What new problem arises when we need to obtain and inspect a large set of confidence intervals? (all need to simultaneously catch, with 95% confidence, their true values, which requires increase of individual levels.)
- 12. Which is <u>affected worst</u> by departures from the equal-standard-deviations assumption, the <u>F-test</u> or the <u>confidence intervals</u>? Why? [CI, since CI(least-variable groups) = too wide & CI(most-variable-groups)=too narrow.]

Slide 6A

STAT 13 UCLA

Always plot your data

Always plot your data before using formal tools of analysis (tests and confidence intervals).

- the quickest way to see what the data says
- often reveals interesting features that were not expected
- helps prevent inappropriate analyses and unfounded conclusions
- Plots also have a central role in checking up on the assumptions made by formal methods.

All formal methods make assumptions

- If the assumptions are false, the results of the analysis may be meaningless.
- A method is *robust* against a specific departure from an assumption if it still behaves in the desired way despite that assumption being violated.
 - e.g. it gives "95% confidence intervals" that still cover the true value of θ for close to 95% of samples taken.
- A method is *sensitive* to departures from an assumption if even a small departure from the assumption causes it to stop behaving in the desired way.

Assumptions cont.

- Many types of assumption are seldom, if ever, obeyed exactly so that methods which are sensitive to departures from such assumptions are of limited use in practical data analysis.
- You must check whether the data contradicts the assumptions to an extent where the tests and intervals no longer behave properly.
 - (Plots are a useful tool here.)

Outliers

- If present, try and check back the original sources.
- Any observations which you know to be mistakes should be corrected or removed.
- If in doubt, do the analysis with and without the outliers to see if you come to the "same" conclusions.

lide 80 STAT 13, UCLA, Ivo Di

Nonparametric (distribution-free) methods

SI:da 70

STAT 13 UCLA IN

- less sensitive to outliers
- do not assume any particular distribution for the original observations
- do assume random samples from the populations of interest
- measure of center is the median rather than the mean

ide 81 STAT 13 UCLA IN

• tend to be somewhat <u>less effective</u> at detecting departures from a null hypothesis and tend to give wider confidence intervals

Normal Theory Techniques

One sample methods

- Two-sided *t*-tests and *t*-intervals for a single mean are
 - quite robust against non-Normality
 - can be sensitive to presence of outliers in small to moderate-sized samples
- One-sided tests are reasonably sensitive to skewness.
- Normality can be checked
- graphically using Normal quantile plots
- formally, e.g. the Wilk-Shapiro test.

2 STAT 13. UCLA. Ivo Din

Paired data

- We have to distinguish between independent and related samples because they require <u>different</u> methods of analysis.
- Paired data (Section 10.1.2) is an example of related data.
- With paired data, we analyze the differences
 - this converts the initial problem into a one-sample problem.
- The *sign test* and *Wilcoxon rank-sum* test are nonparametric <u>alternatives</u> to the one-sample or paired *t*-test.

More than two samples and the *F*-test

STAT 13 UCLA I

- For testing whether more than two means are different we use the *F*-test.
- The method of comparing several means is referred to as a *one-way analysis of variance*.
- The formal null hypothesis (H_0) tested is that all k $(k \ge 2)$ underlying population means μ_i are identical.
- The alternative hypothesis (H_1) is that differences exist between at least some of the μ_i 's.

Slide 85 STAT 13, UCLA, Ivo D

The F-test cont.

- The numerator of the *F*-statistic *f*₀ reflects how far apart the sample means are. The denominator reflects average variability within the samples
- Evidence against H_0 is provided by
 - sample means that are further apart than expected from the internal variability of the samples.
 - large values of the F-statistic.
- A small *P*-value demonstrates evidence that differences exist between some of the true means
 - To estimate the size of any differences we use confidence intervals

Slide 86 STAT 13. UCLA. Ivo

