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Chapter 12:  Lines in 2D
(Regression and Correlation)

Vertical Lines
Horizontal Lines
Oblique lines
Increasing/Decreasing
Slope of a line
Intercept
Y=α X + β, in general.

Math Equation for the Line?
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Chapter 12:  Lines in 2D
(Regression and Correlation)

Draw the following lines:
Y=2X+1
Y=-3X-5
Line through (X1,Y1) and 

(X2,Y2). 
(Y-Y1)/(Y2-Y1)= 

(X-X1)/(X2-X1). 

Math Equation for the Line?
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Approaches for modeling data relationships
Regression and Correlation

There are random and nonrandom variables
Correlation applies if both variables (X/Y) are 

random (e.g., We saw a previous example, systolic vs. 
diastolic blood pressure SISVOL/DIAVOL) and are 
treated symmetrically.

Regression applies in the case when you want to 
single out one of the variables (response variable, Y) 
and use the other variable as predictor (explanatory 
variable, X), which explains the behavior of the 
response variable, Y.
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x x

y y

 (a) Which line?  (b) Flatter line gives
better predictions.

Figure 3.1.8 Educating the eye to look vertically.
From Chance Encounters by C.J. Wild and G.A.F. Seber, © John Wiley & Sons, 2000.

Looking vertically

Flatter line gives better prediction, since it approx. goes through the
middle of the Y-range, for each fixed x-value (vertical line)
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Correlation Coefficient 

Correlation coefficient (-1<=R<=1): a measure of linear 
association, or clustering around a line of multivariate 
data. 

Relationship between two variables (X, Y) can be 
summarized by: (µX, σX), (µY, σY) and the correlation 
coefficient, R. R=1, perfect positive correlation (straight 
line relationship),   R =0, no correlation (random cloud 
scatter), R = –1, perfect negative correlation.  

Computing R(X,Y): (standardize, multiply, average)
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Correlation Coefficient 

Example:
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Correlation Coefficient 

Example:
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Correlation Coefficient - Properties

Correlation is invariant w.r.t. linear transformations of X or Y
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Correlation Coefficient - Properties

Correlation is Associative

Correlation measures linear association, NOT an association in 
general!!! So, Corr(X,Y) could be misleading for X & Y related in 
a non-linear fashion.
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Correlation Coefficient - Properties

1. R measures the extent of
linear association between
two continuous variables. 

2. Association does not imply
causation - both variables
may be affected by a third
variable – age was a 
confounding variable.
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Trend and Scatter - Computer timing data

The major components of a regression relationship 
are trend and scatter around the trend.
To investigate a trend – fit a math function to data, or 
smooth the data.
Computer timing data: a mainframe computer has X users, 
each running jobs taking Y min time. The main CPU swaps 
between all tasks. Y* is the total time to finish all tasks. Both 
Y and Y* increase with increase of tasks/users, but how?

X = Number of terminals: 40 50 60 45 40 10 30 20
Y* = Total Time (mins): 6.6 14.9 18.4 12.4 7.9 0.9 5.5 2.7
Y = Time Per Task (secs): 9.9 17.8 18.4 16.5 11.9 5.5 11 8.1

X = Number of terminals: 50 30 65 40 65 65
Y* = Total Time (mins): 12.6 6.7 23.6 9.2 20.2 21.4
Y = Time Per Task (secs): 15.1 13.3 21.8 13.8 18.6 19.8
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X = Number of terminals
70

Trend and Scatter - Computer timing data

0 10 20 30 40 50 60

5

10

15

20

X = Number of terminals

Linear
trend?!?

Quadratic
trend?!?

We want to find reasonable
models (descriptions) for

these data!
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Equation for the straight line –
linear/affine function

x

y

0

unitsw

w   units

0

1

β0=Intercept (the y-value at x=0)
β1=Slope of the line (rise/run), change of y for every 

unit of increase for x.
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ith data point
(x  ,i y  )i

(a)  The data (b)  Which line?

Least-squares line

Choose line with smallest
sum of squared
prediction errors

Min   Σ

Its parameters are denoted:

   Intercept:

   Slope:

y   -i yi
^

(c)  Prediction errors

Figure 12.3.1 Fitting a line by least squares.

From Chance Encounters by C.J. Wild and G.A.F. Seber, © John Wiley & Sons, 2000.

2(y  −i y  )i
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Choosing the
“best-fitting”
line
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Fitting a line through the data

(a)  The data (b)  Which line?
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The idea of a residual or prediction error

yi
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^

Data point

Trend

(x  ,i y  )i

Predicted

Observed
Residual     u  =i

^y   -i yi
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Least squares criterion:  Choose the values of the 
parameters to minimize the sum of squared 
prediction errors (or sum of squared residuals),

(yi − ˆ y i)
2

i =1

n

∑

Least squares criterion
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Least-squares line: ˆ y = ˆ β 0 + ˆ β 1x

The least squares line
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Prediction
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ith data point
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Least-squares line

Choose line with smallest
sum of squared
prediction errors

Min   Σ

Its parameters are denoted:

   Intercept:

   Slope:

y   -i yi
^

(c)  Prediction errors
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Least-squares line: ˆ y = ˆ β 0 + ˆ β 1x

The least squares line
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Computer timings data – linear fit

10 20 30 40 50 60
5

10

15

20

X = Number of terminals

3 + 0.25x

7 + 0.15x

(Sum sq’d err = 37.46)

(Sum sq’d err = 90.36)

Figure 12.3.2 Two lines on the computer-timings data.
From Chance Encounters by C.J. Wild and G.A.F. Seber, © John Wiley & Sons, 2000.
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TABLE 12.3.1 Prediction Errors

x y

40 9.90 13.00 -3.10 13.00 -3.10
50 17.80 15.50 2.30 14.50 3.30
60 18.40 18.00 0.40 16.00 2.40
45 16.50 14.25 2.25 13.75 2.75
40 11.90 13.00 -1.10 13.00 -1.10
10 5.50 5.50 0.00 8.50 -3.00
30 11.00 10.50 0.50 11.50 -0.50
20 8.10 8.00 0.10 10.00 -1.90
50 15.10 15.50 -0.40 14.50 0.60
30 13.30 10.50 2.80 11.50 1.80
65 21.80 19.25 2.55 16.75 5.05
40 13.80 13.00 0.80 13.00 0.80
65 18.60 19.25 -0.65 16.75 1.85
65 19.80 19.25 0.55 16.75 3.05

              Sum of squared errors 37.46 90.36

3 + 0.25x 7 + 0.15x
ˆ y ˆ y y− ˆ y y− ˆ y 

Computer timings data
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Adding the least squares line

0 20 40 60
0
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X = Number of terminals

y  =     +     x^
0

^
1

^

^
0

Here       = 3.05,       = 0.26^
0

^
1

(x, y)

Some Minitab regression output
The regression equation is
timeper = 3.05 + 0.260 nterm
Predictor      Coef ...
Constant      3.050 ...
nterm       0.26034 ...

Figure 12.3.3 Computer-timings data with least-squares line.
From Chance Encounters by C.J. Wild and G.A.F. Seber, © John Wiley & Sons, 2000.
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Review, Fri., Oct. 19, 2001

1. The least-squares line passes through 
the points (x = 0,    = ?) and (x =    ,     = ?). Supply 
the missing values.

x
ˆ y = ˆ β 0 + ˆ β 1x

ŷŷ
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Hands – on worksheet !

1. X={-1, 2, 3, 4},  Y={0, -1, 1, 2}, 
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Hands – on worksheet !

1. X={-1, 2, 3, 4},  Y={0, -1, 1, 2}, 

32.2541.5224

0.50.2510.5113

02.250-1.50-12

1.50.259-0.5-30-1

YX xx − yy − 2)( xx − 2)( yy − )(
)(

yy
xx

−
×−

5.0    ,2 == yx

142 0.5 5 5

β0=y^-β1*x^
β0= 0.5-10/14

β1=5/14
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Fitting a line through the data

(a)  The data (b)  Which line?

Show the Regression-Line Simulation Applet
RegressionApplet.html
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Fitting a line through the data

(a)  The data (b)  Which line?

Show the Regression-Line Simulation Applet
RegressionApplet.html
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y y

x 2 3x1x 4xx 2 3x1x 4x

(a)  The simple linear model (b)  Data sampled from the model

The simple linear model

When   X = x,    Y ~ Normal(µY,σ)   where µY = β0 + β1 x,     OR

when   X = x,    Y = β0 + β1 x +  U,   where  U ~ Normal(0,σ)
Random error
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Sample 1:      = 3.63,      = 2.26
^
1

^
0 Sample 2:      = 9.11,       = 1.44

^
0

^
1

Data generated from Y = 6 + 2x + error (U)
Dotted line               is true line and 
solid line            is the data-estimated LS line.
Note differences between true β0=6, β1=2 and 
their estimates β0^ & β1^.
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Data generated from Y = 6 + 2x + error(U)
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Data generated from Y = 6 + 2x + error(U)

0 5 10 15 0.5 1.0 1.5 2.0 2.5 3.0 3.5

Histograms of least-squares estimates from 1,000 data sets

True valueTrue value

Mean = 6.05
Std dev. =  2.34

Mean = 1.98
Std dev. =  0.46

Estimates of slope,
1

Estimates of intercept,
0

Figure 12.4.3 Data generated from the model  Y = 6 + 2 x + U
                             where  U    Normal(  µ = 0, σ  = 3).
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Recall the correlation coefficient…

Another form for the correlation coefficient is:
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Misuse of the correlation coefficient

Some patterns with  r = 0

r = 0r = 0r = 0

(a) (b) (c)

From Chance Encounters by C.J. Wild and G.A.F. Seber, © John Wiley & Sons, 2000.
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Regression relationship = 
trend + residual scatter 

Trend=best linear fit Line (LS)

Scatter = residual (prediction) error Err=Obs-Pred

Linear  Regression
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Another Notation for the Slope of the LS line

1. Note that there is a slight difference in the formula for 
the slope of the Least-Squares Best-Linear Fit line:
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Another Notation for the Slope of the LS line
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Course Material Review

1. ===========Part I=================

2. Data collection, surveys.

3. Experimental vs. observational studies

4. Numerical Summaries (5-#-summary)

5. Binomial distribution (prob’s, mean, variance)

6. Probabilities & proportions, independence of events and 
conditional probabilities

7. Normal Distribution and normal approximation
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Course Material Review – cont.

1. ===============Part II=================

2. Central Limit Theorem – sampling distribution of 

3. Confidence intervals and parameter estimation

4. Hypothesis testing

5. Paired vs. Independent samples

6. Chi-Square (χ2) Goodness-of-fit Test

7. Analysis Of Variance (1-way-ANOVA, one categorical var.)

8. Correlation and regression

9. Best-linear-fit, least squares method

X


