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Announcement

Marschak Colloquium Series

http://www.anderson.ucla.edu/research/marschak
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Experiments, Observations & Distributions

SOCR Demos (all available online, see class web-page)
C:\Ivo.dir\UCLA_Classes\Applets.dir\SOCR\Prototype1.1\classes\TestDistribution.html

C:\Ivo.dir\UCLA_Classes\Applets.dir\SOCR\Prototype1.1\classes\TestExperiment.html

Describing processes using distributions, instead of 
using precise numerical quantitative descriptions:

Examples: Outcome of a coin-toss experiment, number 
of arrivals for a fixed time interval, DNA mutation rates, 
particle velocities/positions, light intensities, exam/test 
scores, length/weight measurements, etc.
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Discrete & Continuous Patterns of Disorder

Examples of discrete stochastic processes:

Examples of continuous processes:
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Mathematical/Statistical Modeling

Modeling is an attempt to see the wood for the 
trees. 

A model is a simplification or abstraction of reality
separating the important from the irrelevant. 
Actually, modeling is a part of our existence. 

We could say that we do not perceive reality as it is. 
We only realize a model our mind has designed from 
sensory stimuli and their interpretation. It seems that 
certain animal species perceive different models of 
reality which, compared to ours, are based more on 
hearing and smell than on sight.
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Mathematical/Statistical Modeling

Many philosophers have had deeper thoughts on this 
problem; following Plato's famous allegory of the cave. 
We may say that we only see the shadows of reality, or, 
following Kant, that we see the phenomena rather than 
the noumena (ground of the phenomena apprehended 
by the thought process). 

Prisoners chained in a cave, unable to 
turn their heads. All they can see is the
wall of the cave. Behind them burns a
fire. Between the fire and the prisoners
there is a parapet, along which puppeteers 
can walk. The puppeteers, who are behind 
the prisoners, hold up puppets that cast 
shadows on the wall of the cave. The 
prisoners are unable to see these puppets, 
the real objects, that pass behind them. 
What the prisoners see and hear are shadows 
and echoes cast by objects that they do not see. 
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Mathematical/Statistical Modeling

We obtain our knowledge from models, and we make 
our predictions on the basis of models.

Since we are always modeling, modeling in the strict 
sense is the purposeful attempt to replace one model 
(the so-called "real world," which we typically accept 
without questioning) by another, deliberate, model 
which may give us more insight. 

There are two incentives for modeling: 

either the real-world model is too complex to 
obtain the desired insight and so is replaced by a 
simpler or more abstract one.
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Mathematical/Statistical Modeling

Or the real-world model does not allow certain 
experiments for ethical, practical, resource-
limitations or other reasons. So, real-world model is 
replaced by a model in which all kinds of changes 
can be readily made and their consequences studied 
efficiently without causing harm. 

The word model traces back to the Latin word 
modulus, which means "little measure" (Merriam-
Webster, 1994), alluding to a small-scale physical 
representation of a large object (e.g., a model airplane). 
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Mathematical/Statistical Modeling

(Theoretical) Modeling uses symbolic rather than 
physical representations, unleashing the power of 
mathematical analysis to increase scientific 
understanding. It can be divided into three stages (cf. 
Lin, Segel, 1974, 1988). 

1. Model formulation: the translation of the scientific 
problem into mathematical terms.

2. Model analysis: the mathematical solution of the model 
thus created.

3. Model interpretation and verification: the interpretation 
of the solution and its empirical verification (validation) 
in terms of the original problem.
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Mathematical/Statistical Modeling

The first step – model formulation – can lead to 
considerable insight. For building a math/stat model, one 
makes assumptions about the operating mechanisms, but 
often the real–model – the real-world – is far less 
understood than we expected. 
In many cases the modeling procedure – at least if one 
chooses parameters that are meaningful – already teaches 
what further knowledge is needed in order to apply the 
mathematical model successfully; 
The model analysis and its interpretation help to 
determine to what extent and precision new information 
and new data have to be collected.
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Mathematical/Statistical Modeling

Analytic and numerical tools allow the extrapolation of 
present states of the mathematical model into the future 
and, sometimes, into the past. 

Assumptions, initial states, and parameters can easily 
be changed and the different outcomes compared. So, 
models can be used to identify trends or to estimate 
uncertainties in forecasts. 

While the model analysis may require sophisticated 
analytic or computational methods, mathematical 
modeling ideally leads to conceptual insight, which can 
be expressed without elaborate mathematics. 
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Mathematical/Statistical Modeling

A model is a simplification or abstraction; very often it 
is an oversimplification or over-abstraction. Insight 
obtained from a model should be checked against 
empirical evidence and common sense. 

It can also be checked against insight from other 
models: how much does the model's behavior depend 
on the degree of complexity, on the form of the model 
equations, on the choice of the parameters? 

Dealing with a concrete problem, a modeler should 
work with a whole scale of models starting from one 
which is as simple as possible.
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Mathematical/Statistical Modeling

The use of a range of models also educates the modeler 
on how critically qualitative and quantitative results 
depend on the assumptions one has made. 

When modeling concrete phenomena, there is typically 
a dilemma between incorporating enough complexity 
(or realism) on the one hand and keeping the model 
tractable on the other. 

Extremely complex mathematical models will be of 
limited value for quantitative and maybe even 
qualitative forecasts, but still have the other benefits of 
being realistic.
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Mathematical/Statistical Modeling

Mathematical modeling has its place in all sciences. 
Deterministic models (as opposed to stochastic 
models), which neglect the influence of random events.

To some degree one can dispute whether stochastic 
models are more realistic than deterministic models; 
there is still the possibility that everything is 
deterministic, but just incredibly complex. In this case, 
stochasticity would simply be a certain way to deal 
with the fact that there are many factors we do not 
know.
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Mathematical/Statistical Modeling

While a typical tool of deterministic-model analysis 
consists of discussing large-time limits, stochastic 
models take account of the truism that nothing lasts 
forever and make it possible to analyze the expected 
time until extinction--a concept that has no counterpart 
in deterministic models.
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Mathematical/Statistical Modeling

In many cases, deterministic models can theoretically 
be justified as approximations of stochastic models
for large populations sizes; however, the population 
size needed to make the approximation good enough 
may be unrealistically large. 

Nevertheless, deterministic models have the values 
which we described above, as long as one keeps their 
limitations in mind. The latter particularly concerns 
predictions, which are of very limited use in this 
uncertain world if no confidence intervals for the 
predicted phenomena are provided. 
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Are Prime Numbers randomly distributed?

The difference between two consecutive prime 
numbers is called the distance between the primes. 
This study of the statistical properties of the 
distances and their increments is for a sequence 
comprising the first 5×107 prime numbers. Results: 
the histogram of the increments follows an 
exponential distribution with superposed periodic 
behavior of period three, similar to previously-
reported period six oscillations for the distances.

Information Entropy and Correlations in Prime 
Numbers by P. Kumar, P.Ivanov, H. E. Stanley (2003) 
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Are Prime Numbers randomly distributed?

Histogram of increments in the distances between 
consecutive prime numbers for the sequence of the 
first 106 primes. The occurrence frequency of 
increments with given values exhibits a robust period-
three oscillation. Increments with values ±(6k + 2) (k = 
0, 1, 2, 3, ....) occur most often, increments with 
values ±(6k + 4) occur less often, and increments with 
values ±6k are rare. This regularity is always present 
regardless of the sequence length Np. (b) Tent-shape 
of the histogram of increments on a linear-log plot.
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Are Prime Numbers randomly distributed?
Why Care?
The findings might have implications in the real world, 
as some systems in physics and biology - such as 
interacting prey and predator species with different life 
cycles - show patterns that depend on prime numbers.
Coding Theory (e.g., Internet Security)
Riemann hypothesis in number theory is intimately 
related to the distribution of primes. In 2001 the Clay 
Institute in the USA offered a prize of a million dollars 
for a proof of the this conjecture.
Prime Number Th: number of primes   x is: p(x) ~x/log x
The Riemann hypothesis is that all nontrivial zeros of the zeta 
function are on the line Re(s)=½. 

≤
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Are Prime Numbers randomly distributed?

RSA is an encryption method invented in 1978 by 
Rivest, Shamir, and Adleman at MIT in the USA, which 
is widely used nowadays in hardware and software to 
secure electronic data transport. 

This 'public key' method is based on the fact that, given 
the product of two carefully chosen large prime 
numbers, it is difficult to recover those numbers. The 
key question is: how large is sufficiently large to make 
this recovery virtually impossible? In the 1980s it was 
generally held that prime numbers of a fifty odd digits
would suffice. However, developments went much faster 
than initially foreseen.

≤
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Are Prime Numbers randomly distributed?

In 1977 Rivest challenged the world to factor RSA-
129, a 129 digit number (from a special list), he 
estimated that on the basis of contemporary 
computational methods and computer systems this 
would take about 1016 years of computing time. 

Seventeen years later it took only eight months
in a world-wide cooperative effort to do the job. 
Moreover, one should realize that it always remains 
possible that a new computational method is 
invented which makes factoring 'easy' (for example 
quantum computing, if an operative quantum 
computer will ever be realized). 

≤
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Random Noise Generates 1-Way Spin

A simple top converts foghorn noise to one-way spin. 
The device raises the hope that useful energy could be 
collected from ambient sounds. Normally, random 
vibrations, which physicists and engineers call noise, 
produce useless random motion. You can't move a cart 
from A to B by shoving it randomly in every direction.

But in the new device, a flat plate 
encounters more friction when it spins 
in one direction than in the other, 
meaning it always rotates predictably.

•Norden, B., Zolotaryuk, Y., Christiansen, P.L. & Zolotaryuk, A.V. 
Ratchet device with broken friction symmetry. Applied Physics 
Letters 80, 2601 - 2603 (2002).
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Natural randomness in the world's climate system
may have caused the frequent, fast and fleeting 
returns to warm conditions during past ice ages.

It’s suggested that the events were caused by some    
kind of periodic influence on climate that repeated every 
1,500 years. Perhaps a very weak periodic signal alters 
the ocean salt content every 1,500 years. 

There is evidence of a 1,500-year periodic forcing in 
many climate records. It is widely suspected to originate 
from repetitive changes in the activity of the Sun.

Noise breaks ice

•Ganopolski, A. & Rahmstorf, S. 
•Abrupt glacial climate changes due to noise-Infectious noise.
•Physical Review Letters 88, 038501, (2002)
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Central Limit Theory and the Normal 
Distribution

SOCR Dice Demo + CLT Applet Demo
Applets.dir/SamplingDistributionApplet.html
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Duality on Completeness vs. Consistency

In a famous lecture in 1900, David Hilbert listed 23 
difficult problems he felt deserved the attention of 
mathematicians in the coming century. 

Some of these problems were solved quickly, others 
might never be completed, but all have influenced 
mathematics.

Hilbert highlighted the need to clarify the methods 
of mathematical reasoning, using a formal system 
of explicit assumptions, or axioms.

Calude & Chaitin, Mathematics: Randomness everywhere,
Nature 400, 319 - 320 (1999)
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Duality on Completeness vs. Consistency

Hilbert stipulated that such a formal axiomatic 
system should be both consistent (free of 
contradictions) and complete (in that it represents all 
the truth). 

He also argued that any well-posed mathematical 
problem should be decidable, in the sense that there 
exists a mechanical procedure, a computer program, 
for deciding whether something is true or not. 

A problem is ill-posed if it may not have a solution, 
or the solution is not unique, or if small changes in 
initial conditions yield unpredictable/large changes in 
the final solution.
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Duality on Completeness vs. Consistency

In 1931 Kurt Gödel showed that if you assume a 
formal axiomatic system, containing elementary 
arithmetic, is consistent, you can prove that it is 
incomplete. This was a huge surprise; everyone else 
thought Hilbert was right. 

The third condition (solvability of well-posed 
problems) was demolished by Alan Turing. 

Turing showed that no mechanical procedure, and 
therefore no formal axiomatic theory, can solve 
Turing's halting problem, the question of whether a 
given computer program will eventually halt.
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Duality on Completeness vs. Consistency

Hilbert's concern for consistency proofs led to Godel's
Second Incompleteness Theorem.

Let T be a theory in the predicate calculus, satisfying 
certain mild conditions. Then:

1. T is incomplete.
2. The statement “T is consistent" is not a theorem of T.

(Godel 1931)
3. The problem of deciding whether a given formula is 

a theorem of T is algorithmically unsolvable.
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Duality on Completeness vs. Consistency

Turing's argument was based on computable real 
numbers. A real number, such as π, is a length 
measured with arbitrary precision, with an infinite 
number of digits. 
A real number is computable if there is a computer 
program or algorithm for calculating its digits one by 
one. There are programs for calculating π, but it is a 
surprising fact that nearly all real numbers are not 
computable. 
Turing showed that if you could find a mechanical 
procedure to decide if a computer program will ever 
halt, then you could compute a real number that is not 
actually computable, which is impossible.
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Randomness in Biology, Genetics, 
Engineering & Physics

Life is not ordered – life is organized. Order is what 
a crystal (lattice) has.
If you have 26 letters, as in English, you would expect 
a long sequence of (randomly chosen) characters to 
give each letter 1/26th of the time. That would be 
(uniformly) random. 
Random sequences have a high informational content, 
using information theory. A sequence can have lots of 
information regardless of whether it has any meaning. 
Now comes the problem that most anti-evolutionists 
don't quite grasp. Organized sequences are quite 
similar to random sequences.
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Randomness in Biology, Genetics, 
Engineering & Physics

Organisms are often characterized as being highly 
ordered and in the same time as being highly organized. 
Clearly these terms have opposite meanings 

The message 0101010101010101010101 is highly 
ordered and has a low entropy. A message highly 
organized is 0110110011011110001000. 

Highly-organized means that a long algorithm is needed 
to describe the sequence and therefore highly organized 
systems have a large entropy. 

Highly-ordered systems and highly-organized ones 
occupy opposite ends of the entropy scale. 
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Randomness in Biology, Genetics, 
Engineering & Physics

Highly-organized systems are found embedded among 
random sequences, the latter occupying the high end of 
the entropy scale. 
Both, random sequences and highly organized
sequences are complex (the shortest algorithm needed to 
compute a sequence is its complexity). 
Information theory shows that it is fundamentally 
undecideable whether a given sequence has been 
generated by a stochastic process or by a highly 
organized process. 
Algorithmic information theory shows that truth or 
validity may also be indeterminate or fundamentally 
undecidable. Low=

Order

High=
Random
Orgz’d

En
tro

py
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Randomness in Biology, Genetics, 
Engineering & Physics

It is impossible (or at least not clear how to) to tell an 
organized (designed) sequence from one which is 
merely random. 
If you can't tell an organized sequence with high 
informational content from a random sequence, then you 
can't tell if the sequence arose through random 
processes or through an intelligence who designed it.
Meaningful high informational content patterns are rare 
compared to meaningless sequences with a high info 
content. However, randomness can give rise to 
meaningful patterns. 
Difference between life and matter is information.
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Randomness in Biology, Genetics, 
Engineering & Physics

Although humans have 30 times the DNA of some 
insects, there are insects that have more than double the 
DNA in humans. 

The amount of DNA is not a reliable measure of 
complexity because not all the DNA may have to do with 
complexity; part of a genome may be just many repeats 
of the same section, or random sections or just 
meaningless patterns.

There are bacteria that are resistant to very high dosages 
or radiation – their DNA is mainly devoted to real time 
identification and correction of DNA 
breakage/mutations.
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Random Walks – The Gambler's Ruin

Betting $1 on a game with a 50/50 chance: If you 
win, you get $2. If you lose, you get $0.
A gambler bets $1 each round of a game  random 
walk. However, he starts with n amount of money, 
whereas the bank/casino has unlimited funds.
Let PN(n) denote the probability that, starting with n
dollars, the gambler goes broke before winning N > n
dollars.
Solving PN(n) = (0.5)[ PN(n-1) + PN(n+1) ]
Boundary conditions: PN(0) = 1, PN(N) = 0.
Solution: PN(n) = 1 – n/N.

Previous Trial:  Win       Loose
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Random Walks

…
Each step has 4 
possibilities:

• East
• West
• North
• South

-20
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Duality Principles: The Uncertainty 
Principle (momentum vs. position)

Some physics experiments (such as blackbody radiation, 
the photoelectric effect, and Compton scattering) can be 
explained using the photon picture of light (discrete 
nature), and not with its wave properties. 

Other experiments, such as diffraction and interference, 
all need the wave characteristics of light. Considered 
as a photon (particle) the picture fails in these cases. 

We say that light exhibits a wave-particle duality: 
Light has a dual nature; in some cases it behaves as a 
wave, and in other cases it behaves as a photon. 
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Duality Principles: The Uncertainty 
Principle (momentum vs. position)

One important consequence of the wave-particle 
duality of nature was discovered by Heisenberg in 
1926, and is called the (Heisenberg’s) uncertainty 
principle. 

Imagine that we want to measure the position and the 
momentum of a particular particle. To do so we must 
see the particle, and so we shine some light (as a 
wave) of wavelength λ on it. There is a limit to the 
resolving power of the light used to see the particle 
given by the wavelength of light used. This gives an 
uncertainty in the particle's position:  ∆x ~ λ.
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Duality Principles: The Uncertainty 
Principle (momentum vs. position)

However, viewed as a photon, the light strikes the 
particle and gives up some or all of its momentum to 
the particle. Since we don't know how much it gave 
up, as we don't measure the photon's properties, there 
is an uncertainty in the momentum of the particle;   
∆p ~ h/λ, there h>0 is a constant.

Hence, ∆x x ∆p ~ h.

A more refined treatment, developed by Heisenberg, 
results in the following relation: 

∆x x ∆p h/4π≥
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Duality Principles: The Uncertainty 
Principle (momentum vs. position)

∆x x ∆p h/4π

Note that this is independent of the wavelength 
used, and says there is a limit as to how accurately 
one can simultaneously measure the position (∆x ) 
and momentum of a particle (∆p).

If one tries to measure the position more accurately, 
by using light of a shorter wavelength (λ 0), then 
the uncertainty in the momentum grows.

Whereas if one uses light of a longer wavelength in 
order to reduce the uncertainty in momentum, then 
the uncertainty in position grows. 

≥
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Balancing Quality vs Volume of 
Information

Quality – Quantity Duality: You can’t have both a 
large amount of information (data) with perfect 
quality. Increasing the volume of the data usually 
decreases its quality, conversely increasing the 
quality requires a decrease of the quantity.
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Statistical vs. Practical Significance

Is a second child gender influenced by the gender 
of the first child, in families with >1 kid?

When analyzing real data, investigators frequently 
employ statistical analytic techniques to detect real 
signal/effects in the data. Hence statistically 
significant effects are determined by a statistical 
analysis. 

How practically meaningful, however, are these 
statistically significant effects? Answer: Not clear, in 
general.
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First and Second Births by Sex

Second Child

Male Female Total 
First Child Male 3,202 2,776 5,978       

Female 2,620 2,792 5,412       
Total 5,822 5,568 11,390     

Is a second child gender influenced by the 
gender of the first child, in families with >1 kid?

Research hypothesis needs to be formulated first 
before collecting/looking/interpreting the data that 
will be used to address it. Mothers whose 1st child is 
a girl are more likely to have a girl, as a second child, 
compared to mothers with boys as 1st children.
Data: 20 yrs of birth records of 1 Hospital in Auckland, NZ.
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Group Number of births Number of girls
1 (Previous child was girl) 5412 2792 (approx. 51.6%)
2 (Previous child was boy) 5978 2776 (approx. 46.4%)

Girl as a Second Child

Analysis of the birth-gender data –
data summary

Let p1=true proportion of girls in mothers with girl as 
first child, p2=true proportion of girls in mothers with 
boy as first child. Parameter of interest is p1- p2.

H0: p1- p2=0 (skeptical reaction). Ha: p1- p2>0
(research hypothesis)
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         Decision Making

Decision made H0 is true H0 is false
Accept H0 as true OK Type II error
Reject H0 as false Type I error OK

Actual situation

Hypothesis testing as decision making

Sample sizes: n1=5412, n2=5978, Sample proportions 
(estimates) 

H0: p1- p2=0 (skeptical reaction). Ha: p1- p2>0
(research hypothesis)

,4644.05978/2776
2

ˆ,5159.05412/2792
1

ˆ ≈=≈= pp
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Analysis of the birth-gender data

Samples are large enough to use Normal-approx. 
Since the two proportions come from totally diff. 
mothers they are independent use formula 8.5.5.a

8109.1)
0

tPr( 

2

)
2

ˆ1(
2

ˆ

1

)
1

ˆ1(
1

ˆ
2

ˆ
1

ˆ

2
ˆ

1
ˆ

0
2

ˆ
1

ˆ

49986.5edValueHypothesiz-Estimate
0

t

−×=≥=−

=
−

+
−

−
=

⎟
⎠
⎞

⎜
⎝
⎛ −

−−

===

TvalueP

n

pp

n

pp

pp

ppSE

pp
SE

Stat 19, UCLA, Ivo DinovSlide 47

Analysis of the birth-gender data

We have strong evidence to reject the H0, and hence 
conclude mothers with first child a girl a more likely
to have a girl as a second child.

How much more likely? A 95% CI:

CI (p1- p2) =[0.033; 0.070]. And computed by:
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Standard Normal Curve (cf. Modeling)

The standard normal curve is described by the equation:

π2

2

2x

ey
−

=

Where remember, the natural number e ~ 2.7182…
We say: X~Normal(µ, σ), or simply X~N(µ, σ)
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Standard Normal Approximation

The standard normal curve can be used to estimate the percentage of 
entries in an interval for any process. Here is the protocol for this 
approximation:

Convert the interval (we need the assess the percentage of entries in) to 
standard units. We saw the algorithm already.
Find the corresponding area under the normal curve (from tables or online 
databases);

12         18        22

Data

What percentage of the 
density scale histogram
is shown on this graph?

Transform to Std.Units

Compute %

Report back %
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General Normal Curve

The general normal curve is defined by:
Where µ is the average of (the symmetric) 
normal curve, and σ is the standard
deviation (spread of the distribution).

Why worry about a standard and general normal curves?
How to convert between the two curves? 

2

22

2)(

2πσ

σ
µ−−

=

x

ey
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Areas under Standard Normal Curve –
Normal Approximation

Protocol: 
Convert the interval (we need to assess the percentage of entries in) 
to Standard units. Actually convert the end points in Standard units.

In general, the transformation  X  (X-µ)/σ, standardizes the 
observed value X, where µ and σ are the average and the 
standard deviation of the distribution X is drawn from.

Find the corresponding area under the normal curve (from tables or 
online databases);

Sketch the normal curve and shade the area of interest
Separate your area into individually computable sections
Check the Normal Table and extract the areas of every sub-
section
Add/compute the areas of all 
sub-sections to get the total area.
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0.50.25 0.25

162.7a = ?? b = ??

0.75

162.7 b = ??

What does that say about the lower tails?

What values contain the central 50%?

The central
50%

Obtain  b
from program

0.5

162.7a = ?? b = ??

162.7a = ??
Obtain  a

from program

0.25

Obtaining central range for symmetric distributions
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Areas under Standard Normal Curve –
Normal Approximation, Scottish Army Recruits
The mean height is 64 in and the standard deviation is 2 in. 

Only recruits shorter than 65.5 in will be trained for tank operation.
What percentage of the incoming recruits will be trained to operate 
armored combat vehicles (tanks)?

Recruits within ½ standard deviations of the mean will have no 
restrictions on duties. About what percentage of the recruits will 
have no restrictions on training/duties?

60     62     64    65.5 66   68

X (X-64)/2
65 (65-64)/2 = ½
63 (63-64)/2 = -½

Percentage is   38.30%60     62  63   64  65  66   68

X (X-64)/2
65.5 (65.5-64)/2 = ¾
Percentage is   77.34%
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Statistics of Extremes

SOCR Demo:

C:\Ivo.dir\UCLA_Classes\Applets.dir\SOCR\Prototype1.1\classes\TestDistribution.html
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Interpolation vs. Extrapolation

Interpolation is the process of estimating a value for a 
point that lies on a curve between known data points

Linear interpolation assumes a straight line between the 
known data points

One Method:
Select the two points with known coordinates
Determine the equation of the line that passes through the 
two points (Find m and b of the line)
Insert the X value of the desired point in the equation and 
calculate the Y value (knowing y = mx + b)

Stat 19, UCLA, Ivo DinovSlide 56

Interpolation vs. Extrapolation

Linear Interpolation:

Given the following set of points, find the dependent variable y2 
using linear interpolation.

(x1, y1) = (1.0, 18)
(x,   y)  = (2.4,  y )
(x2, y2) = (4.0, 35)
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Interpolation vs. Extrapolation

Interpolation is extending between data points 

-> usually safe

Extrapolation is extending beyond data -> can be risky
People's Height (in) vs Age (yrs) 
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Bayesian Theory – Statistical Inference

Statistical inference is based on probabilityStatistical inference is based on probability
To be useful probability must be interpreted.

Relative Frequency (Venn, Fisher, Neyman, etc.)
Degree of Belief (Bayes, Laplace, Gauss, Jeffreys, etc.)
Propensity (Popper, etc.)

The validity of these interpretations cannot be 
decided by an appeal to Nature.  
Statistical inference is based on principles that can 
always be challenged by anyone who doesn’t find 
all of them compelling. Again, Nature cannot help.
Statistical inference cannot be fully objective. 
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Frequentist Inference 

The GoodThe Good
No arbitrary priors: Absence of prior anxiety!
Coverage property is powerful (some say beautiful)
There is a badness-of-fit test
One can play delightful MC games on a computer

The BadThe Bad
No systematic method to incorporate prior information
“Grosse Fuge” reasoning is difficult and unnatural

The UglyThe Ugly
Difficult to teach
Doesn’t do what we want: Probability(Theory|Data)
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Bayesian Inference 

The GoodThe Good
Natural model of inferential reasoning
General theory for handling uncertainty in all its forms
Results depend only on data observed
Does what we want: Probability(Theory|Data)
Easy to teach and understand

The BadThe Bad
Can be computationally demanding
Until recently, no goodness-of-fit test

The UglyThe Ugly
Choosing prior probabilities can be, well, a “Grosse Fuge”!
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“A Frequentist uses impeccable logic to answer the 
wrong question, while a Bayesian answers the right 
question by making assumptions that  nobody can fully 
believe in.”

P.G. Hamer

Do you see another version of the Duality-Principle in 
action? (Freq/Bayes)

Bayesian Theory – Statistical Inference
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Bayesian Decision Theory

Bayesian decision theory is a fundamental statistical 
approach to the problem of pattern classification. 

Decision making when all the probabilistic 
information is known.
For given probabilities the decision is optimal.
When new information is added, it is assimilated 
in optimal fashion for improvement of decisions.
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Bayesian Decision Theory cont.

Fish Example: Each fish is in one of 2 states: 
sea bass or salmon

Let ω denote the state of nature
ω = ω1 for sea bass
ω = ω2  for salmon
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The State of nature is unpredictable  ω is a    
variable that must be described probabilistically.

If the catch produced as much salmon as sea-bass
the next fish is equally likely to be sea bass or 
salmon.

Define
P(ω1 ) : a priori probability that the next fish is sea bass
P(ω2 ): a priori probability that the next fish is salmon.

Bayesian Decision Theory cont.
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If other types of fish are irrelevant: 

P( ω1 ) + P( ω2 ) = 1.

Prior probabilities reflect our prior knowledge 
(e.g. time of year, fishing area, …)

Simple decision Rule:
Make a decision without seeing the fish.
Decide w1 if P( ω1 )      P( ω2 ); ω2 otherwise.
OK if deciding for one fish
If several fish,  all assigned to same class.

Bayesian Decision Theory cont.

≥
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Bayesian Decision Theory cont.

In general, we will have some features 
and  more information.

Feature: lightness measurement = x
Different fish yield different lightness readings 
(x is a random variable)
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Bayesian Decision Theory cont.

Define 
p(x | ω1) = Class Conditional Probability 
Density Probability density function for x 
given that the state of nature is ω1

The difference between p(x | ω1) and p(x | ω2)
describes the difference in lightness between sea 
bass and salmon. 
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Hypothetical class-conditional probability Density functions 
are normalized (area under each curve is 1.0)

Bayesian Decision Theory cont.
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Bayesian Decision Theory cont.

Suppose that we know 

The prior probabilities P(ω1) and P(ω2), 

The conditional densities

Measure lightness of a fish = x.

What is the category (class) of the fish given 
the evidence (light)                 ?

1( | )p x ω 2( | )p x ω

( | )jp xω
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Bayesian Formula

P(ωj | x) = P(x |ωj ) P(ωj ) / P(x),
where

2

1

( ) ( | ) ( )j j
j

P x p x Pω ω
=

=∑

Likelihood  PriorPosterior
Evidence

∗=
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p(x|ωj ) is called the likelihood of ωj
with respect to x. (the ωj category for which
p(x|ωj ) is large  is more "likely" to be the true 
category)

p(x) is the evidence how frequently we will 
measure a pattern with feature value x.

Scale factor that guarantees that the posterior 
probabilities sum to 1.

Bayesian Formula
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Posterior probabilities  for the particular priors P(ω1)=2/3 and P(ω2)=1/3. 
At every x the posteriors sum to 1.

Bayes' formula cont.
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Error 

For a given x, we can minimize the
probability of error by deciding ω1

if P(ω1|x) > P(ω2|x) and ω2 otherwise.

2 1

1 2

If we decide ( | )
( | )

If we decide ( | )
P x

P error x
P x

ω ω
ω ω

⇒⎧
= ⎨ ⇒⎩
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Bayes' Decision Rule
(Minimizes the probability of error)

ω1 : if P(ω1|x) > P(ω2|x)

ω2 : otherwise
or

ω1 : if P ( x |ω1) P(ω1) > P(x|ω2) P(ω2) 

ω2 : otherwise
and

P(Error|x) = min [P(ω1|x) , P(ω2|x)]
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Bayesian Decision Theory:  
Continuous Features: General Case

Formalize the ideas just considered in 4 ways:
• Allow more than one feature

Replace the scalar x by the feature vector .     
An d-dimensional Euclidean space Rd is called the 
feature space.

• Allow more than 2 states of nature
Generalize to several classes

• Allow actions other than merely deciding the state of 
nature

Possibility of rejection, i.e., of refusing to make a 
decision in close cases.

• Introducing general  loss function

dR∈x
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Loss ( or cost ) function states exactly how costly 
each action is, and is used to convert a probability 
determination into a decision. Loss functions let 
us treat situations in which some kinds of 
classification mistakes are more costly than 
others.

Loss functionThe Loss Function
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Let {ω1, ... , ωc } be the finite set of c states of nature 
("categories").

Let                  be the finite set of a possible actions.

The loss function                     = loss incurred for taking action 

when the state of nature is ωj.

x = d-dimensional feature vector (random variable)

P(x|ωj ) = the state conditional probability density function for x
(The probability density function for x conditioned on ωj
being the true state of nature)

P(ωj ) = prior probability that nature is in state ωj .

1{ ,..., }aα α
( | )i jλ α ω

iα

FormulationProblem Formulation
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Expected Loss

Suppose that we observe a particular x and that we 
contemplate taking action        .

If the true state of nature is ωj then loss is 

Before we have done an observation
the expected loss is

iα

( | )i jλ α ω

1

( ) ( | ) ( )
C

i i j j
j

R Pα λ α ω ω
=

=∑
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Conditional Risk

After the observation the expected risk
which is called now “conditional risk”
is given by

1
( | ) ( | ) ( | )

C

i i j j
j

R Pα λ α ω ω
=

=∑x x
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Total Risk

Objective: Select the action that 
minimizes the conditional risk

A general decision rule is a function 
For every x, the decision function                 
assumes one of the a values
The “total risk” is 

( )iα x
( )iα x

1,..., aα α

( ( ) | ) ( )R p dα∫ x x x x
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Bayesian Decision Rule

Compute the conditional risk

for i =1, ... , a.

Select the action         for which                       is 
minimum.

The resulting minimum total risk is called the 
Bayes Risk, denoted R*, and is the best 
performance that can be achieved.

1

( | ) ( | ) ( | )
C

i i j j
j

R Pα λ α ω ω
=

=  ∑x x

( | )iR α xiα
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Two-Category Classification
Action        =  deciding that the true state is ω1

Action        =  deciding that the true state is ω2 .

Let                              be the loss incurred for deciding ωi when the 
true state is ωj. 

Decide ω1 if

or if 

or if

and ω2 otherwise

1 11 1 12 2

2 21 1 22 2

( | ) ( | ) ( | )
( | ) ( | ) ( | )

R P P
R P P

α λ ω λ ω
α λ ω λ ω

= +
= +

x x x
x x x

1α

2α
( | )ij i jλ λ α ω =

1 2( | ) ( | )R Rα α<x x

21 11 1 12 22 2( ) ( | ) ( ) ( | )P Pλ λ ω λ λ ω− > −x x

21 11 1 1 12 22 2 2( ) ( | ) ( ) ( ) ( | ) ( )p P p Pλ λ ω ω λ λ ω ω− > −x x
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Under reasonable assumption that                            (why?)

decide ω1 if 

and ω2 otherwise.

The ratio                         is called the likelihood ratio. We 

can decide ω1 if the likelihood ratio exceeds a threshold T

value that is independent of the observation x.             

21 11λ λ>

1 12 22 2

2 21 11 1

( | ) ( ) ( )
( | ) ( ) ( )

p P T
p P

ω λ λ ω
ω λ λ ω

−> =
−

x
x

1

2

( | )
( | )

p
p

ω
ω

x
x

Two-Category Likelihood Ratio Test


