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Bootstrapping and Resampling 
 
1 Bootstrapping Correction for False-Positive error 
 
The goal of this method is to reduce the False-Positive (Type I) error, which is commonly due to 
finding more significant activation where there is not any. In other words, the test statistics 
rejects the NULL hypothesis (no activation) and effectively accepts the alternative hypothesis 
(activation is present). However, if a large number of tests are carried out there is data dragging, 
which will result in finding many activated regions, just by chance, which in fact are not 
significant in reality. The question is how to sift out the really significant statistics and avoid (or 
reduce) the False-Positive errors? 
 
Suppose we have the functional volumetric (PET/SPECT) brain data for two groups of N 
subjects each; group 1 –  {Xi}i=1

N, and group 2  –  {Yi}i=1
N (group sizes need not be equal, as 

independent tests are used). We first do regular SVT 4.2 (with no correction for multiple testing, 
like the Bonferroni-type correction implemented in SVT 5.2). Presumably, there will be some 
type–I error (regions declared significant while in fact they are not). Then for each of the 
significantly activated voxels, labeled by { } Iaav

oav ∈∈ , do the following: 

 

Let 
obs

oav
Z  be the observed statistically significant Z-score at voxel location 

oav according to the 

SVT 4.2 
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be the bootstrap statistic of interest (Z-score), where ( )
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lD  is the intensity at 
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b

mD
σ̂ is the 

corresponding (bootstrap sample) estimate of the standard deviation. 
 
We select B, a number of bootstrap sub-samples (> 1,000, guaranteed to exist if N≥3, since 
ln(2N)≥3/N). Generate B bootstrap samples by randomly (uniformly) paring data intensities at 
voxel locations 

oav , across all PET data, with replacement (and hence possible repetitions) from 

the mixed pool of all subjects. Basically mix all subjects and randomly cut in half allowing 
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repetition. Note that configurations in which the same subject is represented several times, or not 
at all, are allowed and certainly bound to appear. 
 
Compute the value of the bootstrap statistic of interest at each of the B bootstrapping samples for 

the fixed voxel location 
oav . After obtaining these Z-scores, 

B∈
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and its (bootstrap-sample) variance 
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Then, we use the usual bootstrap normal approximation to find CI(95%, 

oav ), the 95% 

confidence interval for 
obs

oav
Z , ( )

oavoav
Z

oavCI σ̂96.1%,95 ×±= . 

 

Finally, 
obs

oav
Z  is declared significant if it lies outside of CI(95%, 

oav ), and not-significant if it 

is within this confidence interval. The same procedure is repeated across all SVT 4.2 
significantly activated voxels { } Iaav ∈ . 

 
Another way to apply bootstrapping is the following: As before, determine the bootstrap 

statistics of interest 
B∈
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Z  and report only the p-value at each voxel-location 

oav . 
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where C(Set) is the cardinality of the set Set. This assigns a probability value to each voxel – 

indicating the ratio of the Z-scores in the bootstrap samples greater than the observed 
obs

oav
Z  Z-

score. 
 

2. Traditional confidence limits 

Let's leave bootstrapping for a minute, and just concentrate on standard confidence limits in 
parametric statistics. Again, we will focus on the population mean as a parameter of interest. We 

know that the usual confidence limits can be found as XStXCI
2

,
2

αµ
α

±=







. We can 

solve for these limits just by taking the sample mean, X , finding the critical value of t from 
Student's tables (for reasonable sample sizes it will be a bit more than 2.0), and multiplying by 
the standard error of the sample average, which is just the standard deviation of the sample 
divided by the square root of n. Notice that these limits will be symmetric because +t and –t will 
be equal except for the sign. How is this related to constructing bootstrapped t intervals? 

3. Bootstrapped T intervals 

Efron (1979+) called the (bootstrap) extension intervals of the parametric statistics bootstrapped-
t intervals. These are actually surprisingly like the traditional intervals, but with a twist. To 
calculate the traditional intervals, we had to use the tables of the Student t distribution. But 
Gosset (Student) originally derived that distribution on the assumption that we were sampling 
from a normal population. And the whole purpose behind bootstrapping is to get away from 
making that (parametric) kind of assumption.  

Suppose that we took our original sample, treated it as a pseudo-population, drew B bootstrapped 

samples, and calculated X  and S from each. From these statistics we could solve for t*, where 
the asterisk (*) is used to indicate that each of these is a t calculated on a bootstrapped sample. 
Now all we need are the 2.5% and 97.5% cutoffs of the t distribution we would have without 
assuming normality. And we can get those cutoffs just by drawing many bootstrapped samples, 

and calculating t* for each sample [i.e. for each sample (i) we calculate 
( )

n
iS

iXiX

*

*
−

, where 

*
iX is the mean of the ith bootstrapped sample, iX is the mean from our original (observed) 

sample, and 
*
iS is the (bootstrap-sample) standard deviation.]  
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After drawing B bootstrapped samples, we take the resulting sampling distribution of t* and find 
its 2.5% (t*

0.025) and 97.5% (t*
0.975) cutoffs, and substitute those, instead of tabled values, in the 

traditional formula. This gives us [ ]XStXXStXCI *
025.0    ;   *

975.0,025.0
2

+−== 
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