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Expectation Maximization and Mixture

Modeling Tutorial

Abstract

This technical report describes the statistical method of expectation maxi-
mization (EM) for parameter estimation. Several of 1D, 2D, 3D and n-D exam-
ples are presented in this document. Applications of the EM method are also
demonstrated in the case of mixture modeling using interactive Java applets
in 1D (e.g., curve fitting), 2D (e.g., point clustering and classification) and 3D
(e.g., brain tissue classification).
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Generalized Expectation Maximization 1 

 
 

This technical report describes the statistical method of expectation maximization (EM) for 
parameter estimation. Several of 1D, 2D, 3D and n-D examples are presented in this document. 
Applications of the EM method are also demonstrated in the case of mixture modeling using 
interactive Java applets in 1D (e.g., curve fitting), 2D (e.g., point clustering and classification) 
and 3D (e.g., brain tissue classification). 
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1 Maximum Likelihood Estimation (MLE) 
 
First, let’s recall the definition of the maximum-likelihood estimation problem. We have a 
density function p (x | Θ), that is governed by the set of parameters Θ (e.g.,  p might be a 
Gaussian and Θ could be the means (vector) and covariance (matrix)). We also have a data set of 
size N, supposedly drawn from this distribution with density p, i.e., X = {x1, …, xN}. That is, we 
assume that these data vectors are independent and identically distributed (IID) with distribution 
p . Therefore, the resulting joint density for the samples is:  

)|()|(  ) | ( XX Θ=Θ=Θ ∏ =
Lxi

N

1i
pp  

)|( XΘL  is called the likelihood function of the parameters (Θ) given the data, or just the 
likelihood. The likelihood is thought of as a function of the parameters (Θ) where the data X is 
fixed (observed). In the maximum likelihood problem, our goal is to find a parameter vector 
Θ that maximizes )|( XΘL . In other words, we look for Θ∗ , where 

X)|L(Θ=Θ
Θ

ArgMax*  

 
Oftentimes we choose to maximize ))|(( XΘLLog  instead because it is analytically easier or 
computationally appealing. 
 
Depending on the form of p (x | Θ) this problem can be easy or hard. For example, if p (x | Θ) is 
simply a single Gaussian distribution where the parameter vector Θ=(μ, σ2), then we can solve 
the maximum likelihood problem of determining estimates (MLE) of μ & σ2  by setting the 
partial derivatives of ))|(( XΘLLog  to zero (in fact, this is how the familiar formulas for the 
population mean and variance are obtained). For many problems, however, it is not possible to 
find such analytical expressions, and we must resort to more elaborate techniques (e.g., EM 
technique). 
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Example 1: Nornal(μ,σ2) 
Suppose {X1, …, Xn} IID N(μ, σ2), where μ is  unknown. We estimate μ  by: 
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Example 2: Poisson(λ) 
Suppose {X1, …, XN} IID Poisson(λ), where (the population mean, and standard deviation) λ is  
unknown. Estimate λ by: 
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2 General Expectation Maximization (GEM) Algorithms 
 

The EM algorithm is one such technique, which allows estimating parameter vectors in the cases 
when such analytic solutions to the likelihood minimization are difficult or impossible. The EM 
algorithm [see references at the end] is a general method of finding the maximum-likelihood 
estimates of the parameters of an underlying distribution from a given data set when the data is 
incomplete or has missing values. There are two main applications of the EM algorithm.  

Application 1 (Missing Values) 
The first application of EM algorithm occurs when the data indeed has missing values, due to 
problems with or limitations of the observation process.  

Application 2 (Pattern Recognition) 
The second occurs when optimizing the likelihood function is analytically intractable, however, 
we still need to assume the likelihood function can be simplified by assuming the existence of 
and values for additional but missing (or hidden) parameters. This second application is more 
common in the computational pattern recognition community. 
 
As before, we assume that data X is observed and is generated by some distribution. We call X 
the incomplete data. We assume that a complete data set exists Z=(X;Y) and also assume (or 
specify) a joint density function: 

)|()|()|(  ) | ( ΘΘ=Θ=Θ XX,YYX,Z pppp  

 
Recall that for each probability measure, P, P(A,B)=P(A|B)P(B) and hence, in terms of the 
conditional probability, P(A,B|C) = P(A|B,C)P(B|C). This joint density often times arises from 
the marginal density function )|( ΘXp  and the assumption of hidden variables and parameter 
value guesses (e.g., mixture-densities, this example is coming up; and Baum-Welch algorithm). 
In other cases (e.g., missing data values in samples of a distribution), we must assume a joint 
relationship between the missing and observed values. 
 
With this new density function, we can define a new likelihood function, 

)|(   || Θ=Θ=Θ YX,YX,Z p )L(  )L( , 
called the complete-data likelihood. Note that this function is in fact a random variable since 
the missing information Y is unknown, i.e., random, and presumably governed by an underlying 
distribution. That is, we can think of )(   | YX,YX, Θ=Θ h )L(  for some function )( YX,Θh , 

where X and Θ are constant and Y is a random variable. The original likelihood  )L( X|Θ  is 
referred to as the incomplete-data likelihood function.  
 
The Expectation Maximization algorithm then proceeds in two steps – expectation followed by 
its maximization. 
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Step 1 of EM (Expectation) 
The EM algorithm needs to first find the expected value of the complete-data log-likelihood 

( ))|( ΘYX,pogL  with respect to the unknown data Y given the observed data X and the 

current parameter estimates Θ
i, the E-Step. Below we define the expectation of Θ

(i-1), the 
second argument represents the parameters that we use to evaluate the expectation. The first 
argument Θ simply indicates the parameter (vector) that ultimately will be optimized in an 
attempt to maximize the likelihood:  

Q(Θ, Θ(i-1))=E[Log  p (X,Y | Θ) | X, Θ(i-1)].   (1) 
Where Θ(i-1) are the current parameters estimates that we used to evaluate the expectation and Θ 
are the new parameters that we optimize to increase (maximize) Q. Note that the expression 
above is a conditional expectation  w.r.t. (X & Θ(i-1)),  i.e.,  

E[ h(Y) | X=x] := ∫ ×== y x)dy|(yX|Yfh(y) :x] X | h(Y) E[ . 

 
The key thing to understand is that X and Θ(i-1) are given constants, Θ is a random variable that 
we wish to adjust/estimate, and Y is a random variable governed by the distribution f(Y |X,Θ(i-

1)). The right side of equation (1) can therefore be expressed as: 

dyiXyfyXy LogiXYXLogΕ ))1(,|()1( −Θ )Θ | ,( ∫ ∈=]−Θ , | )Θ | ,(  [ pp Y   (2) 

 
The f(Y |X,Θ(i-1)) is the marginal distribution of the unobserved data (Y) and is dependent on: 
the observed data X, on the current parameters Θ(i-1), and Y is the space of values y can take on. 
In the best-case situations, this marginal distribution is a simple analytical expression of the 
assumed parameters Θ(i-1), and perhaps the observed data (X). In the worst-case scenario, this 
density might be very hard to obtain. In fact, sometimes the actually used density is: 

f(y ,X | Θ(i-1))= f(y  | X,Θ(i-1)) f(X | Θ(i-1)), 
but this doesn’t effect subsequent steps since the extra factor, f(X | Θ(i-1)) is not dependent on Θ. 
 
As an analogy, suppose we have a function h( . ; . ) of two variables. Consider h( θ ; Y ) where θ 
is a constant and Y is a random variable governed by some distribution fY(y). Then  

 y )();( )];([( ∫== )θ dyyYfYhYhEq θθY  

is now a deterministic function that could be maximized if desired, w.r.t. θ. The evaluation of 
this expectation is called the E-step of the algorithm. Notice the meaning of the two arguments in 
the function Q(Θ, Θ(i-1)). The first argument Θ corresponds to the parameters that ultimately 
will be optimized in an attempt to maximize the likelihood. The second argument, Θ

(i-1), 
corresponds to the parameters that we use to evaluate the expectation at each iteration (E M    
E M   E M   …). 
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Step 2 of EM (Maximization) 
The second step (the M-step) of the EM algorithm is to maximize the expectation we computed 
in the first step. That is, we iteratively compute: 

( ).)1(,
)( ⎟

⎠

⎞
⎜
⎝

⎛ −ΘΘ

Θ

=Θ iQArgMax
i

 

That is we maximize the expectation of the log-likelihood function. These two steps are repeated 
as necessary. Each iteration is guaranteed to increase the log-likelihood and the algorithm is 
guaranteed to converge to a local maximum of the likelihood function. There are many 
theoretical and empirical rate-of-convergence papers (see references below). 
 
A modified form of the M-step is to, instead of maximizing the rather difficult function 
Q(Θ, Θ(i-1)), we find some Θ(i) such that Q(Θ(i), Θ

(i-1)) > Q(Θ, Θ(i-1)). This form of the 
algorithm is called Generalized EM (GEM) and is also guaranteed to converge. This 
description of the GEM does not yield a direct computer implementation scheme (it’s not 
constructive (the coding algorithm is not explicit). This is the way, however, that the algorithm is 
presented in its most general form. The details of the steps required to compute the given 
quantities are very dependent on the particular application, so they are not discussed when the 
algorithm is presented in this abstract form, but rather detailed for each specific application. 
 

3 EM Application: Finding Maximum Likelihood Mixture Densities 
Parameters via EM 

 
The mixture-density parameter estimation problem is probably one of the most widely used 
applications of the EM algorithm in the computational pattern recognition community. In this 
case, we assume the following (mixture-density) model: 

∑ =
Θ=Θ

M

i ii xpaxp
1

)|()|(      (3)  onsDistributiMixture#=M  

where the parameter vector is Θ=(α1, …, αΜ ; θ1, …, θΜ), where the mixture-model weights 

satisfy 11 =∑ =
M
i iα  and each pi is a density function parameterized, in general, by its own 

parameter vector θi. In other words, we assume we have M component densities mixed together 
with M mixing coefficients αi . 
 
The incomplete-data log-likelihood expression for this density from the data X={x1, …, xN}, N = 
# Observations, is given by: 

( ) [ ] [ ]∑ = ∑ ==Θ∏ ==Θ N
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M
j jxjpjaLogixpLogLLog 1 1 )|()|()|( θN

1iX  

which is difficult to optimize because it contains the logarithm function of the sum [if the sum 
and the log were interchanged then optimizing the outside logarithm would have been equivalent 
to optimizing its argument – the sum – as the log function has always a positive derivative over 
its domain (0; ∞ )]. If we consider X as incomplete, however, and assume the existence of 
unobserved data items Y={yi}i=1

N, whose values inform us which component density “generated” 
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each data item, the likelihood expression is significantly simplified. That is, if we assume that 
},...,2,1{ Miy ∈  for each Ni ≤≤1 , and yi=k if the ith sample, xi, was generated by the kth 

mixture component pk. If we know the values of Y, the likelihood becomes: 

( ) [ ] [ ] [ ]∑ ==∑ ==Θ=Θ N
i

iyix
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iyLogN
i iyPiyixPLogPLogLLog 1 )|(1 )()|()|()|( θαYX,YX,  

which, given a particular form of the component densities, can be optimized using a variety of 
techniques. The problem, of course, is that we do not know the values of Y. If we assume Y is a 
random vector, however, we can proceed. We first must derive an expression for the distribution 
of the unobserved (missing) data, Y. Let’s first guess at parameters for the mixture density, i.e., 
we guess that Θg =(α1

g, …, αΜ
g ; θ1

g, …, θΜ
g), are the appropriate parameters for the likelihood 

L(Θg | X,Y). Given Θg, we can compute pj(xi|θj
g) for each i and j. In addition, the mixing 

parameters, αi, can be though of as prior probabilities of each mixture component, that is αi= 
p(component i). Therefore, using Bayes’s rule –  P(Yi|Xi)=P(Xi|Yi)P(Yi)/P(Xi), we can compute: 
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and therefore, ∏ = Θ=Θ N
i

g
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g
Xyp 1 ),|(),|( , where y = (y1, …, yN) is an instance of 

the unobserved data independently drawn. When we now look at equation (2), we see that in this 
case we have obtained the desired marginal density (of Y), f(y | X,Θ(i-1)), by assuming the 
existence of the hidden variables and making a guess at the initial parameters of their 
distribution. In this case, equation (1) takes the specific form: 
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Now, to maximize this expression, we can maximize independently Φ and Ψ, the terms 
containing αl and θl, since they are not related. To find the expression for αl, which maximizes 
Q(Θ,Θ(g)), we introduce the Lagrange multiplier λ with the constraint that 01 =−∑= l lg α , 
and solve the following equation: 
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Therefore, λ = -N , which yields that ∑ = Θ= N
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g
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l 1 )|(

1
α . This is how we determine the 

mixture parameters {αl}, most of the time. 
 
Now let us try to estimate the second part of the parameter vector Θ=(α1, …, αΜ ; θ1, …, θΜ), 
i.e., the distribution specific parameters (θ1, …, θΜ). Clearly, these need to be estimated in a case 
by case manner, as different distributions have different number and type of parameters. We 
consider again a couple of cases that illustrate the basic strategy for estimating (θ1, …, θΜ) using 



Ivo D. Dinov  UCLA Statistics 
http://www.stat.ucla.edu/~dinov  http://www.stat.ucla.edu/~dinov/courses_students.html 

www.StatisticsResource.org  9

EM approaches. For some distributions, it will be possible to get analytic expressions for θl 
directly, as functions of all other variables. 
 

4. Examples 

Example 1: Poisson(λ)  
Suppose that the mixture model in equation (3) involves Poisson(λl) distributions, Ml ≤≤1 . 
Then the  
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Taking the derivatives w.r.t. λl and setting these equal to zero yields,  
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Therefore, we have explicit expressions for iterative calculation of the estimates of the mixture 
parameters, Θ=(α1, …, αΜ), and the Poisson distribution parameters, (θ1, …, θΜ)=(λ1, …, λΜ). 
 

Example 2: n-D Gaussian   
If we assume d-dimensional Gaussian component distributions with a mean vector μ and 
covariance matrix Σ, i.e., θ = (μ; Σ) then the probability density function is 

)7(    )(1)(
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Then we may derive the update equations [equations (1), (4), (6)] for this specific distribution, 
we need to recall some results from matrix algebra. The trace of a square matrix tr(A) is equal to 
the sum of A’s diagonal elements. In 1D the trace of a scalar equals that scalar. Also, tr(A + B) = 
tr(A) + tr(B), and tr(AB) = tr(BA), which implies that 

)(   if ABtri ixA
T
ixi

T
ixixB =∑⇒∑= . Also note that |A| indicates the determinant of the 

matrix A, and |A-1|=1/|A|. Differentiation of a function of a matrix f(A) is accomplished by 
differentiating with respect to elements of that matrix. Therefore, we define df(A)/dA to be the 
matrix with (i,j)-th entry equal to [df(A)/dai,j], where A=( ai,j). This definition also applies taking 
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derivatives with respect to a vector. First, d(xTAx)/dx=(A+AT)x. Second, it can be shown that 
when A is a symmetric matrix: 
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by the definition of the inverse of a matrix. Finally, it can be shown that dtr(AB)/dA = B + BT-
diag(B). 
 
Now, for the d-dimensional Gaussian distribution example, if we take a log of equation (7), 
ignoring any constant terms (since they disappear after taking derivatives), and substituting into 
the right side of equation (6), we get: 
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Taking the derivative of equation (8) with respect to μl and setting it equal to zero, we get: 
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which solving for μl yields: 
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To find Σl, note that we can write equation (8) as: 
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where Nl,i = ( )( )Tlxlx μμ −− . In equation (9) we now take the derivative with respect to the 

matrix Σl
-1, and we obtain: 
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where Nl,i = ( )( )Tlxlx μμ −− , Ml,i = Σl  – Nl,i and S = ilMN
i

g
ixlp ,1 ),|(

2

1
∑ = Θ . To find 

the extreme values (maxima) of the , equation (9) we set the derivative to zero [equation (10)], 

i.e., 2S – diag(S) = 0. This implies that S=0  ( ) .0,1 ),|( =−Σ∑ = Θ ilNl
N
i

g
ixlp  So, we 

obtain an exact expression (variance-covariance matrix estimate, 1 ≤ l ≤M) for Σl. 
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Summarizing, the estimates of the new parameters in terms of the old parameters (guessed 
parameters super-indexed by g, Θg =(α1

g, …, αΜ
g ; θ1

g, …, θΜ
g)) are as follows: 
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Note that the above equations (11) perform both the expectation step and the maximization 
step simultaneously. The algorithm proceeds by using the newly derived parameters as the 
guess for the next iteration. 
 

Example 3: 1D Distribution Mixture-Model-Fitting using EM    
These SOCR Activities demonstrate fitting a number of polynomial, distribution and spectral 
models to data: http://wiki.stat.ucla.edu/socr/index.php/SOCR_EduMaterials_ModelerActivities.  
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For instance, suppose we have a collection of 100 observations. The first 20 of these 
observations are included in the table below. A histogram of these observations is also shown 
below.  
 

 

 
 
 
These data was generated using SOCR Modeler: 
http://socr.ucla.edu/htmls/SOCR_Modeler.html 
http://wiki.stat.ucla.edu/socr/index.php/SOCR_EduMaterials_Activities_RNG 
 
And the Histogram was obtained using SOCR Charts: 
http://socr.ucla.edu/htmls/SOCR_Charts.html 
http://wiki.stat.ucla.edu/socr/index.php/SOCR_EduMaterials_Activities_Histogram_Graphs 
 
If these 100 random observations are copy-pasted in SOCR Modeler 
(http://socr.ucla.edu/htmls/SOCR_Modeler.html), we can fit in a mixture of 2-Normal 
Distributions to these data, as shown in the figure below. The quantitative results of this Em fit 
of 2 Normal distributions to these data is reported in the Results panel. 
 
 

1 -2.51002
2 -2.51002
3 -1.5060121
4 -1.5060121
5 -1.5060121
6 -1.5060121
7 -1.5060121
8 -1.5060121
9 -1.5060121

10 -1.5060121
11 -1.5060121
12 -1.5060121
13 -1.5060121
14 -1.5060121
15 -1.5060121
16 -0.502004
17 -0.502004
18 -0.502004
19 -0.502004
20 -0.502004

Mixture Model 0:  
 Weight =0.796875 
 Mean = 0.06890251005397123 
 Variance = 1.1959966055736866 
 
Mixture Model 1:  
 Weight =0.203125 
 Mean = 4.518035888671875 
 Variance = 1.0 
 
 
INTERSECTION POINT(S):  
2.708939236914807 
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Example 4: 2D Point Clustering and Classification using EM    
We can use the SOCR EM Chart, to enter real 2D data or simulate such data. The figure below 
shows the plot of knee pain data (courtesy of Colin Taylor, MD, TMT Medical).  

• http://socr.ucla.edu/htmls/SOCR_Charts.html 
• http://wiki.stat.ucla.edu/socr/index.php/SOCR_EduMaterials_Activities_2D_PointSegmentation_EM_Mixture 

 
If we select four 2D Gaussian kernels, we can run iteratively the EM mixture-modeling 
algorithm to estimate the 4-clusters and finally classify the points in this knee-pain dataset, as 
shown in the figure below. 
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The estimated 2D Gaussian kernels are reported in the table below. 
 

Kernel:1 Color[r=85,g=85,b=255] 
mX = 12.109004237402402 mY = 117.82567907801044 
sXX = 21.032925241685124 sXY = 78.7581941291246 
sYX = 78.7581941291246 sYY = 24.09825818460926 
weight = 0.430083268505667 likelihood = -10.208282817360221 

Kernel:2 Color[r=85,g=255,b=85] 
mX = 149.38436424342427 mY = 192.71749953677403 
sXX = 20.76028543262703 sXY = -8.73565367620904 
sYX = -8.73565367620904 sYY = 22.72742021102665 
weight = 0.39741243015152933 likelihood = -10.208282817360221 

Kernel:3 Color[r=255,g=255,b=85] 
mX = 384.0858049258344 mY = 130.33122378944105 
sXX = 23.636423858007923 sXY = 135.0559608391195 
sYX = 135.0559608391195 sYY = 21.654643444147702 
weight = 0.06547362085865455 likelihood = -10.208282817360221 

Kernel:4 Color[r=255,g=85,b=255] 
mX = 384.0858049258344 mY = 147.83898638544392 
sXX = 25.080070954205347 sXY = -94.47319742216496 
sYX = -94.47319742216496 sYY = 24.591327584325068 
weight = 0.09143983449841454 likelihood = -10.208282817360221 
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Example 5: 3D Brain Tissue Classification using EM and Mixture Modeling 
A demonstration of a 3D data analysis using the SOCR EM Mixture model is included in the 
LONI Viz Manual (http://www.loni.ucla.edu/download/LOVE/LOVE_User_Guide.pdf). This 
example shows how 3D brain imaging data may be segmented into three tissue types (White 
Matter, Gray Matter and Cerebra-spinal Fluid). This is achieved by LONI Viz (Dinov et al., 
2006) sending the segmentation tasks to SOCR and SOCR returning back the 3D segmented 
volumes, which are superimposed dynamically on top of the initial anatomical brain imaging 
data in real time. The figure below illustrates this functionality. Other external computational 
tools could also invoke SOCR statistical computing resources directly by using the SOCR JAR 
binaries (http://www.socr.ucla.edu/htmls/SOCR_Download.html) and the SOCR Documentation 
(http://www.socr.ucla.edu/docs). 

 

5. Online SOCR Demos 
 
• http://wiki.stat.ucla.edu/socr/index.php/AP_Statistics_Curriculum_2007_Estim_MOM_MLE 
 
• http://wiki.stat.ucla.edu/socr/index.php/SOCR_EduMaterials_ModelerActivities 
 
• http://socr.ucla.edu/htmls/SOCR_Modeler.html 
 
• http://wiki.stat.ucla.edu/socr/index.php/SOCR_EduMaterials_Activities_2D_PointSegmentation_EM_Mixture  
 
• http://wiki.stat.ucla.edu/socr/index.php/SOCR_EduMaterials_ModelerActivities_MixtureModel_1  
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