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Problems with t-tests and correlations
1) How do we evaluate runs with different orders?
Right now, we could average our two runs done in Order1 together, and also 
average our two runs done in Order2 together and then do stats on the two orders 
separately.  There is no way to collapse between orders.  If there is an artifact  
(e.g., 7 Trial1 vs 8 Trial2) on part of one run, we have to exclude the whole run.

2)  If we test more subjects, how can we evaluate the subjects 
together?
As with the single subject runs, we could average all the subjects together (after 
morphing them into a common brain space) but that still means we have to run all 
of them in the same order.
3)  We can get nice hemodynamic predictors for different trial 
conditions, but how can we compare them accurately?

If this predictor is significant, we 
won’t know if it’s because         
Faces > Places    OR    because 
Faces > Fixation

Design Matrix A Solution: Use General Linear Modeling
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General Linear Model (GLM): Logic

Adapted from Brain Voyager course slides

Data, say fMRI signal

Parse out variance in the 
voxel’s time course to the 
contributions of six 
predictors plus residual 
noise (what the predictors 
can’t account for).

residuals

+

β1   ×

β2   ×

=

β6   ×

…

+

+

+

+

β3   ×

β4   ×

β5   ×

+

Design Matrix
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GLM Baseline
Here are all our 6 GLM predictors shown together:

Why is there no “baseline” predictor?

Because if there was, the model would be overdetermined (everything 
would be high at some point.
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GLM Baseline
To understand why overdetermination is a problem, consider an example with only 
two states (e.g., an MT localizer comparing moving rings & stationary rings) and 
shifted rather than convolved with the HRF:

The baseline predictor is exactly the inverse of the main state predictor.  If we know 
the strength of the main state predictor, we must know the strength of the baseline 
predictor (baseline = 1 – main^) so the second predictor adds no info to our model. 
The problem extends to more predictors and HRF-convolved models.

main state predictor

baseline predictor

both predictors

In the GLM, the number of 
predictors     number of states - 1≤
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Multi-study GLM Model
We can make two sets of predictors, one for Order1 and one for Order2 (being sure 
to define the predictors in the same sequence).
Then the GLM, simply associates each run with the appropriate set of predictors 
and all the data gets analyzed by one gigantic model.
This is similar in a sense to appending all of the runs and making one big model 
(but factors in other things, like the average signal level in each run). 

4 runs

2 orders same sequence of predictors

one 
output 
model
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GLM Initial Output
Initially, the output shows us where GML model (or any part within it) 
accounts for a significant amount of variance:
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Single Predictors

We can look at voxels where a single predictor alone (e.g., faces left) 
accounts for a significant amount of variance:
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GLM Stats
For any rectangular given region in 2D, we can evaluate the GLM stats

Total length of sequence = 4 runs * 155 volumes = 620 volumes/subject.

blue: Orig. time course =
green: best fitting model +
red: residuals
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GLM Stats

beta = weight of predictor in model
SE = standard error (variability in 
estimates)
t = beta/SE (e.g., 1.793/.132 = 13.58)
p = probability value for that level of t

F = t2

Entire GML model is significant for this 
region and accounts for 0.5792 = 33.5% of 
its variance
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Combination Predictors
We can look at voxels where a combination of predictors (e.g., all face 
conditions) accounts for a significant amount of variance:
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GLM Combo Stats

For any 2D rectangular 
region, we can evaluate the 
GLM stats for a combination 
of predictors:

The sum of the 3 face predictors (1.714 + 1.103 + 1.978 = 4.795) are 
used in the computation of t (Note: the SE is not computed from the 
sum of the 3 SEs).
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Contrasting Predictors
We can look at voxels where a contrast between predictors (e.g., all face 
conditions vs. all place conditions) accounts for a significant amount of 
variance:
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Example: a line through 3 points…

Yi = α xi + µ + εi i = 1,2,3

Y1 = µ × 1  +  α x1 + ε1
Y2 = µ × 1  +  α x2 + ε2
Y3 = µ × 1  +  α x3 + ε3

Recall: Simple Linear Regression

parameter estimates µ & α

fitted values   Y1 , Y2 , Y3

residuals e1 , e2 , e3

Y1 1 x1 µ ε1
Y2 = 1 x2 + ε2
Y3 1 x3 α ε3

Y = X β + ε

x

Y

×(x1, Y1)

×
×(x2, Y2)

(x3, Y3)
µ̂

α̂1

^̂ ^̂
^̂ ^̂ ^̂

dummy variables
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The Geometry of Linear Modeling

(1,1,1)

(x1, x2, x3)

(Y1, Y2, Y3)

design space

Y

O

xα

xµ

x1 1
Y = α × x2 + µ × 1 + ε

x3 1

Y = α × xα + µ × xµ+ ε
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Estimation, geometrically…

(Y1, Y2, Y3)

design space

Y

(Y1,Y2,Y3)^ ^ ^

e = (e1,e2,e3)T

Ŷ

µ̂ × xµ
α × x α^

xα

xµ

x1 1
Y = α × x2 + µ × 1 + ε

x3 1

Y = α × xα + µ × xµ+ ε
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Mathematics of Parameter 
Estimation

Mathematics of Parameter 
Estimation

Residuals

Residual sum of squares

Minimized when

…but this is the lth row of

Consider parameter estimates Giving fitted/predicted values

So, the least squares estimates satisfy the normal equations
which yields
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Geometry of Statistical Inference based on GML

(Y1, Y2, Y3)

design space

Y

(Y1,Y2,Y3)^ ^ ^

e = (e1,e2,e3)T

µ̂ × xµ
α × xα^

xα

xµ

model:  Yi = α xi + µ + εi

null hypothesis: e.g., H0: α = 0 (zero slope)

i.e. does xα explain 

anything (after xµ )?
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Mathematics of 
Statistical Inference

Mathematics of 
Statistical Inference

For any linear compound of the parameter estimates:

So hypotheses can be assessed using:

Further (independently):

a Student’s t statistic, giving an SPM{t}

Suppose the model can be partitioned…
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GLM Contrast Stats

For any given region, 
we can evaluate the 
GLM stats for the 
contrast between 
predictors:

Sum of the 3 face predictors minus the sum of the 3 place predictors
(1.677 + 0.929 + 1.736 - 0.256 - 0.243 - 0.342 = 0.841 = 3.501) is 
used in the computation of t (Note: the SE is not computed from the 
sum of the 6 SEs).
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A Word on Betas

Contrast values are just computed from the sum of the betas, regardless of whether 
they are positive or negative.
Make sure you are getting a contrast for the right reason:
A vs. B could have a positive contrast value if:

If your model only predicts a subset of these (e.g., faces will be higher than 
baseline and higher than places, doesn’t matter if places are + or -), you may need 
to “BOOLEAN-AND” it with an A>0 contrast (faces>places AND faces > 0)

A>0, B>0, A>B
A>0, B<0, A>B
A<0, B<0, A>B
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Event-related Averaging
For an area we can extract it’s time course from all trials 
(2 epochs/condition/run * 4 runs = 8 epochs/condition)

file based epoch based
-range specified in orange gives baseline

with SEM bars

stimulus epoch

Event-related averaging is 
especially valuable for event-
related single trial designs.

If you don’t have the same 
baseline before each condition, 
think carefully about which type 
to use (epoch-based may be big 
mistake).
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Flexibility of GLM

With our example data, we could ask many more questions such as:

left vs. right field

peripheral vs. foveal stimulation 

factorial design:
stimulus (face/place)
field (left/right/foveal)
interaction between visual field and face/place.
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Multisubject Analyses

If we had additional subjects, we could compute a 
mutlisubject GLM

one predictor/condition
one predictor/condition/subject
one predictor/condition/run

Analysis across multiple subjects requires averaging brains 
in a common space:

-most common: Talairach, ICBM, AD, Infant 
coordinate systems
-collapse brains into a constant size shoebox so they are 
all the same size

You can also compare data between populations (e.g., 
schizophrenics vs. normals, young vs. elderly, kids vs. 
adolescents).
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Advantages of General Linear Model (GLM)

• Can perform data analysis within and between subjects 
without needing to average the data itself

• Allows you to counterbalance orders

• Allows you to exclude segments of runs with artifacts

• Can perform more sophisticated analyses (e.g., 2 factor 
ANOVA with interactions) 

• Easier to work with (do one GLM vs. many t-tests and 
correlations)
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Statistical Map
superimposed on 

anatomical MRI image

~2s
Functional images

Time

Condition 1

Condition 2 ...

~ 5 min

Time

fMRI
Signal

(% change)

ROI Time 
Course

Condition

Activation Statistics

Region of interest (ROI)
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Statistical Maps & Time Courses

Then extract the time course 

Use stat maps to pick regions
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2D 3D
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fMRI Design Jargon
Session: all of the scans collected from one subject in one day
run (or scan): one continuous period of fMRI scanning (~5-7 min)
Condition: one set of stimuli or one task
Experiment: a set of conditions you want to compare to each other

4 stimulus conditions
+ 1 baseline condition (fixation)

A session consists of one or more experiments.
Each experiment consists of several (e.g., 1-8) runs
More runs/experiments are needed when signal:noise is low or the effect is weak.
Thus each session consists of numerous (e.g., 5-20) runs (e.g., 0.5 – 3 hours)

Note: Terminology can vary from one fMRI site to another (e.g., 
some places use “scan/image” to refer to what we’ve called a 
volume).
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Design Jargon: Paradigm

Paradigm (or protocol): the set of conditions and their order used in a 
particular run.
Epoch: one instance of a condition 

Time

volume #1
(time = 0)

volume #105
(time = 105 vol x 2 sec/vol = 210 sec = 3:30)

run

first “objects right” epoch
second “objects right” epoch

epoch 
8 vol x 2 sec/vol = 16 sec
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Subtraction Paradigm Logic

Cognitive subtraction originated with reaction 
time experiments (F. C. Donders, a Dutch 
physiologist, 1860s).

Measure the time for a process to occur by 
comparing two reaction times, one which has 
the same components as the other +

specific effect of the process of interest.
Examples:
T1: Hit a button when you see a light
T2: Hit a button when the light is green but not red
T3: Hit the L button when the light is green and the R button when the light is red
T2 – T1 = time to make discrimination between light color
T3 – T2 = time to make a decision
Assumption of pure insertion: You can insert a component process into a task 

without disrupting the other components.
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GLM

realignment &
motion

correction
smoothing

normalization

GLM
model fitting

statistic image

corrected p-values
random field theory

image data Parameter Estimates

design
matrix

Brain Atlas –
anatomical
reference

smoothing
kernel

Statistical
Parametric Map
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Voxel Based Analysis of fMRI

model specification

Statistics Image

f MRI time series 1 voxel time series

parameter estimation

hypothesis

statistic
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Design matrix formulation…

Ys =  β1 f 1(ts ) + …+ βl f l(ts ) + … +  βL f L(ts ) + εs s = 1, …,N

Y = X × β + ε
N × 1 N × L        L × 1 N × 1

da
ta

 v
ec

to
r

de
sig

n 
m

at
ri

x
ve

ct
or

 o
f p

ar
am

et
er

s
er

ro
r v

ec
to

r

Y1 = β1 f 1(t1 ) +…+ βl f l(t1 ) +…+ βL f L(t1 ) + ε1
: :    : :     : :     : :

Ys = β1 f 1(ts ) +…+ βl f l(ts ) +…+ βL f L(ts ) + εs
: :    : :     : :     : :

YN =β1 f 1(tN ) +…+ βl f l(tN ) +…+ βL f L(tN ) + εN

Y1 f 1(t1 ) …  f l(t1 ) … f L(t1 ) β1 ε1
: :  … : … : : :

Ys = f 1(ts )  …  f l(ts ) … f L(ts ) βl + εs
: : … : … : : :

YN f 1(tN ) … f l(tN ) … f L(tN ) βL εN

Y = X × β + ε
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General Linear Model Approach

= +

Y = X        × β        +       ε

Voxel timeseries
data vector

GLM design matrix parameters error vector

α
µ
β3
β4
β5
β6
β7
β8
β9

×

Example:
Stimulus

Subject

Run   

Trial  

Group 

ROI  

Hand 

Hemi

Tissue  
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2-Way ANOVA

Factorial designs: study designs where responses 
are measured at different combinations of levels of one 
or more experimental factors.

Ex. Treatments {A, B, C} with levels {a1, 
a2,…aa}, {b1, b2,… bb} and {c1, c2,… cc},
respectively – axbxc factorial experiment.

Ex. {H=Hemisphere, T=TissueType, M=Method} 
for the human brain manual vs. automatic
delineations. H={L,R}; T={WM, GM, CSF}; 
M={Manual, Auto}.
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2-Way ANOVA

3 types of Factorial Effects:interaction,main,simple

Ex. {H=Hemisphere, M=Method} for the human 
brain manual vs. automatic delineations. 
H={L,R}; M={Manual, Auto}.

Simple effects: Let µij denote the expected 
response to treatment himj. Simple effect of H at 
level m1 of M is defined by: m[HM1]= µ21 – µ11. 
This is the amount of change in the expected 
response when the level of H is changed from   
h2 to h1, and the level of M is fixed at m1.

UCLA, Ivo DinovSlide 40

2-Way ANOVA
Interaction effects: µ[HM]=1/2(µ[HM2]-µ[HM1]).

Note: µ[HM]==1/2(µ[H2M]-µ[H1M]).

There’s no interaction between H & M 
µ[HM]=0. | µ[HM]| measures the intensity-degree 
of interaction.

Testing for interactions: Ho: µ[HM]=0 vs. H1: 
µ[HM]!=0  E.Q. µ[HM]= ½µ22-½µ12-½µ21+ ½µ11; 

This contrast is estimated by: 
θ^=µ^[HM]= ½Y –22  -½Y –12  -½Y–

21 + ½Y–
11;
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2-Way ANOVA
Ex. {H=Hemi, M=Method} for the human brain manual vs. 
automated delineations. H={L,R}; M={Manual, Auto}.

Simple effects: Let µij denote the expected 
response to treatment himj. Simple effects are:

µ[HM2] = 
µ22 – µ12

µ[HM1] = 
µ21 – µ11

Simple effects 
of H

µ[H2M]=µ22 – µ21µ22µ21H2

µ[H1M]=µ12 – µ11µ12µ11h1

µ[HiM]m2m1Level of H

Simple Effects of M–Factor MLevel of –
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2-Way ANOVA
Main effects: µ[H] = ½(µ[HM2]+µ[HM1]) =    
=½µ22–½µ12+½µ21– ½µ11; 

Similarly: µ[M] = ½(µ[H2M]+µ[H1M]) =      
=½µ22+½µ12–½µ21– ½µ11; 

µ[H] is the avg. change in the expected response 
(population mean response) when the level of M
goes from Manual Auto.
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Orthogonal contrasts

Definition: Suppose we have 2 contrasts: 

The two contrasts θ1 and θ2 are mutually 
orthogonal if the products of their coefficients 
sum to zero:

Consider several contrasts, say k of them:           
θ1, θ2,…, θk. The set is mutually orthogonal if all 
pairs are mutually orthogonal.

nn

nn
ddd

ccc
µµµθ

µµµθ
+++=

+++=
...

...

22112

22111

0...2211 =+++ nndcdcdc
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Analysis of 2x2 Factorial Design
First test if there is interaction between the 2 factors:

If there’s statistically significant interaction 
examine separately the simple effects for each factor;
H0: µ[HM]=0  vs. H1: µ[HM] != 0, where the 
interaction effect is measured by the contrast:

µ^[HM]= ½Y–
22  -½Y–

12  -½Y–
21 + ½Y–

11;
If there is interaction present (effects of Hemi on 
the Methods are significant) study the simple 
effects of the Methods on each of the 2 Hemi’s

µ^[H1M]=Y–
12 – Y–

11;   µ^[H2M]=Y–
22 – Y–

21;
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Analysis of 2x2 Factorial Design
First test if there is interaction between the 2 factors:

If there’s statistically significant interaction
examine separately the simple effects for each factor;
If there is no interaction make inference about each 
of the 2 main effects, using the following contrasts.

µ^[H] = ½(µ^[HM2]+µ^[HM1]) = ½Y
–

22–½Y
–

12+½Y
–

21– ½Y
–

11; 

µ^ [M]=½(µ^[H2M]+µ^[H1M]) = ½ Y
–

22+½ Y
–

12–½ Y
–

21– ½ Y
–

11; 
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Analysis of 2x2 Factorial Design
How do we actually test these contrasts for significance?

As we’ve seen:
Two-sided
T-test

where 

2
2

2

2
2

1

2
1

ˆ S_...ˆ Within
k

k Mean
n
c

n
c

n
c ×










+++=

θ
σ

)2/ ,(
ˆ

~
ˆ

ˆ
α

θσ
θθ
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−=

kk

kk

YcYcYc

ccc

+++=

+++=
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2211

2211

θ

µµµθ
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Analysis of 2x2 Factorial Design
How do we actually test these contrasts for significance?

Two-sided T-test E.Q. to
One-sided F-test

2
2

2

2
2

1

2
1

ˆ S_...ˆ Within
k

k Mean
n
c

n
c

n
c ×










+++=θσ

)  ,1 ,1_(

2

ˆ
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~

ˆ

ˆ

α

θσ
θ

−−==











==

kN df_denonumdfc

cc

FF

tF

kkYcYcYc +++= ...ˆ 2211θ
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ANOVA of 2x2 Factorial Design
The significance of these contrasts? Use the F-test:

Effects coding used for categorical variables in 
model. Categorical values encountered during 
processing are:
METHOD (2 levels) 1,        2
HEMISPH (2 levels) 1,        2
Dep Var: VALUE   N: 119

Analysis of Variance
Source    Sum-of-Sq’s df  Mean-Square F-ratio       P

METHOD    2.97424E+08 1  2.97424E+08  0.39813     0.52931

HEMISPH   8.65479E+06 1  8.65479E+06  0.01159     0.91447

METH*HEMI 7.11598E+06 1  7.11598E+06  0.00953     0.92242

Error     8.59114E+10 115  7.47056E+08 Not-Signif.
Main eff’s
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ANOVA of 2x2 Factorial Design
The significance of these contrasts? Use the F-test:

Effects coding used for categorical variables in 
model. Categorical values encountered during 
processing are:
METHOD(2 levels);HEMISPH(2 levels); Dep Var: VALUE

V
al

ue

V
al

ue
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ANOVA of 2x2 Factorial Design
How about is there’s significant interaction between 
treatments?

I’ve completed UNSCIENTIFIC study (knowing I’ll get 
significant interaction) as follows:
For the same data set:

Categorical values are:
SUBJECT NO (10 levels)

1, 2, 3, 4, 5, 6, 7, 8, 9, 10
TISSUETYPE (3 levels)

1,        2,        3
Dep Var: MANUAL   N: 60 
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ANOVA of 2x2 Factorial Design
How about if there’s significant interaction between 
treatments?

Analysis of Variance

Source Sum-of-Squares   df  Mean-Square F-ratio  P

SUBJECTNO 7.41024E+08 9 8.23360E+07 2.15937 0.05517
TISSUETYP 3.36033E+10 2 1.68016E+10 440.64521 0.0
SUBJECTNO
*TISSUETYPE

1.54916E+09  18 8.60644E+07 2.25715 0.02354

Error   1.14389E+09  30  3.81296E+07
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ANOVA of 2x2 Factorial Design
How about is there’s significant interaction between 
treatments? (examine separately the simple effects for each factor)

µ^[H1M]=Y–
12 – Y–

11;   µ^[H2M]=Y–
22 – Y–

21; LS-Mean SE      N
SUBJECTNO=1 TISSUETYPE=1 68777.00000   4366.32845       2

SUBJECTNO=1 TISSUETYPE=2 93775.00000   4366.32845       2

SUBJECTNO=1 TISSUETYPE=3 21443.00000   4366.32845       2

SUBJECTNO=2 TISSUETYPE=1 61799.50000   4366.32845       2

SUBJECTNO=2 TISSUETYPE=2 74314.00000   4366.32845       2

SUBJECTNO=2 TISSUETYPE=3 16831.00000   4366.32845       2

SUBJECTNO=3 TISSUETYPE=1 55413.00000   4366.32845       2

……………………………………………

SUBJECTNO=10 TISSUETYPE=1  51925.50000   4366.32845     2

SUBJECTNO=10 TISSUETYPE=2  79457.50000   4366.32845     2

SUBJECTNO=10 TISSUETYPE=3  27190.50000   4366.32845     2


