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General Linear Model (GLM): Logic
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I GLM Baseline

To und why letermination is a problem consider an example with only
two states (e g., an MT localizer comparing moving rings & stationary rings) and
shifted rather than convolved with the HRF:
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Problems with t-tests and correlations

1) How do we evaluate runs with different orders?

Right now, we could average our two runs done in Order1 together, and also
erage our two runs done in Order2 together and then do stats on the two orders
ely. There is no way to collapse between orders. If there is an artifact

1 vs 8 Trial2) on part of one run, we have to exclude the whole run.

t more subjects, how can we evaluate the subjects

ect runs, we could average all the subjects together (after
n brain space) but that still means we have to run all

dynamic predictors for different trial
v mpare them accurately?
predictor is significant, we

ow if it's because
es OR because

Design Matrix | Linear Modeling

GLM Baseline I

Here are all our 6 GLM predictors shown together:

01 121 14
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Multi-study GLM Model

‘We can make two sets of predictors, one for Orderl and one for Order2 (being sure

to define the predictors in the same sequence).

en the GLM, simply associates each run with the appropriate set of predictors

| the data gets analyzed by one gigantic model.

ar in a sense to appending all of the runs and making one big model

other things, like the average signal level in each run).

eralLinear Model: Mlt Study, Mult Subject &

o
2 orders same sequence of predlctors
Add. | Cka | ¥ ztenstom [ Separale subject precctors | Separate suchpredictors _ Cancel | |

LM il name: [{_JC\330513jc_objects\3805TSic objects_2dbv_bup'd\a2383_LTR_bpredctorgn _ Browse.. | Design matis | ptions

UCLA, Ivo Dinov.




I GLM Initial Output |

Initially, the output shows us where GML model (or any part within it)
accounts for a significant amount of variance:
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| GLM Stats

For any rectangular given region in 2D, we can evaluate the GLM stats

lue: Orig. time course =

red: residuals

GLM - Data, Model and Residuals

AANA AR

olumes = 620 volumes/subject.
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l Combination Predictors

We can look at voxels where a combination of predictors (e.g., all face
conditions) accounts for a significant amount of variance:

425 Overlay GLM Contrasts and Contribution Maj

File

I Two set relalive conlibuion 7 Positve betas

I~ Random effects anabsis [ Negaiive betas
I Coniunction analysis { Contrast | 1110 0 &

Prediotor Nr. Preciotor Name:

1 faces it

2 faces fiht

3 faces foves
=l places left
o5 places right
0 & places fovea
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l Single Predictors

We can look at voxels where a single predictor alone (e.g., faces left)
accounts for a significant amount of variance:

— [# Overlay GLM Contrasts and Contribution Mo

Fie.

I~ Two set relatve contibution [V Positive betas

I Random effects snaysis [ Negalive betas
[ST—
Predictor Nr. Predictor Name.

5 places right

EEEEEL
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GLM Stats

odel is significant for this beta = weight of predictor in model
for 0.5792=33.5% of  SE = standard error (variability in
estimates)

t = beta/SE (e.g., 1.793/.132 = 13.58)
p = probability value for that level of t
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GLM Combo Stats

For any 2D rectangular
region, we can evaluate the
GLM stats for a combination
of predictors:

ors (1.714 + 1.103 + 1.978 = 4.795) are
ote: the SE is not computed from the
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| Contrasting Predictors

We can look at voxels where a ¢

3 Example: a line through 3 points...
ontrast between predictors (e.g., all face

conditions vs. all place conditions) accounts for a significant amount of
variance:

Recall: Simple Linear Regression

A
Yi=ax,+p+e i=123 Y (5, V) Lo
Fil SR

I~ Two set relative contribution [ Pesitive betas

Yi=px1+ox+e
I Random effects analysis ¢ Negative betas

o

A Xxy, ¥

Y,=px1 + ax,+¢, it X(
v Y,=pux1 + + (1 ¥y)

I™" Conjunction analysi 3=H1 ox; + &
Fredictor Hr T Predictor Name. jummy variables X
1 faces left
o2 faces fight
3 faces fovea \ ) A
S places left parameter estimates [L'& 0.
2 5 places right
2 B places fovea

fitted values 9, 3 &2 ) ?3

residuals

1x) 0 (g
1 x, +| &,
1 x| a (&

+ &

e ,e,e
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The Geometry of Linear Modeling

Estimation, geometrically...

X, 1 O, 1,1y 1 1 O (¥, ¥y, Yy
€ Y=ox + ux
X,

e=(epepey)”

design space

design space
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Xk - X ,Bk + gk Mathematics of Parameter

s Geometry of Statistical Inference based on GML
Estimation
Consider par~ameter~ es;qmates Giving ﬁtted/predf:ted values model: Yl =ox+tU+e o, v, ¥)
[CIT ﬁL) Y= ( Vi, ... ,f’,\:) = YE null hypothesis: e.g., HOZ o= 0 (zero slope)

Residuals ¢ = (¢1,...,en i.e. does x, explain

I~

e=(epepey)”
Residual sum of squares

anything (after )_Cﬂ)?
Minimized when

B o T design space
which yields 3 = (X"X)"'X"Y
ide 17
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Mathematics of
Statistical Inference

Kk:Xﬁk_l_gk

For any linear compound of the parameter estimates:
QTE ~ N (QTE7 UQQT(XTX)—IE)
ependently): 52 ele

- ~ a2 Xy p=rank(X)
N-p  N-p

tudent’s ¢ statistic, giving an SPM{¢}

S(8,)-5(3)

F= p;(; ~ prm,Nf;u

N-p
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Predictor

I A Word on Betas |

Contrast/LF | value | se

from the sum of the betas, regardless of whether
he right reason: ~ A>0, B>0, A>B

A>0, B<0, A>B
A<0, B<0, A>B

ill be higher than
+ or -), you may need

UCLA, Ivo Dinoy

Flexibility of GLM

th our example data, we could ask many more questions such as:
right field

oveal stimulation

a.nd face/place.
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GLM Contrast Stats

Sum of the 3 face predictors

2=0.841=3.501) is
computed from the

I Event-related Averaging

For an area we can extract it's time course from all trials Event-related averaging is
(2 epochs/condition/run * 4 runs = 8 epochs/condition)  especially valuable for event-
g g g related single trial designs.

If you don’t have the same
baseline before each condition,
think carefully about which type
to use (epoch-based may be big
mistake).

)

MR ess0nss (% BOLD sl

)

Multisubject Analyses

If we had additional subjects, we could compute a
tlisubject GLM
predictor/condition
edictor/condition/subject
ictor/condition/run
ultiple subjects requires averaging brains

irach, ICBM, AD, Infant
nt size shoebox so they are

pulations (e.g.,
erly, kids vs.




Advantages of General Linear Model (GLM) I

* Can perform data analysis within and between subjects
without needing to average the data itself

* Allows you to counterbalance orders

ows you to exclude segments of runs with artifacts

more sophisticated analyses (e.g., 2 factor

o one GLM vs. many t-tests and
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I Statistical Maps & Time Courses

fMRI Design Jargon

Session: all of the scans collected from one subject in one day

run (or scan): one continuous period of fMRI scanning (~5-7 min)
Condition: one set of stimuli or one task

Experiment: a set of conditions you want to compare to each other

Note: Terminology can vary from one fMRI site to another (e.g.,
| some places use “scan/image” to refer to what we’ve called a
volume).

4 stimulus conditions
+ 1 baseline condition (fixation)

ore experiments.

ral (e.g., 1-8) runs

hen signal:noise is low or the effect is weak.
.g., 5-20) runs (e.g., 0.5 — 3 hours)

Activation Statistics |

fMRI > ROI Time
Signal Course
(% change)

Statistical Map
superimposed on
anatomical MRI image

Design Jargon: Paradigm

Paradigm (or protocol): the set of conditions and their order used in a
particular run.
Epoch: one instance of a condition

i x

Ot | o

first “objects right” epoch
mwf second “objects right” epoch

volume #105
105 vol x 2 sec/vol = 210 sec = 3:30)




Subtraction Paradigm Logic |

Cognitive subtraction originated with reaction
time experiments (F. C. Donders, a Dutch
physiologist, 1860s).

Measure the time for a process to occur by
comparing two reaction times, one which has
the same components as the other +

specific effect of the process of interest.
Examples:
T1: Hit a button when you see a light
T2: Hit a button when the light is but not red
T3: Hit the L button when the light is and the R button when the light is red
T2 - T1 = time to make discrimination between light color
T3 — T2 = time to make a decision
Assumption of pure insertion: You can insert a component process into a task

without disrupting the other components.
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Voxel Based Analysis of fMRI |

Statistics Image
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General Linear Model Approach

Voxel timeseries GLM design matrix  parameters error vector
data vector Example:
( = I o Stimulus (©
7 y/4 Subject
ﬁ3 Run
ﬂ4 Trial
p5 | o
ﬂ6 ROI
ﬁ7 Hand
ﬂg Hemi
ﬁg Tissue

B+
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Parameter Estimates

image data GLM
1
1

[~ smoothing 5 = "
kernel > designy
matrix?
]
| ]
i l ted p-values
realignment & GLM corrected p.
motion .;___' model fitting random theory
correction statistic image

|

Statistical
Brain Atlas — Parametric Map
anatomical

reference
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Design matrix formulation...

Y= Bif'@) + .t Bufle) + oo + BfMe) T, s=1,...N
Yi=Buf1() +ot Buft) +oot BLsi() ey
Y =Bif'e) +. 4 Bfe,) +...+ B 1) +e,

Yy=B.f(ty) +..t Bufity)+ot B fHty) +ey

&
a0 LA

ALY
R $ $ &
S\ A Ay

By € SO A

= Y=-XxB +e

B, +| & —

N Nx1 NxL Lx1 Nx1
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2-Way ANOVA

®Factorial designs: study designs where responses
are measured at different combinations of levels of one
or more experimental factors.

OFEx. Treatments {A, B, C} with levels {a,,
a,,...a,}, {b, b,,... by} and {c,, c,,... c.},
respectively — axbxc factorial experiment.

O®Ex. {H=Hemisphere, T=TissueType, M=Method }
for the human brain manual vs. automatic
delineations. H={L,R}; T={WM, GM, CSF};
M={Manual, Auto}.
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2-Way ANOVA

2-Way ANOVA

@3 types of Factorial Effects:interaction,main,simple

® Ex. {H=Hemisphere, M=Method} for the human
brain manual vs. automatic delineations.
H={L,R}; M={Manual, Auto}.

® Simple effects: Let 4; denote the expected
response to treatment ;. Simple effect of H at

level m, of M is defined by: m[HM, |= u,, — 1;;.
This is the amount of change in the expected
response when the level of H is changed from
h, to h,, and the level of M is fixed at m,.
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— Slide 39

® Interaction effects: L[HM]=1/2(u[HM,]-¢[HM,]).
® Note: u[HM]==1/2(u[H,M]-x[H,M]).

® There’s no interaction between H & M €=>
HMHM]=0. | uy[HM]| measures the intensity-degree
of interaction.

® Testing for interactions: H : £[HM]=0 vs. H;:
HMHM]!=0 E.Q. [HMI=YVafty)- oty - o ot Vol 5

® This contrast is estimated by:

Qot=uNHM]=1%Y ,, %Y, -BY ,+%Y ;s
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2-Way ANOVA

2-Way ANOVA

® Ex. {H=Hemi, M=Method} for the human brain manual vs.
automated delineations. H={L,R}; M={Manual, Auto}.

® Simple effects: Let 4; denote the expected
response to treatment m;. Simple effects are:

Level of — | —Factor M Simple Effects of M

Level of H m, m, MHM]

h, Hu Hiz MHMI=u, — 1y,

H, Mo Jac?) MHEMI=0,, — 1,

Simple effects | 4[HM,] = | 4[HM,] =
of H

o — M (Mo — Moo
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® Main effects: 4[H] = 2(u[HM,]+4[HM,]) =
=Vl Vol Vol 1

® Similarly: £[M] = Y2(u[H,M]+u[H M]) =
=Vl Vol Vol Vol 1

® 4[H] is the avg. change in the expected response
(population mean response) when the level of M
goes from Manual > Auto.
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Orthogonal contrasts

Analysis of 2x2 Factorial Design

® Definition: Suppose we have 2 contrasts:
O = cri ey +..+cplly

O =d\py +douy +...+dp iy
The two contrasts 6, and 6, are mutually
orthogonal if the products of their coefficients

sumto zer0: o1 gy + cpdy + ...+ ¢, d,, =0
® Consider several contrasts, say k of them:

0,, 0,.,..., 6,. The set is mutually orthogonal if all
pairs are mutually orthogonal.

® First test if there is interaction between the 2 factors:

B [f there’s statistically significant interaction =
examine separately the simple effects for each factor;
H,: #[HM]=0 vs. H,: #[HM] != 0, where the
interaction effect is measured by the contrast:

UNHMI= Y o) SAY 4y SAY 5+ %Y
UIf there is interaction present (effects of Hemi on

the Methods are significant) =» study the simple
effects of the Methods on each of the 2 Hemi’s

UNHM=Y (=Y uMNHMI=Y 5, Y,
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Analysis of 2x2 Factorial Design

® First test if there is interaction between the 2 factors:

B [f there’s statistically significant interaction =
examine separately the simple effects for each factor;

B If there is no interaction make inference about each
of the 2 main effects, using the following contrasts.

LAH] = V(A HM A HM ) = %Y 5 0Y s - nY

N M= HMIFA HMD) = %Y 44 Y 5 Y %Y
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Analysis of 2x2 Factorial Design

® How do we actually test these contrasts for significance?
B Two-sided T-test E.Q. to

B One-sided F-test é = CIYI + c2)72 +...+ CkYk

2 2 2
P R A\ Mean_ S¥in

moon ”k

é 2
Fc:tc%: A
0

F F(df num=l, df deno=N—-k-1, &)
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ANOVA of 2x2 Factorial Design

® The significance of these contrasts? Use the F-test:

B Effects coding used for categorical variables in
model. Categorical values encountered during
processing are:

B METHOD (2 levels);HEMISPH(2 levels); Dep Var: VALUE

Least Squares Means Least Squares Means

50696.0 51974.0
57101.8 g 57856.6 | :5
53507.6 = 53739.2} )\‘ S
49913.4 > 19621.8|
16319.2 45504.4 |
42725.0 41387.0

12 1 2

HEMISPH METHOD
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Analysis of 2x2 Factorial Design

® How do we actually test these contrasts for significance?

B As we’ve seen: 5 2 2
. _ e 4
B Two-sided B= + 2+ 5k \x Mean_ S
Z1 M
T-test

0-6,
t=——2~N-k,a/2)
%
W where 9 = c 1y + colly +...+ i ty, and

O=c\Y) + ey +... 4 ¢, Y,
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ANOVA of 2x2 Factorial Design

he significance of these contrasts? Use the F-test:

Effects coding used for categorical variables in

model. Categorical values encountered during
processing are:

B METHOD (2 levels) 1, 2

B HEMISPH (2 levels) 1, 2

B Dep Var: VALUE N: 119

Analysis of Variance

Source Sum-of-Sg’s df Mean-Square F-ratio P
METHOD 2.97424E+08 1 2.97424E+08 0.39813 0.52931
HEMISPH 8.65479E+06 1 8.65479E+06 0.01159 0.91447
METH*HEMI 7.11598E+06 1 7.11598E+06 0.00953
Error 8.59114E+10 115 7.47056E+08 Not-Signif.
- Main eff’s
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ANOVA of 2x2 Factorial Design

® How about is there’s significant interaction between
treatments?

B I've completed UNSCIENTIFIC study (knowing I’1ll get
significant interaction) as follows:

B For the same data set:

Categorical values are:
SUBJECT NO (10 levels)
i, 2, 3, 4, 5, 6, 7, 8, 9, 10
TISSUETYPE (3 levels)
1, 2, 5
Dep Var: MANUAL N: 60

UCLA, Ivo Dinov.



ANOVA of 2x2 Factorial Design

® How about if there’s significant interaction between
treatments?

Analysis of Variance

n
B Source Sum-of-Squares df Mean-Square F-ratio
n
B SUBJECTNO 7.41024E+08 9 8.23360E+07 2.15937 0.05517
B TISSUETYP 3.36033E+10 2 1.68016E+10 440.64521 0.0
B SUBJECTNO
B *TISSUETYPE

1.54916E+09 18 8.60644E+07 2.25715 0.02354
[ ]
B Error 1.14389E+09 30 3.81296E+07

ANOVA of 2x2 Factorial Design
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® How about is there’s significant interaction between

treatments? (examine separately the simple effects for each factor)

HNHMI=Y -V, g HM]=Y,,-YV,; LS-Mean SE

N

SUBJECTNO=1 TISSUETYPE=1 68777.00000 4366.32845
SUBJECTNO=1 TISSUETYPE=2 93775.00000 4366.32845
SUBJECTNO=1 TISSUETYPE=3 21443.00000 4366.32845
SUBJECTNO=2 TISSUETYPE=1 61799.50000 4366.32845
SUBJECTNO=2 TISSUETYPE=2 74314.00000 4366.32845
SUBJECTNO=2 TISSUETYPE=3 16831.00000 4366.32845
SUBJECTNO=3 TISSUETYPE=1 55413.00000 4366.32845

SUBJECTNO=10 TISSUETYPE=1 51925.50000 4366.32845
SUBJECTNO=10 TISSUETYPE=2 79457.50000 4366.32845
SUBJECTNO=10 TISSUETYPE=3 27190.50000 4366.32845
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