

GLM Stats												
		ANOVA					Predictor	beta	se	t	p	
Source of Variation	df	SS	MS	F	p	(faces left	1.793	0.132	13.539	0.000000	,
Regression	9	208.111	23.123	34.245	0.000000		faces right	0.967	0.132	7.451	0.000000	-
Model Confounds	6	208.111	34.685	51.368	0.0000000	2	faces fovea	1.848	0.132	13.956	0.00000	5
Residual	610	411.889	0.675				places left	0.672	0.132	5.075	0.00000	
Total	619	620.000	1.002				places right	0.429	0.132	3.237	0.001273	
data points = 620 Mode	I confo	unds: R = 0.5	579 adj.R :	= 0.571	AR(1) = 0.374	U	places fovea	0.631	0.132	4.769	0.000003	2
Entire GML model is significant for this region and accounts for $0.579^2 = 33.5\%$ of its variance $t = beta$ p = prol							= weigh standar nates) eta/SE (probabil	nt of rd ern e.g., ity v	predi or (v 1.79 alue	ictor i variab 3/.13 for the	in moo ility in 2 = 13 at leve	iel 1 (.58) el of
					$E = t^2$	Source	of Variation	df	ss	MS	F	Р
					F = t-		100000	1 12	3.781	123.781	183.317	0.00000
CI:1. 10					UCLA has Dinon							

UCLA, Ivo Dine

2-Way ANOVA

- <u>3 types of Factorial Effects:</u>interaction,main,simple
- Ex. {H=Hemisphere, M=Method} for the human brain manual vs. automatic delineations. H={L,R}; M={Manual, Auto}.
- <u>Simple effects</u>: Let μ_{ij} denote the <u>expected</u> <u>response</u> to treatment $h_i m_j$. Simple effect of **H** at level m_i of **M** is defined by: $m[\mathbf{HM}_1] = \mu_{21} - \mu_{11}$. This is the amount of change in the expected response when the level of **H** is changed from h_2 to h_1 , and the level of **M** is fixed at m_1 .

2-Way ANOVA

- Interaction effects: μ [HM]=1/2(μ [HM₂]- μ [HM₁]).
- Note: $\boldsymbol{\mu}[\mathbf{H}\mathbf{M}] == 1/2(\boldsymbol{\mu}[\mathbf{H}_{2}\mathbf{M}] \boldsymbol{\mu}[\mathbf{H}_{1}\mathbf{M}]).$
- There's no interaction between H & M ←→ µ[HM]=0. |µ[HM]| measures the intensity-degree of interaction.
- Testing for interactions: H_{o} : μ [HM]=0 vs. H_{1} : μ [HM]!=0 E.Q. μ [HM]= $\frac{1}{2}\mu_{22}-\frac{1}{2}\mu_{12}-\frac{1}{2}\mu_{21}+\frac{1}{2}\mu_{11}$;
- This contrast is estimated by: $\Box \theta^{+} = \mu^{+} [HM] = \frac{1}{2} Y_{22}^{-} -\frac{1}{2} Y_{12}^{-} -\frac{1}{2} Y_{21}^{-} +\frac{1}{2} Y_{11}^{-};$ (12.1 m)

2-Way ANOVA								
 Ex. {H=Hemi, M=Method} for the human brain manual vs. automated delineations. H={L,R}; M={Manual, Auto}. Simple effects: Let μ_{ij} denote the <u>expected</u> response to treatment h m. Simple effects are: 								
<u>response</u> to treatment $n_i m_j$, simple effects are.								
	Level of -	-Factor M	Simple Effects of M					
Level of H	<i>m</i> ₁	<i>m</i> ₂	μ[H _i M]					
h ₁	μ_{11}	µ ₁₂	μ [H ₁ M]= μ ₁₂ - μ ₁₁					
H_2	μ_{21}	μ_{22}	μ [H ₂ M]= μ ₂₂ - μ ₂₁					
Simple effects of H	$\boldsymbol{\mu}[\mathbf{H}\mathbf{M}_1] = \\ \boldsymbol{\mu}_{21} - \boldsymbol{\mu}_{11}$	$\boldsymbol{\mu}[\mathbf{HM}_2] = \\ \boldsymbol{\mu}_{22} - \boldsymbol{\mu}_{12}$						
L	P-21 P-11	Slide 41	UCLA has Dinon					

2-Way ANOVA

- <u>Main effects</u>: μ [H] = $\frac{1}{2}(\mu$ [HM₂]+ μ [HM₁]) = = $\frac{1}{2}\mu_{22}-\frac{1}{2}\mu_{12}+\frac{1}{2}\mu_{21}-\frac{1}{2}\mu_{11};$
- Similarly: $\mu[\mathbf{M}] = \frac{1}{2}(\mu[\mathbf{H}_2\mathbf{M}] + \mu[\mathbf{H}_1\mathbf{M}]) = \frac{1}{2}\mu_{22} + \frac{1}{2}\mu_{12} \frac{1}{2}\mu_{21} \frac{1}{2}\mu_{21} \frac{1}{2}\mu_{21}$
- μ [H] is the avg. change in the expected response (population mean response) when the level of M goes from Manual \rightarrow Auto.

Orthogonal contrasts • <u>Definition</u>: Suppose we have 2 contrasts: $\theta_1 = c_1\mu_1 + c_2\mu_2 + ... + c_n\mu_n$ $\theta_2 = d_1\mu_1 + d_2\mu_2 + ... + d_n\mu_n$ The two contrasts θ_1 and θ_2 are **mutually orthogonal** if the products of their coefficients sum to zero: $c_1d_1 + c_2d_2 + ... + c_nd_n = 0$ • Consider several contrasts, say k of them:

 $\theta_1, \theta_2, ..., \theta_k$. The set is **mutually orthogonal** if all pairs are mutually orthogonal.

le 45

A	NOVA of 2x2 Factorial De	sign					
 The significance of these contrasts? Use the F-test: Effects coding used for categorical variables in model. Categorical values encountered during processing are: METHOD (2 levels) 1, 2 HEMISPH (2 levels) 1, 2 Dep Var: VALUE N: 119 Analysis of Variance 							
Source	Sum-of-Sq's df Mean-Square F-ratio	P					
METHOD	2.97424E+08 1 2.97424E+08 0.39813	0.52931					
HEMISPH	8.65479E+06 1 8.65479E+06 0.01159	0.91447					
METH*HEMI	7.11598E+06 1 7.11598E+06 0.00953	0.92242					
Error	8.59114E+10 115 7.47056E+08	Not-Signif. → Main eff's					

ANOVA of 2x2 Factorial Design						
• How about is there's significant interaction between						
<u>treatments?</u> (examine separately the simple effects for each factor)						
$\mu^{[H_1M]=Y_{12}-Y_{11}}; \mu^{[H_2M]=Y_{22}-Y_{21}}; LS-Mean SE$	Ν					
SUBJECTNO=1 TISSUETYPE=1 68777.00000 4366.32845	2					
SUBJECTNO=1 TISSUETYPE=2 93775.00000 4366.32845	2					
SUBJECTNO=1 TISSUETYPE=3 21443.00000 4366.32845	2					
SUBJECTNO=2 TISSUETYPE=1 61799.50000 4366.32845	2					
SUBJECTNO=2 TISSUETYPE=2 74314.00000 4366.32845	2					
SUBJECTNO=2 TISSUETYPE=3 16831.00000 4366.32845	2					
SUBJECTNO=3 TISSUETYPE=1 55413.00000 4366.32845	2					
SUBJECTNO=10 TISSUETYPE=1 51925.50000 4366.32845	2					
SUBJECTNO=10 TISSUETYPE=2 79457.50000 4366.32845	2					
SUBJECTNO=10 TISSUETYPE=3 27190.50000 4366.32845	2					

Slide 52 UCLA, Ivo Dinor