UCLA STAT 13

Introduction to Statistical Methods for the Life and Health Sciences

Instructor: Ivo Dinov,

Asst. Prof. of Statistics and Neurology

Teaching Assistants:

Fred Phoa, Kirsten Johnson, Ming Zheng & Matilda Hsieh

University of California, Los Angeles, Fall 2005

http://www.stat.ucla.edu/~dinov/courses_students.html

Slide 1 Stat 13 UCIA. Iva

Chapter 5 Sampling Distributions

Sampling Distributions

- **Definition:** Sampling Variability is the variability among random samples from the same population.
- A probability distribution that characterizes some aspect of sampling variability is called a sampling distribution.
 - tells us how close the resemblance between the sample and the population is likely to be.
- We typically construct a sampling distribution for a statistic.
 - Every statistics has a sampling distribution.

Slide 3 Stat 13 UCIA. Iva Di

The Meta-Experiment

• All the possible samples that might be drawn from the population (infinity repetitions).

■ In other words if we were to repeatedly take samples of the same size from the same population, over and over.

The Meta-Experiment

- Meta-experiments are important because probability can be interpreted as the long run relative frequency of the occurrence of an
- Meta-experiments also let us visualize sampling distributions.
 - and therefore understand the variability among the many random samples of a meta-experiment.

Slide 5 Stat 13 UCLA Iva Dina

Dichotomous Observations

- Dichotomous two outcomes
 - (yes or no, good or evil, etc...)
- We use the following notation for a dichotomous outcome

P population proportion

 \hat{p} sample proportion

- The big question is how close is \hat{p} to P?
- \bullet To determine this we need to examine the sampling distribution of \hat{p}
- What we want to know is:
 - \blacksquare if we took many samples of size n and observed \hat{p} each time, how would those values of be distributed around p?

Slide 6 Stat 13. UCLA, Ivo Dinov

Dichotomous Observations

Example: Suppose we would like to estimate the true proportion of male students at UCLA. We could take a random sample of 50 students and calculate the sample proportion of males.

- What is the correct notation for:
 - the true proportion of males?
 - the sample proportion of males?
- Suppose we repeat the experiment over and over. Would we get the same proportion of males for the second sample?

Reece's Pieces Experiment

Example: Suppose we would like to estimate the true proportion of orange reece's pieces in a bag. To investigate we will take a random sample of 10 reece's pieces and count the number of orange. Next we will make an approximation to a sampling distribution with our class results.

What you need to calculate:

- the number of orange
- the sample proportion of orange (number of orange/10)

An Application of a Sampling Distribution

Example: Mendel's pea experiment. Suppose a tall offspring is the event of interest and that the true proportion of tall peas (based on a 3:1 phenotypic ratio) is 3/4 or p = 0.75. If we were to randomly select samples with n = 10and p = 0.75 we could create a probability distribution as

TOHOWO.	p	Tall	Dwarf	Fiobability	
	0.0	0	10	0.000	
Lab Mandal Day Empariment has	. 1 0.1	1	9	0.000	
Lab_Mendel_Pea_Experiment.htm	¹¹ 0.2	2	8	0.000	
(work out in discussion/lab)	0.3	3	7	0.003	
(0.4	4	6	0.016	
	0.5	5	5	0.058	
Validate using:	0.6	6	4	0.146	
http://socr.stat.ucla.edu/Applets.dir/Normal_T_Chi2_F_Tables.htm	0.7	7	3	0.250	
E.g., B(n=10, p=0.75, a=6, b=6)=0.146	0.8	8	2	0.282	
2.g., 2(11-10, p-0.75, u-0, 0-0)-0.110	0.9	9	1	0.188	
	1.0	10	0	0.056	
C C					

An Application of a Sampling Distribution

• What is the probability that 5 are tall and 5 are dwarf?

P(5 tall and 5 dwarf) = P(
$$\hat{p} = 5/10$$
)
= P($\hat{p} = 0.5$)

		. (-	,					
= 0.058								
\hat{p}	Number Tall	Number Dwarf	Probability					
0.0	0	10	0.000					
0.1	1	9	0.000					
0.2	2	8	0.000					
0.3	3	7	0.003					
0.4	4	6	0.016					
→ 0.5	5	5	0.058					
0.6	6	4	0.146					
0.7	7	3	0.250					
0.8	8	2	0.282					
0.9	9	1	0.188					
1.0	10	0	0.056					
	Stat 13. UCLA, Ivo							

An Application of a Sampling Distribution

- If we think about this in terms of a meta-experiment and we sample 10 offspring over and over, about 5.8% of the \hat{p} 's will be 0.5.
 - This is the sampling distribution of sample proportion of tall offspring is the distribution of in repeated samples of size 10.
- If we take a random sample of size 10, what is the probability that six or more offspring are tall?

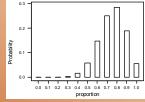
$$P(\hat{p} \ge 0.6) = 0.146 + 0.250 + 0.282 + 0.188 + 0.056$$

= 0.922

An Application of a Sampling Distribution

 This table could also be represented as a histogram with probability on the y-axis and proportion on the x-

easier to draw these by



Relationship to Statistical Inference

 We can also use our sampling distribution of to estimate how much sampling error there is within 5 percentage points of p.
 Because we knew p from the previous example (p=0.75), we might want to estimate:

Relationship to Statistical Inference

- So far we have been using p to determine the sampling distribution of \hat{p} .
- Why sample for p̂ when we already know p?
 We don't need to know p to get a good estimate (this will come later).

Clida 14

Sample Size

• As n gets larger, \hat{p} will become a better estimate of p.

● Just to show... N P(0.7 ≤ P̂ ≤ 0.8)

10 0.53
20 0.56
50 0.673
100 0.798

*These calculations were done using the SOCR binomial distribution

http://socr.stat.ucla.edu/Applets.dir/Normal_T_Chi2_F_Tables.htm

E.g., B(n=20, p=0.75, a=0.7x20=14, b=0.8x20=16)=0.5606

THE POINT: A larger sample improves the chance that \hat{p} is close to p.

■ Caution: this doesn't necessarily mean that the estimate will be closer to p, only that there is a better chance that it will be close to p.

Slide 15 Stat 13, UCLA, Ivo Dinov