UCLA STAT 13 Introduction to Statistical Methods for the Life and Health Sciences

Instructor: Ivo Dinov, Asst. Prof. of Statistics and Neurology

Teaching Assistants:

Fred Phoa, Kirsten Johnson, Ming Zheng & Matilda Hsieh

University of California, Los Angeles, Fall 2005 http://www.stat.ucla.edu/~dinov/courses_students.html

Stat 13. UCLA. Iva

Sampling Distribution for the Mean and Introduction to Confidence Intervals

Quantitative Data

More complex than dichotomous data

• Sample and populations for quantitative data can be described in various ways: mean, median, standard deviation (each has it's own sampling distribution.)

Sampling Distribution of \overline{y}

• Two really important facts:

- The average of the sampling distribution of y
 is μ
 Notation: μ_y = μ
- The standard deviation of the sampling distribution of \overline{y} is $\frac{\sigma}{T}$

D Notation: $\sigma_{y} = \frac{\sigma}{\sqrt{n}}$

- Note: As n $\rightarrow \infty$, $\sigma_{\overline{y}}$ gets smaller
- Why? Look at the formula
- Intuitively does this make sense?

Slide 5 Stat 13

Sampling Distribution of \overline{y}

• Theorem 5:1 p.159

 $\mu_{\overline{y}} = \mu$ (mean of the sampling distribution of $\overline{y} = \mu$ the population mean)

• $\sigma_{\overline{y}} = \frac{\sigma}{\sqrt{n}}$ (standard deviation (sd) of the sampling

distribution of $\overline{y} = \frac{\sigma}{\sqrt{n}}$ the population SD divided by \sqrt{n}) Shape:

- If the distribution of \overline{y} is normal the sampling distribution of \overline{y} is normal.
- □ Central Limit Theorem (CLT) If n is large, then the sampling distribution of \overline{y} is approximately normal, even if the population distribution of Y is not normal.

ide 6 Stat 13. UCLA. Ivo Di

Central Limit Theorem (CLT)

 No matter what the distribution of Y is, if n is large enough the sampling distribution of y will be approximately normally distributed
 ■ HOW LARGE??? Rule of thumb n ≥ 30.

• The closeness of \overline{y} to μ depends on the sample size

• The more skewed the distribution, the larger n must be before the normal distribution is an adequate approximation of the shape of sampling distribution of \bar{y}

• Why?

Application to Data

• Third step: Standardize

$$P(\bar{y} > 135) = P\left(\frac{\bar{y} - \mu_{\bar{y}}}{\sigma_{\bar{y}}} > \frac{135 - 130}{2}\right) = P(Z > 2.5)$$

• Fourth Step: Use the standard normal table to solve 1 - 0.9938 = 0.0062

If we were to choose many random samples of size 100 from the population about 0.6% would have a mean SBP more than 135 mmHg.

Slide 13

Stat 13 UCLA Ivo I

S = 10

Slide 18 Stat 13. UCLA. Ivo Dinov

Statistical Estimation

• The population IQ of LA residents could be described by μ and σ

- 110 is an estimate of μ
- 10 is an estimate of σ
- We know there will be some sampling error affecting our estimates

Not necessarily in the measurement of IQ, but because only 45 residents were sampled

Slide 19

Statistical Estimation

• QUESTION: How good is \overline{y} as an estimate of μ ?

• To answer this we need to assess the reliability of our estimate \overline{y}

• We will focus on the behavior of \bar{y} in repeated sampling

Our good friend, the sampling distribution of

The Standard Error of the Mean

Notation for the standard error of the mean

$$SE_{\overline{y}} = \frac{S}{\sqrt{n}}$$

Sometimes referred to as the standard error (SE)

Round to two significant digits

lide 22 Stat 13. UCLA. Ivo Din

Slide 21

Because the standard error is an estimate of σ_ȳ, it is a measure of reliability of ȳ as an estimate of μ.
 We expect ȳ to be within one SE of μ most of the time

Slide 23

Confidence Interval for μ

- Basic idea of a confidence interval:
 - μ is the true center of the bull's eye, but we don't actually know where it is
 - We do know \overline{y} , which is where the arrow came through
 - We can use \overline{y} and SE from the data to construct an interval that we hope will include μ

Confidence Interval for μ Let's build this interval

- From the standard normal distribution we know: P(-1.96 < Z < 1.96) = 0.95
- How can we rearrange this interval so that μ is in the middle?
- Proof
- Formula
 - $\overline{y} \pm 1.96 \left(\frac{\partial}{\sqrt{n}} \right)$
 - will contain μ for 95% of all samples
- Any problems with using this formula with our data?
 We can use s to estimate σ, but this changes things a little bit

lide 30 Stat 13. UCLA. Ivo Dinov

The T Distribution

• If the data came from a normal population and we replace σ with s, we only need to change the 1.96 with a suitable quantity $t_{0.025}$ from the T distribution

Student aka Gosset

• The T distribution is a continuous distribution which depends on the degrees of freedom (df = n-1, in this case) because of the replacement we made with s

The T Table

- Table 4, p. 677 or back cover of book & Online at SOCR
- http://socr.stat.ucla.edu/htmls/SOCR_Distributions.html
- To use the table keep in mind:
 - table works in the upper half of the distribution (above 0)
 gives you upper tailed areas
 - this means that the "t scores" will always be positive
 what do you do if you need a lower tail area?
 - depends on df

Using The T Table for Cl's

• To use the t table for confidence intervals we will be looking up a "t multiplier" for an interval with a certain level, in this example 95%, of confidence

notation for a "t multiplier" is t(df)_{d/2}

column

- t_{0.025} (aka t_{α/2}) is known as "two tailed 5% critical value"
 □ the interval between -t_{0.025} and t_{0.025}, the area in between totals 95%, with 5% (aka α) left in the tails
- If we look at the table in the back of the book we'll find:
 t_{0.025} in the 0.025 column
 two-tailed confidence level of 95% is at the bottom of the 0.025
- This is half the battle, we still need to deal with df!

Slide 34 Star 13 UCLA

Using The T Table for Cl's

Example: Suppose we wanted to find the "t multiplier" for a 95% confidence interval with 12 df

 $t(12)_{0.025} = 2.179$

• Recall: as $n \rightarrow \infty$ the t distribution approaches the standard normal distribution

also df

If we look at the bottom of the table when df = ∞, the t multiplier for a 95% CI is 1.960
 □ Does anything seem familiar about this?

Application to Data Application to Data Example: Suppose a researcher wants to examine CD4 What do we know from the background counts for HIV(+) patients seen at his clinic. He randomly information? selects a sample of n = 25 HIV(+) patients and measures $\overline{y} = 321.4$ their CD4 levels (cells/uL). Suppose he obtains the s = 73.8 following results: SE = 14.8 n = 25 Descriptive Statistics: CD4 $\overline{y} \pm t(df)_{\alpha/2} \left(\frac{s}{\sqrt{n}}\right) = 321.4 \pm t(24)_{0.05/2}$ Variable N Mean SE Mean StDev Minimum Q1 Median Q3 Maximum CD4 25 0 321.4 14.8 73.8 208.0 261.5 325.0 394.0 449.0 $= 321.4 \pm 2.064(14.8) = 321.4 \pm 30.547$ Calculate a 95% confidence interval for μ = (290.85,351.95)

CI Interpretation

• If we were to perform a meta-experiment, and compute a 95% confidence interval about for each sample, 95% of the confidence intervals would contain μ

• We hope ours is one of the lucky ones that actually

contains μ , but never actually know if it does

• We can interpret a confidence interval as a probability statement if we are careful!

- OK: P(the next sample will give a CI that contains µ) = 0.95 □ random has happened yet
- NOT OK: P(291 < *µ* < 352) = 0.95

not random anymore, either μ is in there or it isn't

