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SOLUTIONS TO HOMEWORK 3 
Solutions 

 
Question 3_1 
 
If we are sampling 5 buses from 20, we may count the number of ways to do this 
using the ‘choose’ notation.  
 
C5,20 = 20! / (5!15!) = 15504 
 
For the more complex problems posed in this question, we should recall the 
product rule of counting. It is discussed in Chapter 2 of the lecture notes, starting 
on slide 18. One approach is to choose the given number of buses with visible 
cracks from the 8 buses there are of that description, and choose the rest of the 
buses from the other 12 buses. 
 
Thus for example, if there are to be exactly 4 buses with visible cracks, these are 
chosen out of 8 such buses: C4,8 = 8!/(4!4!) =  70. The other bus is free of cracks, 
and this is chosen out of 12 such buses – C1,12 = 12. Since the second choice is 
made without regard to the results of the first choice, we may apply the product 
rule: the number of ways to pick 5 buses out of the 20 such that exactly 4 have 
visible cracks is 70 x 12 = 840. 
 
If buses are being chosen at random, this means that each of the 20 buses has 
an equal chance of being chosen as one of the 5 in our sample. Thus all of the 
15504 choices are equally likely. Of these, 840 of the samples will have exactly 4 
buses with visible cracks. Thus the probability of such a sample is 840/15504 
which is 0.05418. 
 
It is also possible for our sample to have all 5 buses with visible cracks. Since 
these will all be from the 8 buses that are like this, the number of ways this can 
happen is C5,8 = 56, and the probability of it happening is thus 56/15504 = 
0.003612. 
 
To find the probability of at least 4 buses in our sample having visible cracks: 
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P(at least 4) = P(exactly 4) + P(exactly 5) = 0.05418 + 0.003612 = 0.5779. 
 
Question 3_2 
 
A problem similar to this is solved on page 42 of Chapter 2 in the lecture notes. 
Since there are three molecules of each type (and 12 altogether) the number.of 
different chain molecules is 12!/(3!3!3!3!) = 369600. Some of these will have all 
three molecules of each type next to one another, and if we count the different 
ways that this can happen, we find 4! = 24 permutations of the 4 types. Thus the 
probability of this happening is 24 / 369600 = 0.0000649. It is thus an extremely 
rare event. 
 
Question 3_3 
 
We are given a table of joint probabilities, and may calculate from it various 
marginal and conditional probabilities. The marginal probabilities are the easiest 
to compute; one merely needs to add the probabilities for the corresponding row 
or column. 
 
 (a)  P(A)   = 0.15 + 0.10 + 0.10 + 0.10 = 0.45 
 
 P(B)   = 0.10 + 0.15 = 0.25 
 
A joint  probability may simply be read off of the table: 
 
 P(A ∩ B)  = 0.10 
 
(b)  P(A|B)  = P(A ∩ B) / P(B) 
   = (0.10) / (0.25) 
   = 0.4 
 
This is the chance of a black car having an automatic transmission. 
 
 P(B|A) = P(A ∩ B) / P(A) 
   = (0.10) / (0.45)  
   = 0.22 
 
This means that if we know that the car has an automatic transmission, there is a 
22% chance that the car is black. 
 
(c) P(A|C) = P(A ∩ C) / P(C) 
   = (0.15) / (0.15 + 0.15) 
   = 0.50 
 
Likewise, half of all white cars have automatic transmissions, while they are 
slightly less common amongst the cars of other colors, as we see below: 



 
 P(A|C') = P(A ∩ C') / P(C')  
   = (0.1 + 0.1 + 0.1) / (0.1 + 0.1 + 0.1 + 0.05 + 0.15 + 0.2) 
   = 0.3 / 0.7  
   = 0.43 
Question 3_4 
 
These two formulas for conditional probability count the same thing, and will thus 
be equivalent, provided that one uses empirical probabilities throughout. 
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