Statistic

A **statistic** is any quantity whose value can be calculated from sample data. Prior to obtaining data, there is uncertainty as to what value of any particular statistic will result. A statistic is a random variable denoted by an uppercase letter; a lowercase letter is used to represent the calculated or observed value of the statistic.

Random Samples

The rv’s X_1, \ldots, X_n are said to form a (simple) **random sample** of size n if

1. The X_i’s are independent rv’s.
2. Every X_i has the same probability distribution.

Simulation Experiments

The following characteristics must be specified:

1. The statistic of interest.
2. The population distribution.
3. The sample size n.
4. The number of replications k.
Using the Sample Mean
Let X_1, \ldots, X_n be a random sample from a distribution with mean value μ and standard deviation σ. Then

1. $E(\bar{X}) = \mu$
2. $V(\bar{X}) = \frac{\sigma^2}{n}$

In addition, with $T_o = X_1 + \cdots + X_n$,

$E(T_o) = n\mu$, $V(T_o) = n\sigma^2$, and $\sigma_{T_o} = \sqrt{n}\sigma$.

Normal Population Distribution
Let X_1, \ldots, X_n be a random sample from a normal distribution with mean value μ and standard deviation σ. Then for any n, \bar{X} is normally distributed, as is T_o.

The Central Limit Theorem
Let X_1, \ldots, X_n be a random sample from a distribution with mean value μ and variance σ^2. Then if n sufficiently large, \bar{X} has approximately a normal distribution with $\mu_{\bar{X}} = \mu$ and $\sigma_{\bar{X}}^2 = \frac{\sigma^2}{n}$, and T_o also has approximately a normal distribution with $\mu_{T_o} = n\mu$, $\sigma_{T_o}^2 = n\sigma^2$. The larger the value of n, the better the approximation.

Approximate Lognormal Distribution
Let X_1, \ldots, X_n be a random sample from a distribution for which only positive values are possible [$P(X_i > 0) = 1$]. Then if n is sufficiently large, the product $Y = X_1X_2\ldots X_n$ has approximately a lognormal distribution.

Rule of Thumb
If $n > 30$, the Central Limit Theorem can be used.
Central Limit Theorem – heuristic formulation

Central Limit Theorem:
When sampling from almost any distribution, \(\bar{X} \) is approximately Normally distributed in large samples.

Show Sampling Distribution Simulation Applet:
file:///C:/Ivo.dir/UCLA_Classes/Winter2002/AdditionalInstructorAids/SamplingDistributionApplet.html

Independence

- For discrete random variables X and Y, if any one of the following properties is true, the others are also true, and X and Y are independent.
 1. \(f_{X,Y}(x,y) = f_X(x) f_Y(y) \) for all x and y
 2. \(f_{Y|X}(y) = f_Y(y) \) for all x and y with \(f_X(x) > 0 \)
 3. \(f_{X|Y}(x) = f_X(x) \) for all x and y with \(f_Y(y) > 0 \)
 4. \(P(X \in A, Y \in B) = P(X \in A)P(Y \in B) \) for any sets A and B in the range of X and Y respectively.

Recall we looked at the sampling distribution of \(\bar{X} \)

- For the sample mean calculated from a random sample, \(E(\bar{X}) = \mu \) and SD(\(\bar{X} \)) = \(\frac{\sigma}{\sqrt{n}} \), provided \(\bar{X} = \left(\sum X_i \right) / n \) and \(X_i \sim \text{N}(\mu, \sigma) \). Then \(\bar{X} \sim \text{N}(\mu, \frac{\sigma}{\sqrt{n}}) \).
 - And variability from sample to sample in the sample-means is given by the variability of the individual observations divided by the square root of the sample-size. In a way, averaging decreases variability.

Central Limit Effect – Histograms of sample means

Sample means from sample size \(n = 1, n = 2, 500 \) samples
Central Limit Effect – Histograms of sample means

Sample means from sample size $n=1, n=2$, 500 samples

Uniform Distribution

Central Limit Effect -- Histograms of sample means

Sample means from sample size $n=4, n=10$

Exponential Distribution

Sample means from sample size $n=1, n=2$, 500 samples

Exponential Distribution

Sample means from sample size $n=4, n=10$

Quadratic U Distribution

Sample means from sample size $n=1, n=2$, 500 samples

Quadratic U Distribution
Central Limit Theorem: When sampling from almost any distribution, \(\overline{X} \) is approximately Normally distributed in large samples.

Show Sampling Distribution Simulation Applet: file:///C:/Ivo.dir/UCLA_Classes/Winter2002/AdditionalInstructorAids/SamplingDistributionApplet.html

Central Limit Theorem – theoretical formulation

Let \(\{X, X, \ldots, X\} \) be a sequence of independent observations from one specific random process. Let and \(E(X) = \mu \) and \(SD(X) = \sigma \) and both be finite (0 < \(\sigma < \infty \), \(\mu < \infty \)). If \(\overline{X} = \frac{1}{n} \sum_{k=1}^{n} X_k \), sample-avg, then \(\overline{X} \) has a distribution which approaches \(N(\mu, \sigma^2/n) \), as \(n \to \infty \).

The Distribution of a Linear Combination

Linear Combination

Given a collection of \(n \) random variables \(X_1, \ldots, X_n \) and \(n \) numerical constants \(a_1, \ldots, a_n \), the rv

\[
Y = a_1X_1 + \ldots + a_nX_n = \sum_{i=1}^{n} a_iX_i
\]

is called a linear combination of the \(X_i \)'s.

Expected Value of a Linear Combination

Let \(X_1, \ldots, X_n \) have mean values \(\mu_1, \mu_2, \ldots, \mu_n \) and variances of \(\sigma_1^2, \sigma_2^2, \ldots, \sigma_n^2 \), respectively. Whether or not the \(X_i \)'s are independent,

\[
E(a_1X_1 + \ldots + a_nX_n) = a_1E(X_1) + \ldots + a_nE(X_n) = a_1\mu_1 + \ldots + a_n\mu_n
\]

Variance of a Linear Combination

If \(X_1, \ldots, X_n \) are independent,

\[
V(a_1X_1 + \ldots + a_nX_n) = a_1^2V(X_1) + \ldots + a_n^2V(X_n)
\]

and

\[
\sigma_{a_1X_1 + \ldots + a_nX_n} = \sqrt{a_1^2\sigma_1^2 + \ldots + a_n^2\sigma_n^2}
\]
Variance of a Linear Combination

For any \(X_1, \ldots, X_n\),
\[
V(a_1X_1 + \ldots + a_nX_n) = \sum_{i=1}^{n} \sum_{j=1}^{n} a_i a_j \text{Cov}(X_i, X_j)
\]

Difference Between Two Random Variables

\[
E(X_1 - X_2) = E(X_1) - E(X_2)
\]
and, if \(X_1\) and \(X_2\) are independent,
\[
V(X_1 - X_2) = V(X_1) + V(X_2)
\]

Difference Between Normal Random Variables

If \(X_1, X_2, \ldots, X_n\) are independent, normally distributed rv’s, then any linear combination of the \(X_i\)’s also has a normal distribution. The difference \(X_1 - X_2\) between two independent, normally distributed variables is itself normally distributed.