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Statistics & Their        
Distributions –

The CLT
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Statistic

A statistic is any quantity whose value can be 
calculated from sample data.  Prior to obtaining 
data, there is uncertainty as to what value of any 
particular statistic will result.  A statistic is a 
random variable denoted by an uppercase letter; 
a lowercase letter is used to represent the 
calculated or observed value of the statistic.
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Random Samples

The rv’s X1,…,Xn are said to form a (simple

random sample of size n if

1. The Xi’s are independent rv’s.

2. Every Xi has the same probability 
distribution.
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Simulation Experiments
The following characteristics must be specified:

1. The statistic of interest.

2. The population distribution.

3. The sample size n.

4. The number of replications k.
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The Distribution          
of the                   

Sample Mean
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Using the Sample Mean

Let X1,…, Xn be a random sample from a 
distribution with mean value     and standard 
deviation       Then

µ
.σ
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In addition, with To = X1 +…+ Xn,
( ) ( ) 2,  , and .
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Normal Population Distribution

Let X1,…, Xn be a random sample from a 
normal distribution with mean value     and 
standard deviation       Then for any n,             
is normally distributed, as is To.

µ
.σ X
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The Central Limit Theorem

Let X1,…, Xn be a random sample from a 
distribution with mean value     and variance       
Then if n sufficiently large,      has 
approximately a normal distribution with

X
µ 2.σ

22 and ,X X n
σµ µ σ= = and To also has

approximately a normal distribution with
2,  .

o oT Tn nµ µ σ σ= =
n, the better the approximation.

The larger the value of
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The Central Limit Theorem

µ

Population 
distribution

small to 
moderate n
X

large nX
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Rule of Thumb

If n > 30, the Central Limit Theorem can 
be used.
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Approximate Lognormal Distribution

Let X1,…, Xn be a random sample from a 
distribution for which only positive values are 
possible [P(Xi > 0) = 1].  Then if n is 
sufficiently large, the product Y = X1X2…Xn has 
approximately a lognormal distribution.
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Central Limit Theorem:
When sampling from almost any distribution,

is approximately Normally distributed in large samples.X 

Central Limit Theorem – heuristic formulation

Show Sampling Distribution Simulation Applet:
file:///C:/Ivo.dir/UCLA_Classes/Winter2002/AdditionalInstructorAids/
SamplingDistributionApplet.html
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Independence

For discrete random variables X and Y, if any one of 
the following properties is true, the others are also 
true, and X and Y are independent.

(1) fXY(x,y) = fX(x) fY(y) for all x and y

(2) fY|x(y) = fY(y) for all x and y with fX(x) > 0

(3) fX|y(y) = fX(x) for all x and y with fY(y) > 0

(4) P(X ∈ A, Y ∈ B) = P(X ∈ A)P(Y ∈ B) for any 
sets A and B in the range of X and Y respectively.
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For the sample mean calculated from a random sample, 
E(    )  = µ and SD(      ) =          , provided 

= (X1+X2+ … + Xn)/n, and Xk~N(µ, σ). Then

~ N(µ,      ). And variability from sample to sample 
in the sample-means is given by the variability of the 
individual observations divided by the square root of 
the sample-size. In a way, averaging decreases variability.

X n
σ

Recall we looked at the sampling distribution of

n
σ

X 

X 
X 
X 
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Central Limit Effect –
Histograms of sample means

0.0 0.2 0.4 0.6 0.8 1.0
0

1

2

0.0 0.2 0.4 0.6 0.8 1.0
0

1

2

n = 1

0.0 0.2 0.4 0.6 0.8 1.0
0

1

2

3
n = 2

Triangular
Distribution

Sample means from sample size
n=1, n=2, 

500 samples

Area = 1

2

1

0

2

1

0

2

1

0

Y=2 X

Stat 35, UCLA, Ivo DinovSlide 18

Central Limit Effect -- Histograms of sample means
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Central Limit Effect –
Histograms of sample means
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Central Limit Effect -- Histograms of sample means
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Uniform Distribution
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Central Limit Effect –
Histograms of sample means
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Central Limit Effect -- Histograms of sample means
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Central Limit Effect –
Histograms of sample means
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Central Limit Effect -- Histograms of sample means
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Central Limit Theorem:
When sampling from almost any distribution,

is approximately Normally distributed in large samples.X 

Central Limit Theorem – heuristic formulation

Show Sampling Distribution Simulation Applet:
file:///C:/Ivo.dir/UCLA_Classes/Winter2002/AdditionalInstructorAids/
SamplingDistributionApplet.html
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Let                              be a sequence of independent
observations from one specific random process. Let    
and                      and                        and both be 
finite (                           ). If                    , sample-avg,

Then      has a distribution which approaches 
N(µ, σ2/n), as            .

Central Limit Theorem –
theoretical formulation
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The Distribution          
of a                      

Linear Combination
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Linear Combination

Given a collection of n random variables 
X1,…, Xn and n numerical constants a1,…,an, 
the rv

is called a linear combination of the Xi’s.

1 1
1

...
n

n n i i
i

Y a X a X a X
=

= + + =∑
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Expected Value of a Linear 
Combination

Let X1,…, Xn have mean values                              
and variances of                        respectively

1 2, ,..., nµ µ µ
2 2 2
1 2, ,..., ,nσ σ σ

Whether or not the Xi’s are independent,

( ) ( ) ( )1 1 1 1... ...n n n nE a X a X a E X a E X+ + = + +

1 1 ... n na aµ µ= + +
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Variance of a Linear Combination

( ) ( ) ( )2 2
1 1 1 1... ...n n n nV a X a X a V X a V X+ + = + +

If X1,…, Xn are independent,

2 2 2 2
1 1 ... n na aσ σ= + +

and

1 1

2 2 2 2
... 1 1 ...

n na X a X n na aσ σ σ+ + = + +
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Variance of a Linear Combination

( ) ( )1 1
1 1

... Cov ,
n n

n n i j i j
i j

V a X a X a a X X
= =

+ + =∑∑

For any X1,…, Xn,
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Difference Between Two Random 
Variables

( ) ( ) ( )1 2 1 2E X X E X E X− = −

and, if X1 and X2 are independent,

( ) ( ) ( )1 2 1 2V X X V X V X− = +
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Difference Between Normal Random 
Variables

If X1, X2,…Xn are independent, normally 
distributed rv’s, then any linear combination 
of the Xi’s also has a normal distribution.  The 
difference X1 – X2 between two independent, 
normally distributed variables is itself 
normally distributed.


