

Statistic

A *statistic* is any quantity whose value can be calculated from sample data. Prior to obtaining data, there is uncertainty as to what value of any particular statistic will result. A statistic is a random variable denoted by an uppercase letter; a lowercase letter is used to represent the calculated or observed value of the statistic.

Random Samples

The rv's $X_1, ..., X_n$ are said to form a (simple *random sample* of size *n* if

1. The X_i 's are independent rv's.

2. Every X_i has the same probability distribution.

Simulation Experiments

The following characteristics must be specified:

- 1. The statistic of interest.
- 2. The population distribution.
- 3. The sample size *n*.
- 4. The number of replications *k*.

The Distribution of the Sample Mean

Using the Sample Mean

Let $X_1, ..., X_n$ be a random sample from a distribution with mean value μ and standard deviation σ . Then

1.
$$E(\overline{X}) = \mu_{\overline{X}} = \mu$$

2. $V(\overline{X}) = \sigma_{\overline{X}}^2 = \sigma^2$

In addition, with $T_o = X_1 + \ldots + X_n$, $E(T_o) = n\mu$, $V(T_o) = n\sigma^2$, and $\sigma_{T_o} = \sqrt{n\sigma}$.

The Central Limit Theorem

Let $X_1, ..., X_n$ be a random sample from a distribution with mean value μ and variance σ^2 . Then if *n* sufficiently large, \overline{X} has approximately a normal distribution with $\mu_{\overline{X}} = \mu$ and $\sigma_{\overline{X}}^2 = \sigma^2/_n$, and T_o also has approximately a normal distribution with $\mu_{T_o} = n\mu$, $\sigma_{T_o} = n\sigma^2$. The larger the value of *n*, the better the approximation.

Approximate Lognormal Distribution

Let $X_1, ..., X_n$ be a random sample from a distribution for which only positive values are possible $[P(X_i > 0) = 1]$. Then if *n* is sufficiently large, the product $Y = X_1X_2...X_n$ has approximately a lognormal distribution.

ide 12 Stat 35. UCLA. Ivo Dino

Central Limit Theorem – theoretical formulation

Let $\{X_1, X_2, ..., X_k, ...\}$ be a sequence of independent observations from one specific random process. Let and $E(X) = \mu$ and $SD(X) = \sigma$ and both be finite $(0 < \sigma < \infty; |\mu| < \infty)$. If $\overline{X}_n = \frac{1}{n} \sum_{k=1}^{n} X_k$ sample-avg,

Then \overline{X} has a <u>distribution</u> which approaches $N(\mu, \sigma^2/n)$, as $n \to \infty$.

Slide 26 Stat 35. UCLA. Iro Dinor

Linear Combination

Given a collection of *n* random variables X_1, \ldots, X_n and *n* numerical constants a_1, \ldots, a_n , the rv

$$Y = a_1 X_1 + \dots + a_n X_n = \sum_{i=1}^n a_i X_i$$

is called a *linear combination* of the X_i 's.

Expected Value of a Linear Combination

Let $X_1,...,X_n$ have mean values $\mu_1,\mu_2,...,\mu_n$ and variances of $\sigma_1^2,\sigma_2^2,...,\sigma_n^2$, respectively

Whether or not the X_i 's are independent,

$$E(a_{1}X_{1} + ... + a_{n}X_{n}) = a_{1}E(X_{1}) + ... + a_{n}E(X_{n})$$

$$= a_1 \mu_1 + \dots + a_n \mu_n$$

Variance of a Linear Combination
If
$$X_1, ..., X_n$$
 are independent,
 $V(a_1X_1 + ... + a_nX_n) = a_1^2V(X_1) + ... + a_n^2V(X_n)$
 $= a_1^2\sigma_1^2 + ... + a_n^2\sigma_n^2$
and
 $\sigma_{a_1X_1 + ... + a_nX_n} = \sqrt{a_1^2\sigma_1^2 + ... + a_n^2\sigma_n^2}$

Difference Between Two Random Variables

$$E(X_1 - X_2) = E(X_1) - E(X_2)$$

and, if X_1 and X_2 are independent,

$$V(X_1 - X_2) = V(X_1) + V(X_2)$$

Slide 32 Stat 35. UCLA. Ivo Dinor

Difference Between Normal Random Variables

If $X_1, X_2,...X_n$ are independent, normally distributed rv's, then any linear combination of the X_i 's also has a normal distribution. The difference $X_1 - X_2$ between two independent, normally distributed variables is itself normally distributed.