Stat 13

http://www.stat.ucla.edu/~dinov/courses_students.html Suggested Chapter 11 Problems/Solutions All Problems are from: Myra L. Samuels and Jeffrey A. Witmer, Statistics for the Life Sciences, 3rd edition, Prentice-Hall (2003)

- **11.2:** We have $n^* = 12$, grand sum = 240 and y-bar = 240/12 = 20
- **11.2a**: SS(between) = $(4)(25-20)^2 + (3)(15-20)^2 + (5)(19-20)^2 = 180$ SS(within) = $(23-25)^2 + (29-25)^2 + \dots + (19-19)^2 = 72$
- **11.2b:** $SS(total) = (23-20)^2 + (29-20)^2 + ... + 19-20)^2 = 252$ SS(between) + SS(within) = 180 + 72 = 252 = SS(total)
- **11.2c**: df(between) = 2; MS(between) = 180/2 = 90; df(within) = 9; MSD(within = 72/9 = 8;

 $s_{pooled} = sqrt[8] = 2.83$

- **11.3a:** SS(between) = SS(total) SS(within) = 338.769 116 = 222.769
- **11.3b:** df(between) = 2;MS(between) = (222.769)/2 = 111.3845df(within) = 10; MS(within) = 116/10 = 11.6s(pooled) = sqrt[11.6] = 3.406

11.4a:

Source	df	SS	MS	F
Between	3	135	45	1.602
Within	12	337	28.083	
Total	15	472		

11.4b: k = 3 + 1 = 4 (c) $n^* = 15 + 1 = 16$

11.5a:

Source	df	SS	MS	F
Between	4	159	39.75	2.0205
Within	49	964	19.67	
Total	53	1123		

11.5b: We have df(between) = 4 = k - 1, so k = 5

11.5c: We have $df(total) = 53 = n^* - 1$, so $n^* = 54$

11.7:	There	is no	single	correct	answer	Typical	answers are:
11./.	THEFT	15 110	Single	contect	ans wer.	rypicai	answers are.

11.7a:

	Sample 1	Sample 2	Sample 3
	1	2	3
	2	2	3
	3	3	3
	4	4	3
	5	4	3
y-bar	3	3	3

11.7b:

	Sample 1	Sample 2	Sample 3
	2	5	8
	2	5	8
	2	5	8
	2	5	8
	2	5	8
y-bar	2	5	8

11.8a:

Source	df	SS	MS
Between	2	136.12	68.06
Within	39	418.25	10.72
Total	41	554.37	

$H_0: \mu_1 = \mu_2 = \mu_3$	Numerator df=df(between)=2
H_A : The μ_i 's are not equal	Denominator=df(within)=39

$$F_s = \frac{MS(between)}{MS(within)} = \frac{68.06}{10.72} = 6.35$$

 $\alpha = .05$ F(2,39) use F(2,40)

Table 10 http://socr.stat.ucla.edu/Applets.dir/OnlineResources.html#Tablesgives 5.18 and 8.25, so.001<p-value<.01</td>

The p-value (.001<p-value<.01) is $<\alpha = .05$; reject null hypothesis. Conclude that there is evidence of at least one different mean among diagnosed group.

11.8b: $S_{pooled} = \sqrt{MS(within)} = \sqrt{10.72} = 3.27$ **11.8b:** $s_{pooled} = sqrt[10.72] = 3.27$.

11.9a:

(a)	Source	df	SS	MS	F
	Between	3	89.036	29.68	3.83
	Within	44	340.24	7.73	
	Total	47	429.3		

From F table <u>http://socr.stat.ucla.edu/Applets.dir/OnlineResources.html#Tables</u> with 3 and 40 dfs, 0.01 < p-value < 0.02, so the conc. of lymphocytes is not the same for the different stress levels.

11.9b: MS(within) = [11(2.77)2 + 11(2.42)2 + 11(3.91)2 + 11(1.45)2] / 44 = 7.73so spooled = sqrt(7.73) = 2.78

11.11a: The null hypothesis is

H0: Mean time until alleviation of symptoms is the same in all three populations

11.11b: In symbols, the null hypothesis is H0: mu1=mu2=mu3

11.11c: k = 3, grand total $n^* = 262$.

Source	df	SS	MS	F
Between	2	53.67	26.835	3.42
Within	259	2034.52	7.855	
Total	261	2088.19		

The test statistic is Fx = 26.835/7.855 = 3.42. With df = 2 and 140, Table 10 <u>http://socr.stat.ucla.edu/Applets.dir/OnlineResources.html#Tables</u>

gives us .02 < P-value < .05. Thus we reject H0.

There is sufficient evidence (.02 < P-value < .05) to conclude that mean time until alleviation of symptoms is not the same in all three population.

11.11d. $s_{pooled} = sqrt[MS(within)] = sqrt[7.855] = 2.80$

H0: Mean MAO is the same for all three diagnoses (mu1 = mu2 = mu3)HA: Mean MAO is not the same for all three diagnoses (the mu's are not all equal). Here k = 3, $n^* = 42$.

Source	df	SS	MS	F
Between	2	136.12	68.06	6.35
Within	39	418.25	10.72	
Total	41	554.37		

With df = 2 and 40 (the closest value to 39), Table 10 <u>http://socr.stat.ucla.edu/Applets.dir/OnlineResources.html#Tables</u> gives .001 < P-value < .01. Thus we reject H0. There is sufficient evidence (.001 < Pvalue < .01) to conclude that the mean MAO is not the same for all three diagnoses.

11.40a:

H0: The three classes produce the same mean change in fat free mass (mu1 - mu2 = mu3)

HA: At least one class produces a different mean (the mu's are not all equal).

11.40b:

Source	df	SS	MS	F
Between	2	2.465	1.2325	0.64
Within	26	50.133	1.9282	
Total	28	52.598		

The test statistic is Fs = 1.2325/1.982 = 0.64. With df = 2 and 26, the test statistic is off the chart Table 10 <u>http://socr.stat.ucla.edu/Applets.dir/OnlineResources.html#Tables</u>; that is, P-value > 0.20). Thus we do not reject H0. There is insufficient evidence (P-value > 0.20) to conclude that the population means differ.

11.48a:

- 1. ozone absent, sulfur dioxide absent;
- 2. ozone absent, sulfur dioxide present;
- 3. ozone present, sulfur dioxide absent;
- 4. ozone present, sulfur dioxide present.

output looks like this

One-way Analysis of Variance

Analysis	of Var	iance					
Source	DF	SS	MS	F	P		
Factor	3	1.2224	0.4075	37.01	0.000		
Error	8	0.0881	0.0110				
Total	11	1.3105					
				Individua	1 95% CIs 1	For Mean	
				Based on	Pooled StD	ev	
Level	Ν	Mean	StDev -	+	+	++	-

1/OASO2A	3	0.6393	0.0909	(*)			
1/OASO2P	3	0.7142	0.0980	(*	-)		
1/OPSO2A	3	0.7586	0.1167	(*-)		
1/OPSO2P	3	1.4345	0.1121			(*)	
					+	+	+
Pooled St	Dev	= 0.1049		0.60	0.90	1.20	1.50