Stat 13

http://www.stat.ucla.edu/~dinov/courses_students.html

Suggested Chapter 11 Problems/Solutions

All Problems are from: Myra L. Samuels and Jeffrey A. Witmer,
Statistics for the Life Sciences, 3rd edition, Prentice-Hall (2003)
11.2: We have $\mathrm{n}^{*}=12$, grand sum $=240$ and y -bar $=240 / 12=20$
11.2a: $\operatorname{SS}($ between $)=(4)(25-20)^{\wedge} 2+(3)(15-20)^{\wedge} 2+(5)(19-20)^{\wedge} 2=180$

SS(within) $=(23-25)^{\wedge} 2+(29-25)^{\wedge} 2+\ldots+(19-19)^{\wedge} 2=72$
11.2b: $\mathrm{SS}($ total $\left.)=(23-20)^{\wedge 2}+(29-20)^{\wedge} 2+\ldots+19-20\right)^{\wedge} 2=252$

SS(between) + SS(within) $=180+72=252=$ SS(total)
11.2c: $\operatorname{df}($ between $)=2 ;$ MS(between) $=180 / 2=90$;
df $($ within $)=9 ; \operatorname{MSD}($ within $=72 / 9=8 ;$
s_\{pooled $\}=$ sqrt[8] $=2.83$
11.3a: SS(between) = SS(total) - SS(within) $=338.769-116=222.769$
11.3b: $\operatorname{df}($ between $)=2 ; \mathrm{MS}($ between $)=(222.769) / 2=111.3845$
$\operatorname{df}($ within $)=10 ; \operatorname{MS}($ within $)=116 / 10=11.6$
$s($ pooled $)=\operatorname{sqrt}[11.6]=3.406$

11.4a:

Source	df	SS	MS	F
Between	3	135	45	1.602
Within	12	337	28.083	
Total	15	472		

11.4b: $\mathrm{k}=3+1=4 \quad$ (c) $\mathrm{n}^{*}=15+1=16$

11.5a:

Source	df	SS	MS	F
Between	4	159	39.75	2.0205
Within	49	964	19.67	
Total	53	1123		

11.5b: We have $\operatorname{df}($ between $)=4=k-1$, so $k=5$
11.5c: We have $\operatorname{df}($ total $)=53=n^{*}-1$, so $n^{*}=54$
11.7: There is no single correct answer. Typical answers are:
11.7a:

	Sample 1	Sample 2	Sample 3
	1	2	3
	2	2	3
	3	3	3
	4	4	3
	5	4	3
y-bar	3	3	3

11.7b:

	Sample 1	Sample 2	Sample 3
	2	5	8
	2	5	8
	2	5	8
	2	5	8
	2	5	8
y-bar	2	5	8

11.8a:

Source	df	SS	MS
Between	2	136.12	68.06
Within	39	418.25	10.72
Total	41	554.37	

$H_{0}: \mu_{1}=\mu_{2}=\mu_{3} \quad$ Numerator df=df(between)=2
H_{A} : The μ_{i} 's are not equal Denominator=df(within) $=39$
$F_{s}=\frac{M S(\text { between })}{M S(\text { within })}=\frac{68.06}{10.72}=6.35$

$$
\alpha=.05 \quad \mathrm{~F}(2,39) \text { use } \mathrm{F}(2,40)
$$

Table 10 http://socr.stat.ucla.edu/Applets.dir/OnlineResources.html\#Tables gives 5.18 and 8.25 , so $.001<$ p-value $<.01$

The p-value (. $001<\mathrm{p}$-value $<.01$) is $<\alpha=.05$; reject null hypothesis. Conclude that there is evidence of at least one different mean among diagnosed group.
11.8b: $S_{\text {pooled }}=\sqrt{M S(\text { within })}=\sqrt{10.72}=3.27$
11.8b: s_\{pooled\} $=$ sqrt[10.72] $=3.27$.

11.9a:

| (a)Source df SS MS
 Between 3 89.036 29.68
 F
 Within 44 340.24 7.73
 Total 47 429.3 | | |
| :--- | :---: | :---: | :---: | :---: |

From F table http://socr.stat.ucla.edu/Applets.dir/OnlineResources.html\#Tables with 3 and $40 \mathrm{dfs}, 0.01<$ p-value <0.02, so the conc. of lymphocytes is not the same for the different stress levels.
11.9b: MS(within) $=[11(2.77) 2+11(2.42) 2+11(3.91) 2+11(1.45) 2] / 44=7.73$ so spooled $=\operatorname{sqrt}(7.73)=2.78$
11.11a: The null hypothesis is

H0: Mean time until alleviation of symptoms is the same in all three populations
11.11b: In symbols, the null hypothesis is $\mathrm{H} 0: \mathrm{mu} 1=\mathrm{mu} 2=\mathrm{mu} 3$
11.11c: $\mathrm{k}=3$, grand total $\mathrm{n}^{*}=262$.

Source	df	SS	MS	F
Between	2	53.67	26.835	3.42
Within	259	2034.52	7.855	
Total	261	2088.19		

The test statistic is $\mathrm{Fx}=26.835 / 7.855=3.42$. With $\mathrm{df}=2$ and 140, Table 10 http://socr.stat.ucla.edu/Applets.dir/OnlineResources.html\#Tables
gives us .02 < P-value < . 05 .
Thus we reject H0.
There is sufficient evidence (. $02<\mathrm{P}$-value $<.05$) to conclude that mean time until alleviation of symptoms is not the same in all three population.
11.11d. s_\{pooled $\}=\operatorname{sqrt}[$ MS(within $)]=\operatorname{sqrt}[7.855]=2.80$

H0: Mean MAO is the same for all three diagnoses (mu1 = mu2 = mu3)
HA: Mean MAO is not the same for all three diagnoses (the mu's are not all equal).

Here k = 3, n* $=42$.

Source	df	SS	MS	F
Between	2	136.12	68.06	6.35
Within	39	418.25	10.72	
Total	41	554.37		

With $\mathrm{df}=2$ and 40 (the closest value to 39), Table 10 http://socr.stat.ucla.edu/Applets.dir/OnlineResources.html\#Tables
gives $.001<$ P-value $<.01$. Thus we reject H0. There is sufficient evidence (. $001<\mathrm{P}$ value $<.01$) to conclude that the mean MAO is not the same for all three diagnoses.

11.40a:

H0: The three classes produce the same mean change in fat free mass (mu1 - mu2 $=$ mu3)
HA: At least one class produces a different mean (the mu's are not all equal).
11.40b:

Source	df	SS	MS	F
Between	2	2.465	1.2325	0.64
Within	26	50.133	1.9282	
Total	28	52.598		

The test statistic is $\mathrm{Fs}=1.2325 / 1.982=0.64$. With $\mathrm{df}=2$ and 26 , the test statistic is off the chart Table 10 http://socr.stat.ucla.edu/Applets.dir/OnlineResources.html\#Tables; that is, P -value >0.20). Thus we do not reject H0. There is insufficient evidence (P -value > 0.20) to conclude that the population means differ.

11.48a:

1. ozone absent, sulfur dioxide absent;
2. ozone absent, sulfur dioxide present;
3. ozone present, sulfur dioxide absent;
4. ozone present, sulfur dioxide present.
output looks like this

One-way Analysis of Variance

Analysis of Variance

Source	DF	SS	MS	F	P
Factor	3	1.2224	0.4075	37.01	0.000
Error	8	0.0881	0.0110		
Total	11	1.3105			
				dividu sed on	95\% CIs For ooled StDev

