Homework 2 - Solution Key

Exercise 3.6

$p=0.55, n=2$

a) If we take a sample of two students, the probability that both chosen students are women $=0.55 * 0.55=$. 3025 .
b) If we take a sample of two students, the probability that at least one of the two students is a woman $=(0.55 * 0.55)+(0.55 * 0.45)+(0.45 * 0.55)=.7975$. This can also be calculated using
$1-\operatorname{Pr}\{$ none are women $\}=1-\left(.45^{*} .45\right)=.7975$

Exercise 3.9

a) Suppose that 1,000 women take early pregnancy tests and 100 of them are really pregnant. The probability that a randomly chosen women from this group will test positive is $=0.1 * 0.98+0.9 * 0.01=0.107$...
b) Suppose that 1,000 women take early pregnancy tests and 50 of them are really pregnant. The probability that a randomly chosen women from this group will test positive is $=\left(0.05^{*} .98\right)+\left(.95^{*} 0.1\right)=$. 0585

Exercise 3.12

a) The probability that someone in this study smokes $=\operatorname{Pr}\{$ smoke $\}=\frac{1213}{6549}=.1852$
b) The conditional probability that someone in this study smokes, given that the person has high income $=\operatorname{Pr}\left\{\frac{\text { smoke }}{\text { high_income }}\right\}=\frac{247}{2115}=.1168$
c) No. Being a smoker is not independent of having a high income. The probability from part a) is not equal to the probability in part b) $\operatorname{Pr}\{$ smoke $\} \neq \operatorname{Pr}\left\{\frac{\text { smoke }}{\text { high_income }}\right\}$

Exercise 3.18

a) If one of the 5,000 broods is chosen at random, the probability that the chosen brood has 3 young in the nest $=\operatorname{Pr}\{Y=3\}=\frac{610}{5000}=.122$
b) If one of the 5,000 broods is chosen at random, the probability that the chosen brood has more than 7 young in the nest $=$

$$
\operatorname{Pr}\{Y \geq 7\}=\operatorname{Pr}\{Y=7\}+\operatorname{Pr}\{Y=8\}+\operatorname{Pr}\{Y=9\}+\operatorname{Pr}\{Y=10\}=\frac{130+26+3+1}{5000}=.032
$$

c) If one of the 5,000 broods is chosen at random, the probability that the chosen brood has between 4 and 6 young in the nest $=$

$$
\operatorname{Pr}\{4 \leq Y \leq 6\}=\operatorname{Pr}\{Y=4\}+\operatorname{Pr}\{Y=5\}+\operatorname{Pr}\{Y=6\}=\frac{1400+1760+750}{5000}=.782
$$

Exercise 3.20

The mean size of the chosen brood, μ_{Y}, of the random variable Y , is $\mathrm{E}(\mathrm{Y})=$ $\sum \mathrm{y}_{\mathrm{i}} \operatorname{Pr}\left(\mathrm{Y}=\mathrm{y}_{\mathrm{i}}\right)=(1 * 90 / 5000)+(2 * 230 / 5000)+\ldots \ldots(10 * 1 / 5000)=\frac{22435}{5000}=4.487$

Exercise 3.24

The mean the number of visits, μ_{Y}, of the random variable Y , is $\mathrm{E}(\mathrm{Y})=$ $\sum \mathrm{y}_{\mathrm{i}} \operatorname{Pr}\left(\mathrm{Y}=\mathrm{y}_{\mathrm{i}}\right)=(0 * 0.15)+(1 * 0.5)+(2 * 0.35)=1.2$

Exercise 3.25

The standard deviation of the number of visits, σ_{Y}, of the random variable $\mathrm{Y},=\sqrt{\sigma_{\mathrm{Y}}^{2}}=\sqrt{.46}=.6782$

$$
\begin{aligned}
& \operatorname{Var}(\mathrm{Y})=\sigma_{\mathrm{Y}}^{2}=\sum\left(\mathrm{y}_{\mathrm{i}}-\mu_{\mathrm{Y}}\right)^{2} \operatorname{Pr}\left(\mathrm{Y}=\mathrm{y}_{\mathrm{i}}\right) \\
& =\left[(0-1.2)^{2} * 0.15\right]+\left[(1-1.2)^{2} * 0.5\right]+\left[(2-1.2)^{2} * 0.35\right]=.46
\end{aligned}
$$

Exercise 3.29

$p=0.60, n=10$
a) The probability that the percentage of streaked-shelled snails in the sample will be 50% is the same as the probability that 5 out of 10 snails are streaked snails.
$\operatorname{Pr}\left\{j_{-}\right.$successes $\}=\operatorname{Pr}\{\mathrm{Y}=j\}={ }_{n} C_{j} p^{j}(1-p)^{n-j}$
$\operatorname{Pr}\{\mathrm{Y}=5\}={ }_{10} C_{5}\left(0.6^{5}\right)\left(0.4^{5}\right)=252 *\left(0.6^{5}\right)\left(0.4^{5}\right)=.2007$
b) The probability that the percentage of streaked-shelled snails in the sample will be 60% is $\operatorname{Pr}\{\mathrm{Y}=6\}={ }_{10} C_{6}\left(0.6^{6}\right)\left(0.4^{4}\right)=210\left(0.6^{6}\right)\left(0.4^{4}\right)=.2508$
c) The probability that the percentage of streaked-shelled snails in the sample will be 70% is $\operatorname{Pr}\{\mathrm{Y}=7\}={ }_{10} C_{7}\left(0.6^{7}\right)\left(0.4^{3}\right)=120\left(0.6^{7}\right)\left(0.4^{3}\right)=.2150$

Exercise 3.34

$p=\frac{1}{8}=.125, n=16$
a) In a randomly chosen group of 16 children from the population, the probability that none has high blood lead $=\operatorname{Pr}\{\mathrm{Y}=0\}={ }_{16} C_{0}\left(\frac{1}{8}\right)^{0}\left(\frac{7}{8}\right)^{16}=1 * 1 *\left(\frac{7}{8}\right)^{16}=.1181$
b) In a randomly chosen group of 16 children from the population, the probability that one has high blood lead $=\operatorname{Pr}\{\mathrm{Y}=1\}={ }_{16} C_{1}\left(\frac{1}{8}\right)^{1}\left(\frac{7}{8}\right)^{15}=16 *\left(\frac{1}{8}\right)^{1}\left(\frac{7}{8}\right)^{15}=.2699$
c) In a randomly chosen group of 16 children from the population, the probability that two has high blood lead $=\operatorname{Pr}\{\mathrm{Y}=2\}={ }_{16} C_{2}\left(\frac{1}{8}\right)^{2}\left(\frac{7}{8}\right)^{14}=120 *\left(\frac{1}{8}\right)^{2}\left(\frac{7}{8}\right)^{14}=.2891$
c) In a randomly chosen group of 16 children from the population, the probability that three or more have high blood lead $=\operatorname{Pr}\{\mathrm{Y} \geq 3\}=1-\operatorname{Pr}\{\mathrm{Y} \leq 2\}=$
1- $[\operatorname{Pr}\{\mathrm{Y}=0\}+\operatorname{Pr}\{\mathrm{Y}=1\}+\operatorname{Pr}\{\mathrm{Y}=2\}]=1-[0.1181+.2699+.2891]=.3229$

