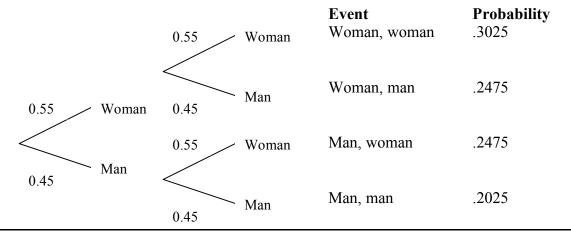
Homework 2 – Solution Key

Exercise 3.6

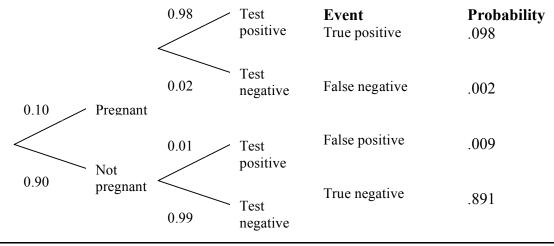
 $p=0.55\,,\,n=2$



a) If we take a sample of two students, the probability that both chosen students are women =0.55*0.55=.3025.

b) If we take a sample of two students, the probability that at least one of the two students is a woman =(0.55*0.55) + (0.55*0.45) + (0.45*0.55) = .7975. This can also be calculated using 1-Pr{none are women} =1-(.45*.45)=.7975

Exercise 3.9



a) Suppose that 1,000 women take early pregnancy tests and 100 of them are really pregnant. The probability that a randomly chosen women from this group will test positive is = 0.1*0.98+0.9*0.01=0.107 ...

b) Suppose that 1,000 women take early pregnancy tests and 50 of them are really pregnant. The probability that a randomly chosen women from this group will test positive is = (0.05*.98) + (.95*0.1) = .0585

Exercise 3.12

a) The probability that someone in this study smokes = $\Pr\{smoke\} = \frac{1213}{6549} = .1852$

b) The conditional probability that someone in this study smokes, given that the person has high income = $\Pr\left\{\frac{smoke}{high_income}\right\} = \frac{247}{2115} = .1168$

c) No. Being a smoker is not independent of having a high income. The probability from part a) is not equal to the probability in part b) $\Pr\{smoke\} \neq \Pr\{\frac{smoke}{high_income}\}$

Exercise 3.18

a) If one of the 5,000 broods is chosen at random, the probability that the chosen brood has 3 young in the nest = $\Pr\{Y = 3\} = \frac{610}{5000} = .122$

b) If one of the 5,000 broods is chosen at random, the probability that the chosen brood has more than 7 young in the nest =

$$\Pr\{Y \ge 7\} = \Pr\{Y = 7\} + \Pr\{Y = 8\} + \Pr\{Y = 9\} + \Pr\{Y = 10\} = \frac{130 + 26 + 3 + 1}{5000} = .032$$

c) If one of the 5,000 broods is chosen at random, the probability that the chosen brood has between 4 and 6 young in the nest = 1400 - 1760 - 750

$$\Pr\{4 \le Y \le 6\} = \Pr\{Y = 4\} + \Pr\{Y = 5\} + \Pr\{Y = 6\} = \frac{1400 + 1760 + 750}{5000} = .782$$

Exercise 3.20

The mean size of the chosen brood, $\mu_{\rm Y}$, of the random variable Y, is E(Y) =

$$\sum y_i \Pr(Y = y_i) = (1*90/5000) + (2*230/5000) + \dots (10*1/5000) = \frac{22435}{5000} = 4.487$$

Exercise 3.24

The mean the number of visits, μ_{Y} , of the random variable Y, is E(Y) = $\sum y_i Pr(Y = y_i) = (0 * 0.15) + (1 * 0.5) + (2 * 0.35) = 1.2$

Exercise 3.25

The standard deviation of the number of visits, σ_{Y} , of the random variable Y, $=\sqrt{\sigma_{Y}^{2}} = \sqrt{.46} = .6782$ $Var(Y) = \sigma_{Y}^{2} = \sum (y_{i} - \mu_{Y})^{2} Pr(Y = y_{i})$ $= [(0 - 1.2)^{2} * 0.15] + [(1 - 1.2)^{2} * 0.5] + [(2 - 1.2)^{2} * 0.35] = .46$

Exercise 3.29

p = 0.60, n = 10

a) The probability that the percentage of streaked-shelled snails in the sample will be 50% is the same as the probability that 5 out of 10 snails are streaked snails.

$$\Pr\{j_successes\} = \Pr\{Y = j\} = {}_{n}C_{j}p^{j}(1-p)^{n-j}$$
$$\Pr\{Y = 5\} = {}_{10}C_{5}(0.6^{5})(0.4^{5}) = 252*(0.6^{5})(0.4^{5}) = .2007$$

b) The probability that the percentage of streaked-shelled snails in the sample will be 60% is $\Pr{Y = 6} = {}_{10}C_6(0.6^6)(0.4^4) = 210(0.6^6)(0.4^4) = .2508$

c) The probability that the percentage of streaked-shelled snails in the sample will be 70% is $\Pr{Y = 7} = {}_{10}C_7(0.6^7)(0.4^3) = 120(0.6^7)(0.4^3) = .2150$

Exercise 3.34

$$p = \frac{1}{8} = .125, n = 16$$

a) In a randomly chosen group of 16 children from the population, the probability that none has high blood lead = $\Pr\{Y = 0\} = {}_{16}C_0 \left(\frac{1}{8}\right)^0 \left(\frac{7}{8}\right)^{16} = 1*1*\left(\frac{7}{8}\right)^{16} = .1181$

b) In a randomly chosen group of 16 children from the population, the probability that one has high blood lead = $\Pr\{Y = 1\}={}_{16}C_1\left(\frac{1}{8}\right)^1\left(\frac{7}{8}\right)^{15} = 16*\left(\frac{1}{8}\right)^1\left(\frac{7}{8}\right)^{15} = .2699$

c) In a randomly chosen group of 16 children from the population, the probability that two has high blood lead = $\Pr\{Y = 2\} = {}_{16}C_2 \left(\frac{1}{8}\right)^2 \left(\frac{7}{8}\right)^{14} = 120 * \left(\frac{1}{8}\right)^2 \left(\frac{7}{8}\right)^{14} = .2891$

c) In a randomly chosen group of 16 children from the population, the probability that three or more have high blood lead = $\Pr\{Y \ge 3\}=1$ - $\Pr\{Y \le 2\}=1$ - $\left[\Pr\{Y = 0\}+\Pr\{Y = 1\}+\Pr\{Y = 2\}\right]=1-[0.1181+.2699+.2891]=.3229$