Homework 3^{1}

Questions 4.5

The yields of many agricultural plots is normally distributed with a mean of 88 lbs , and a standard deviation of 7 lbs .
a) $\operatorname{Pr}\{Y \geq 80\}: Z=\frac{y-\mu}{\sigma}=\frac{80-88}{7}=-\frac{8}{7}: \operatorname{Pr}\{Z \geq-1.14\}=0.8729$
b) $\operatorname{Pr}\{Y \geq 90\}: Z=\frac{y-\mu}{\sigma}=\frac{90-88}{7}=\frac{2}{7}: \operatorname{Pr}\{Z \geq+0.29\}=0.3859$
c) $\operatorname{Pr}\{Y \leq 75\}: Z=\frac{y-\mu}{\sigma}=\frac{75-88}{7}=-\frac{13}{7}: \operatorname{Pr}\{Z \leq-1.86\}=0.0314$
d) $\operatorname{Pr}\{75 \geq Y \geq 90\}: .6141-.0314=.5827$
e) $\operatorname{Pr}\{90 \geq Y \geq 100\}: .9564-.6141=.3423$
f) $\operatorname{Pr}\{75 \geq Y \geq 80\}: .1271-.0314=.0957$

Figure 1: Optional Images for Question 4.5

(a)

(d)

(b)

(c)

(e)

(f)

[^0]
Question 4.12

Red blood cells are counted using an electronic devise, which has a standard deviation of about $\% 8$ of the true value. Therefore, if the true value is $5,000,000 \mathrm{cell} / \mathrm{mm}^{3}$, then the SD is 40,000 .
a) $\operatorname{Pr}\{4,900,000 \geq Y \geq 5,100,00\}: \operatorname{Pr}\left\{\frac{4,900,000-5,000,000}{40,000} \geq Z \geq \frac{5,100,000-5,000,000}{40,000}\right\}$: $\operatorname{Pr}\{-2.5 \geq Z \geq 2.5\}=0.9938-0.0062=.9876$
b) We are asked to find the probability of being within 2% of the mean. Part (a) was an example of this, because $100,000 / 5,000,000=2 \%$. Therefore, the answer to $\operatorname{part}(\mathrm{b})$ is the same as part(a) .9876.
c) In part(b) we establish the probability of being within 2% is .9876 . Part(c) is asking about the complimentary event: being outside this range. Therefore the probability is $1-.9876=.0124$.

Figure 2: Optional Image for Question 4.12, Parts (a) and (b)

Question 4.25

In a certain population of healthy people the mean total protein concentration in the blood serum is 6.85 $\mathrm{g} / \mathrm{dLi}$, the standard deviation is $.42 \mathrm{~g} / \mathrm{dLi}$, and the distribution is approximately normal. The instrument used reports the value to the nearest $.1 \mathrm{~g} / \mathrm{dLi}$.
a) Because our instrument measures to the nearest tenth, we will consider the range from 6.54 to 6.55 when calculating $\operatorname{Pr}\{Y=6.5\}$.
$\operatorname{Pr}\{Y \geq 6.45\}=\operatorname{Pr}\left\{Z \geq \frac{6.45-6.85}{42}\right\}=\operatorname{Pr}\{Z \geq-.95\}=.1711$
$\operatorname{Pr}\{Y \leq 6.55\}=\operatorname{Pr}\left\{Z \leq \frac{6.55-6.85}{42}\right\}=\operatorname{Pr}\{Z \leq-.71\}=.2389$
Therefore, $\operatorname{Pr}\{Y=6.5\}=.2389-.1711=.0678$
b) $\operatorname{Pr}\{6.5 \geq Y \geq 8.0\}: \operatorname{Pr}\{Y \leq 8.05\}=\operatorname{Pr}\left\{Z \leq \frac{8.05-6.85}{42}\right\}=\operatorname{Pr}\{Z \leq 2.86\}=.9979$
$\operatorname{Pr}\{6.5 \geq Y \geq 8.0\}=.9979-.1711=.8265$

Question 4.34

In the nerve-cell activity of a certain individual fly, the time intervals between "spike" discharges follow approximately a normal distribution with mean 15.6 ms and standard deviation .4 ms .
a) $\operatorname{Pr}\{Y>15\}=1-\operatorname{Pr}\{Y<15\}=1-\operatorname{Pr}\left\{Z<\frac{15-15.6}{.4}\right\}=1-\operatorname{Pr}\{Z<-1.5\}=1-.0668=.9332$
b) $\operatorname{Pr}\{Y>16.5\}=1-\operatorname{Pr}\{Y<16.5\}=1-\operatorname{Pr}\left\{Z<\frac{16.5-15.6}{4}\right\}=1-\operatorname{Pr}\{Z<2.25\}=1-.9878=.0122$
c) $\operatorname{Pr}\{15<Y<16.5\}=\operatorname{Pr}\{Y<16.5\}-\operatorname{Pr}\{Y<15\}=.9878-.0668=.9210$
d) $\operatorname{Pr}\{15<Y<15.5\}=\operatorname{Pr}\{Y<15.5\}-\operatorname{Pr}\{Y<15\}=.4013-.0668=.3345$

Figure 3: Optional Images for Question 4.34

(a)

(c)

(b)

(d)

Question 4.37

IQ is normally distributed with mean 100 , and standard deviation 16.
a) Without continuity correction -
$\operatorname{Pr}\{Y>140\}=1-\operatorname{Pr}\{Y<140\}=1-\operatorname{Pr}\left\{Z<\frac{140-100}{16}\right\}=1-\operatorname{Pr}\{Z<2.5\}=1-.9938=.0062$
a) With (optional) continuity correction -
$\operatorname{Pr}\{Y \geq 140\}=\operatorname{Pr}\{Y>139.5\}=1-\operatorname{Pr}\{Y<139.5\}=1-\operatorname{Pr}\left\{Z<\frac{139.5-100}{16}\right\}=1-\operatorname{Pr}\{Z<2.47\}=$ $1-.9932=.0068$
b) Without continuity correction -
$\operatorname{Pr}\{Y<80\}=\operatorname{Pr}\left\{Z<\frac{80-100}{16}\right\}=\operatorname{Pr}\{Z<-1.25\}=.1056$
b) With (optional) continuity correction -
$\operatorname{Pr}\{Y \leq 80\}=\operatorname{Pr}\{Y<80.5\}=\operatorname{Pr}\left\{Z<\frac{80.5-100}{16}\right\}=\operatorname{Pr}\{Z<-1.22\}=.1112$
c) $\operatorname{Pr}\{80<Y<120\}=\operatorname{Pr}\{Y<120\}-\operatorname{Pr}\{Y<80\}=.8944-.1056=.7888$
d) $\operatorname{Pr}\{80<Y<140\}=\operatorname{Pr}\{Y<140\}-\operatorname{Pr}\{Y<80\}=.9938-.1056=.8882$
e) $\operatorname{Pr}\{120<Y<140\}=\operatorname{Pr}\{Y<140\}-\operatorname{Pr}\{Y<120\}=.9938-.8944=.0994$

* (In parts (a) and (b) we are including optional calculations with the continuity correction, because the text suggests using the correction for inclusive (ie. "or more") type probabilities.)

Question 4.45

Histogram I is roughly normal, and corresponds to qq (b).

Histogram II is right skewed, and corresponds to qq (d).

Histogram III is short tailed, and corresponds to qq (a).

[^0]: ${ }^{1}$ While not required, some example images have been included for instructive purposes.

