Homework 6

Question 7.9

$$
S E_{\left(\bar{y}_{1}-\bar{y}_{2}\right)}=\sqrt{\frac{s_{1}^{2}}{n_{1}}+\frac{s_{2}^{2}}{n_{2}}}=\sqrt{S E_{1}^{2}+S E_{2}^{2}}=\sqrt{5.5^{2}+8.6^{2}}=10.2
$$

Question 7.10

Let 1 denote males and 2 denote females. Then:

$$
\begin{aligned}
& \bar{y}_{1}=45.8 ; S E_{1}=2.8 / \sqrt{489}=.127 \\
& \bar{y}_{2}=40.6 ; S E_{2}=2.9 / \sqrt{469}=.134
\end{aligned}
$$

The standard error is thus: $S E_{\left(\bar{y}_{1}-\bar{y}_{2}\right)}=\sqrt{.127^{2}+.134^{2}}=.185$. The critical value $t_{.025}$ is determined from Student's t distribution with $d f=950$. Rounding down $d f=140^{1}$ we find that $t(140) .025=1.977$. Therefore, the confidence interval is:

$$
\begin{array}{rll}
\left(\bar{y}_{1}-\bar{y}_{2}\right) & \pm & t_{.025} S E_{\left(\bar{y}_{1}-\bar{y}_{2}\right)} \\
(45.8-40.6) & \pm & (1.977)(.185) \\
(4.834 & , & 5.566)
\end{array}
$$

Question 7.11

Let 1 denote dark and 2 denote photoperiod. Then:

$$
S E_{\left(\bar{y}_{1}-\bar{y}_{2}\right)}=\sqrt{\frac{13^{2}}{4}+\frac{13^{2}}{4}}=9.192
$$

a) The critical value $t_{.025}$ is determined from Student's t distribution with $d f=6$. Using $d f=6$ we find that $t(6) .025=2.447$. Therefore, the confidence interval is:

$$
\begin{array}{rll}
\left(\bar{y}_{1}-\bar{y}_{2}\right) & \pm & t_{.025} S E_{\left(\bar{y}_{1}-\bar{y}_{2}\right)} \\
(92-115) & \pm & (2.447)(9.192) \\
(-45.5 & , & -0.50)
\end{array}
$$

b) The critical value $t_{.050}$ is determined from Student's t distribution with $d f=6$. Using $d f=6$ we find that $t(6) .050=1.943$. Therefore, the confidence interval is:

$$
\begin{array}{rll}
\left(\bar{y}_{1}-\bar{y}_{2}\right) & \pm & t_{.050} S E_{\left(\bar{y}_{1}-\bar{y}_{2}\right)} \\
(92-115) & \pm & (1.943)(9.192) \\
(-40.9 & , & -5.1)
\end{array}
$$

[^0]
Question 7.13

No. The confidence interval found in Exercise 7.11 is valid even if the distribution are not normal, because the sample sizes are large.

Question 7.14

Let 1 denote antibotic and 2 denote control. Then:

$$
S E_{\left(\bar{y}_{1}-\bar{y}_{2}\right)}=\sqrt{\frac{10^{2}}{10}+\frac{8^{2}}{10}}=4.050
$$

a) The critical value $t .050$ is determined from Student's t distribution with $d f=17.2$. Using $d f=17$ we find that $t(17)_{.050}=1.740$. Therefore, the confidence interval is:

$$
\begin{array}{rll}
\left(\bar{y}_{1}-\bar{y}_{2}\right) & \pm & t .050 \\
(25-23) & \pm & (1.740)(4.050) \\
(-5.0 & , & 9.0)
\end{array}
$$

b) We are 90% confident that the population mean prothrombin time for rats treated with an antibiotic $\left(\mu_{2}\right)$ is smaller than that for control rats $\left(\mu_{2}\right)$ by an amount that might be as much as 5 seconds or is larger than that for control rats $\left(\mu_{2}\right)$ by an amount that might be as large as 9 seconds.

Question 7.15

Let 1 denote control and 2 denote Pargyline. Then:

$$
S E_{\left(\bar{y}_{1}-\bar{y}_{2}\right)}=\sqrt{\frac{5.4^{2}}{900}+\frac{11.7^{2}}{905}}=.4286
$$

a) The critical value $t .025$ is determined from Student's t distribution with $d f=1000$. Using $d f=1000{ }^{2}$ we find that $t(1000) .025=1.962$. Therefore, the confidence interval is:

$$
\begin{array}{rll}
\left(\bar{y}_{1}-\bar{y}_{2}\right) & \pm & t_{.025} S E_{\left(\bar{y}_{1}-\bar{y}_{2}\right)} \\
(14.9-46.5) & \pm & (1.962)(.4286) \\
(-32.441 & , & -30.759)
\end{array}
$$

b) The critical value $t .005$ is determined from Student's t distribution with $d f=1000$. Using $d f=1000{ }^{3}$ we find that $t(1000){ }_{.005}=2.581$. Therefore, the confidence interval is:

$$
\begin{array}{rll}
\left(\bar{y}_{1}-\bar{y}_{2}\right) & \pm & t_{.005} S E_{\left(\bar{y}_{1}-\bar{y}_{2}\right)} \\
(14.9-46.5) & \pm & (2.581)(.4286) \\
(-32.706 & , & -30.494)
\end{array}
$$

[^1]
Question 7.16

Let 1 denote successful and 2 denote unsuccessful. Then:

$$
S E_{\left(\bar{y}_{1}-\bar{y}_{2}\right)}=\sqrt{\frac{.283^{2}}{22}+\frac{.262^{2}}{17}}=.08763
$$

a) The critical value $t .025$ is determined from Student's t distribution with $d f=30$. Using $d f=30^{4}$ we find that $t(30)_{.025}=2.042$. Therefore, the confidence interval is:

$$
\begin{array}{rll}
\left(\bar{y}_{1}-\bar{y}_{2}\right) & \pm & t_{.025} S E_{\left(\bar{y}_{1}-\bar{y}_{2}\right)} \\
(8.498-8.440) & \pm & (2.042)(.08763) \\
(-.121 & , & .237)
\end{array}
$$

b) We are 90% confident that the population mean head width of all femails who mate successfully $\left(\mu_{1}\right)$ sis smaller thatn that for rejected femails $\left(\mu_{2}\right)$ by an amount that might be as much as .12 mm or is larger than that for rejected females $\left(\mu_{2}\right)$ by an amount that might be as large as .24 mm .

Question 7.18

We are 97.5% confident that the population mean drop in diastolic blood pressure of adults placed on a diet rich in fruits and vegetables for eight weeks $\left(\mu_{1}\right)$ is smaller than that for adults placed on a stadard diet $\left(\mu_{2}\right)$ by an amount that might be as much as .3 mm Hg or is larger that that for adults placed on a standard diet $\left(\mu_{2}\right)$ by an amount that might be as much as 2.4 mm Hg .

Question 7.21

Let 1 denote red and 2 denote green. Then:

$$
\bar{y}_{1}-\bar{y}_{2}=\sqrt{.36^{2}+.36^{2}}=.509
$$

a) The critical value $t .025$ is determined from Student's t distribution with $d f=30$. Using $d f=30^{5}$ we find that $t(30) .025=2.042$. Therefore, the confidence interval is:

$$
\begin{array}{rll}
\left(\bar{y}_{1}-\bar{y}_{2}\right) & \pm & t_{.025} S E_{\left(\bar{y}_{1}-\bar{y}_{2}\right)} \\
(8.36-8.94) & \pm & (2.042)(.509) \\
(-.1619 & , & .459)
\end{array}
$$

Question 7.28

Let 1 denote diet 1 and 2 denote diet 2 . We have $\bar{y}_{1}-\bar{y}_{2}=3.49-3.05=.44$
a)

$$
S E_{\left(\bar{y}_{1}-\bar{y}_{2}\right)}=\sqrt{\frac{.4^{2}}{5}+\frac{.4^{2}}{5}}=.2530
$$

[^2]Therefore $t=.44 / .2530=1.74$ and Table 4 gives $t(8) .10=1.397$ and $t(8) .05=1.860$ so $.10<P<.20$.
b)

$$
S E_{\left(\bar{y}_{1}-\bar{y}_{2}\right)}=\sqrt{\frac{.4^{2}}{10}+\frac{.4^{2}}{10}}=.1789
$$

Therefore $t=.44 / .1789=2.46$ and Table 4 gives $t(18) .02=2.214$ and $t(18) .01=2.552$ so $.02<P<.04$.
c)

$$
S E_{\left(\bar{y}_{1}-\bar{y}_{2}\right)}=\sqrt{\frac{.4^{2}}{15}+\frac{.4^{2}}{15}}=.1461
$$

Therefore $t=.44 / .1461=3.01$ and Table 4 gives $t(28) .005=2.763$ and $t(28) .{ }_{.0005}=3.674$ so $.001<P<.01$.

Question 7.30

a) The null and alternative hypotheses are H_{o} : Mean tibia length does not depend on gender $\left(\mu_{1}=\mu_{2}\right)$ and H_{a} : Mean tibia length does depend on gender $\left(\mu_{1} \neq \mu_{2}\right)$. The standard error of the difference is:

$$
S E_{\left(\bar{y}_{1}-\bar{y}_{2}\right)}=\sqrt{\frac{2.87^{2}}{60}+\frac{3.52^{2}}{50}}=.62056
$$

The test statistics is then:

$$
t=\frac{\bar{y}_{1}-\bar{y}_{2}}{S E_{\left(\bar{y}_{1}-\bar{y}_{2}\right)}}=\frac{78.42-80.44}{.62056}=-3.26
$$

Therefore p.value $\leq \alpha$ and we reject H_{o}.
b) There is sufficient evidence at the $\alpha=.05$ level to conclude that mean tibia length is larger in females than in males.
c) Judging from the means and the SDs, the two distributions overlap substantially, so the tibia length would be a poor predictor of sex.
d)

$$
S E_{\left(\bar{y}_{1}-\bar{y}_{2}\right)}=\sqrt{\frac{.2 .87^{2}}{6}+\frac{3.52^{2}}{5}}=1.962
$$

The test statistics is then:

$$
t=\frac{\bar{y}_{1}-\bar{y}_{2}}{S E_{\left(\bar{y}_{1}-\bar{y}_{2}\right)}}=\frac{78.42-80.44}{1.962}=-1.03
$$

Therefore p.value $\geq \alpha$ and we cannot reject H_{o}.

Question 7.32

a) The null and alternative hypothesis are $H_{o}: \mu_{1}=\mu_{2}$ and $H_{a}: \mu_{1} \neq \mu_{2}$ where 1 denotes flooded and 2 denotes control. These hypotheses may be stated as H_{o} : Flooding has no effect on ATP and H_{a} : Flooding has some effect on ATP. The standard error of the difference is:

$$
S E_{\left(\bar{y}_{1}-\bar{y}_{2}\right)}=\sqrt{\frac{.184^{2}}{4}+\frac{.241^{2}}{4}}=.1516
$$

The test statistics is then:

$$
t=\frac{\bar{y}_{1}-\bar{y}_{2}}{S E_{\left(\bar{y}_{1}-\bar{y}_{2}\right)}}=\frac{1.190-1.785}{.1516}=-3.92
$$

Therefore p.value $\leq \alpha$ and we reject H_{o}.
b) There is sufficient evidence at the $\alpha=.05$ level to conclude flooding tends to lower ATP in birch seedlings.

Question 7.34

The null and alternative hypotheses are H_{o} : Mean fall in cholesterol is the same on both diets $\left(\mu_{1}=\mu_{2}\right)$ and H_{a} : Mean fall in cholesterol is not the same on both diets $\left(\mu_{1} \neq \mu_{2}\right)$.

$$
S E_{\left(\bar{y}_{1}-\bar{y}_{2}\right)}=\sqrt{\frac{31.1^{2}}{10}+\frac{29.4^{2}}{10}}=13.53
$$

Therefore $t=(53.6-55.5) / 13.53=-.14$ and p. value $\geq \alpha$ and we fail to reject H_{o}.

Question 7.35

a) True. We would reject H_{o} because the P-value is less than $\alpha .^{6}$
b) True. We would reject H_{o} because the P -value is less than α.
c) True. This follows directly from the definition of a P-value.

Question 7.36

a) True. We would reject H_{o} because the P -value is less than α.
b) False. We do not reject H_{o} because the P -value is greater than $\alpha .^{7}$
c) False. the P -value is the probability, under H_{o} of getting a result as extreme as, or more extreme than, the result that was actually observed.

Question 7.38

a) H_{o} : mean height is the same for control and fertilized plants $\left(\mu_{1}=\mu_{2}\right) H_{a}$: mean height is the different for control and fertilized plants $\left(\mu_{1} \neq \mu_{2}\right)$

$$
S E_{\left(\bar{y}_{1}-\bar{y}_{2}\right)}=\sqrt{\frac{.65^{2}}{28}+\frac{.72^{2}}{28}}=.183
$$

Therefore $t=(2.58-2.04) / .183=2.95$ and $p . v a l u e \leq \alpha$ and we reject H_{o}.
b) There is evidence at the $\alpha=.05$ level to conclude that the mean height of fertilized radish sprouts is less than that of controls.

Question 7.42

If we reject H_{o} (ie. if the drug is approved) then we eliminate the possibility of a Type II error.

[^3]
Question 7.44

Yes. Because zero is outside of the confidence interval, we know that the P -value is less than .05 so we reject the hypothesis that $\mu_{1}-\mu_{2}=0$.

[^0]: ${ }^{1}$ Students are encouraged to round down in order to be conservative. However, students may also receive full credit if they round up to $d f=1000$. These students will have a confidence interval of $(4.84,5.56)$

[^1]: ${ }^{2}$ Students are encouraged to round down in order to be conservative. However, students may also receive full credit if they round up to $d f=\infty$. These students will have a confidence interval of $(-32.4,-30.8)$
 ${ }^{3}$ Students are encouraged to round down in order to be conservative. However, students may also receive full credit if they round up to $d f=\infty$. These students will have a confidence interval of $(-32.7,-30.5)$

[^2]: ${ }^{4}$ Students are encouraged to round down in order to be conservative. However, students may also receive full credit if they round up to $d f=40$. These students will have a confidence interval of $(-.12, .24)$
 ${ }^{5}$ Students are encouraged to round down in order to be conservative. However, students may also receive full credit if they round up to $d f=40$. These students will have a confidence interval of $(-1.61,0.45)$

[^3]: ${ }^{6}$ If students interpret the p-value as being reported for just one tail, the answer would be False.
 ${ }^{7}$ If students interpret the p-value as being reported for just one tail, the answer would be True.

