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Random Sampling

Key Issue

Let's Make a Deal Paradox.

® After the contestant chose an initial door, the host of
the show then revealed an empty door among the two
unchosen doors, and asks the contestant if he or she
would like to switch to the other unchosen door. The
question is should the contestant switch. Do the odds
of winning increase by switching to the remaining

Key Issue

Let's Make a Deal Paradox — B
aka, Monty Hall 3-door problem
® This paradox is related to a popular television show
in the 1970's. In the show, a contestant was given a
choice of three doors/cards of which one contained a

prize (diamond). The other two doors contained gag
gifts like a chicken or a donkey (clubs).

¢
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Let's Make a Deal Paradox.

® The intuition of most people tells them that each of
the doors, the chosen door and the unchosen door, are
equally likely to contain the prize so that there is a
50-50 chance of winning with either selection? This,

however, is not the case.

® The probability of winning by using the switching
technique is 2/3, while the odds of winning by not

switching is 1/3. The easiest way to explain this is as
follows:



Let's Make a Deal Paradox.

® The probability of picking the wrong door in the initial
stage of the game is 2/3.

® |f the contestant picks the wrong door initially, the host
must reveal the remaining empty door in the second
stage of the game. Thus, If the contestant switches after
picking the wrong door initially, the contestant will win
the prize.

® The probability of winning by switching then reduces
to the probability of picking the wrong door in the
initial stage which is clearly 2/3.

® Demos:
® file:///C:/Ivo.di/UCLA_Classes/Applets.dir/SOCR/Prototypel.1/classes/TestExperiment.html
® C:\lvo.dinUCLA_Classes\Applets.dir\StatGames.exe

Long run behavior of coin tossing
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Figure 4.1.1 Proportion of heads versus number of tosses
for John Kerrich's coin tossing experiment.

From Chance Encounters by C.J. Wild and G.AF Seber, © Jon Wikey & Sons, 2000,

Definitions ...

® The law of averages about the behavior of coin tosses
— the relative proportion (relative frequency) of heads-to-tails
in a coin toss experiment becomes more and more stable as
the number of tosses increases. The law of averages applies to
relative frequencies not absolute counts of #H and #T.

® Two widely held misconceptions about what the law
of averages about coin tosses:

W Differences between the actual numbers of heads & tails
becomes more and more variable with increase of the
number of tosses — a seq. of 10 heads doesn’t increase the
chance of a tail on the next trial.

M Coin toss results are fair, but behavior is still unpredictable.

Data from a “random” draw
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Figure 4.3.1 Average lottery numbers by month.
Replotted from data in Fienberg [1971].

From Chance Encounters by C.J. Wild and G A F. Seber, © John Wiley & Sons, 2000,

Coin Toss Models

® |s the coin tossing model adequate for describing the
sex order of children in families?

B This is a rough model which is not exact. In most countries
rates of B/G is different; form 48% ... 52%, usually. Birth
rates of boys in some places are higher than girls, however,
female population seems to be about 51%.

B Independence, if a second child is born the chance it has
the same gender (as the first child) is slightly bigger.

Types of Probability

® Probability models have two essential components (sample space,
the space of all possible outcomes from an experiment; and a list
of probabilities for each event in the sample space). Where do the
outcomes and the probabilities come from?

® Probabilities from models — say mathematical/physical description
of the sample space and the chance of each event. construct a fair die tossing
game.

® Probabilities from data — data observations determine our
probability distribution. Say we toss a coin 100 times and the
observed Head/Tail counts are used as probabilities.

® Subjective Probabilities — combining data and psychological

factors to design a reasonable probability table (e.g., gambling,
stock market).




Sample Spaces and Probabilities

® When the relative frequency of an event in the past is used to
estimate the probability that it will occur in the future, what
assumption is being made?
B The underlying process is stable over time;
| Our relative frequencies must be taken from large numbers for us to
have confidence in them as probabilities.

® All statisticians agree about how probabilities are to be
combined and manipulated (in math terms), however, not all
agree what probabilities should be associated with for a
particular real-world event.

® When a weather forecaster says that there is a 70% chance of
rain tomorrow, what do you think this statement means? (Based
on our past knowledge, according to the barometric pressure, temperature,
etc. of the conditions we expect tomorrow, 70% of the time it did rain
under such conditions.)

The complement of an event

® The complement of an event A, denoted A ,
occurs if and only if A does not occur.

O O O

a) Sample space con- (b) Event A shaded (c) Ashaded
taining event A

Figure 4.4.1

S

Anevent A in the sample space S.

Probability distributions

® Probabilities always lie between 0 and 1 and they
sum up to 1 (across all simple events) .

® pr(A) can be obtained by adding up the probabilities
of all the outcomes in A.

pr(A)=_x pr(E)

in event A

Sample spaces and events

® A sample space, S, for a random experiment is the set
of all possible outcomes of the experiment.

® An event is a collection of outcomes.

® An event occurs if any outcome making up that event
occeurs.

Combining events — all statisticians agree on

® “A or B” contains all outcomes in A or B (or both).

® “A and B” contains all outcomes which are in both A
and B.

@] &) @] 100
(a) EventsAand B (b) “Aor B” shaded (c) “Aand B” shaded (d) Mutually exclusive
events

Figure 4.4.2 Two events.

rom Chance Encounters by C.J. Wild and G.A.F. Seber, © John Wiley & Sons, 2000.

Mutually exclusive events cannot occur at the same time.

Job losses in the US

TABLE4.4.1 Job Losses in the US (in thousands)

for 1987 to 1991
Reason for Job Loss
Workplace Position Total
moved/closed Slack work abolished|
Male 1,703 1,196 548 3,447
Female 1,210 564 363 2,137
Total 2,913 1,760 911 5,584




Job losses cont.

Workplace Position Total
mowed/closed _Slack work—-datyottsked
Male 1703 > 1,196 548 3,447
Female 1,210 564 363 )\ 2137
Total 2,913 1,760 911 [( 5584 )

TABLE 4.4.2CProportionsof Job Losses from Table}(—'

Reason for Job,lASs/
Workplace Position Row
moved/close Slack work  abolished totals

Male .305 214 .098 .617
Female 217 101 .065 .383

Column totals .552 315 163

Review

® \What is a sample space? What are the two essential
criteria that must be satisfied by a possible sample
space? (completeness — every outcome is represented; and uniqueness —
no outcome is represented more than once.

® \What is an event? (collection of outcomes)

® If A isan event, what do we mean by its
complement, A ? When does A occur?

® If A and B are events, when does A or B occur?
When does A and B occur?

Properties of probability distributions

® A sequence of number {p,, p,, ps, --., pn } is @ probability
distribution for a sample space S = {s,, s,, s;, ..., 5.}, if
pr(sy) = P, for each 1<=k<=n. The two essential
properties of a probability distribution p;, p, ..., Py?

p,20; zp =1
® How do we get the probability of an event from the
probabilities of outcomes that make up that event?

@ [f all outcomes are distinct & equally likely, how do we calculate
pr:(A) ?1fA={ay, & a, ..., ag} and pr(a;)=pr(az)=...=pr(aq )=p;
then

pr(A) =9 x pr(a,) = 9p.

Example of probability distributions

® Tossing a coin twice. Sample space S={HH, HT, TH,
TT}, for a fair coin each outcome is equally likely, so
the probabilities of the 4 possible outcomes should be
identical, p. Since, p(HH)=p(HT)=p(TH)=p(TT)=p and
P20 zp, =1

®p=1Y=0.25.

Proportion vs. Probability

® How do the concepts of a proportion and a

probability differ? A proportion is a partial description of a real

population. The probabilities give us the chance of something happening in
a random experiment. Sometimes, proportions are identical to probabilities
(e.g., in a real population under the experiment Choose-a-unit-at-random).

@ See the two-way table of counts (contingency table)
on Table 4.4.1, slide 19. E.g., choose-a-person-at-
random from the ones laid off, and compute the
chance that the person would be a male, laid off due
to position-closing. We can apply the same rules for
manipulating probabilities to proportions, in the case
where these two are identical.

Rules for manipulating
Probability Distributions

For mutually exclusive events,
pr(AorB) = pr(A) + pr(B)

rom Chance Encounters by C.J. Wild and G.A.F. Seber, © John Wiley & Sons, 2000.




prOWAd i and Seber B Unmarried couples
eber in) In_ Out |Total B B Total
wild O:t B 0-75 Z 0-77 2 P:g\\,::“g g; p:ﬁ’;::‘; :% p:g% rried couple at random — the table proportions give
S I P pridends) 1 p of the events defined in the row/column titles.
Total | 0.6 ? |1.00 Total | pr(B) pr(B) 1.00

%

pr(Seber in) pr(Wild in) TABLE4.5.2 Proportions of Unmarried Male-Female Couples

Sharing Household in the US, 1991

5 2 | . . k . 7 Female
2 d . 3
5 4 5 4 | 1.00 G 7 | .00 Never Married Total
TABLE 4.5.1 Male Married Divorced Widowed to other
Completed Probability Table Never Married 0.401 11 017 025 554
Seber Divorced 117 195 .024 017 .353
Widowed .006 .008 .016 .001 .031
Married to other .021 .022 .003 .016 .062
Total .545 .336 .060 .059

Review

Melanoma — type of skin cancer —

- - an example of laws of conditional probabilities
® If A and B are mutually exclusive, what is the
probability that both occur? ) What is the probability TABLE4.6.1: 400 Melanoma Patients by Type and Site
that at least one occurs? (sum of probabilities) Site
) Head and Row
® |f we have two or more mL_Jt_uaIIy exclusive events, Type Neck  Trunk  Extremities Totals
how do we find the probability that at least one of them Hutchinson's
OCCUIS? (sum of probabilities) melanomic freckle 22 2 10 34
.. . . Superficial 16 54 115 185
® Why is it sometimes easier to compute pr(A) from Nodular 19 23 73 125
pr(A) = 1-pr(A)? (The complement of the even may be easer to find Indeterminant 11 17 28 56
or may have a known probability. E.g., a random number between 1 and 10 is drawn.
Let A ={a number less than or equal to 9 appears}. Find pr(A) = 1 —pr(A)). Colum Totals 58 106 226 400
probability of A is pr({10 appears}) = 1/10 = 0.1. Also Monty Hall 3 door example!

Conditional Probability Multiplication rule- what’s the percentage of
Israelis that are poor and Arabic?

The conditional probability of A occurring given that

B oceurs is given by pr(AandB) = pr(A|B)pr(B) = pr(B| A)pr(A) |
r(A and B
pr(A|B)= S B ( or(B) ) 90'07»?80.}4 10

| . All people in Israel |

l:, 14% of these are Arabic
E 52% of this 14% are poor

7.28% of Israelis are both poor and Arabic
(0.52x.014 = 0.0728)

Suppose we select one out of the 400 patients in the study and we
want to find the probability that the cancer is on the extremities
given that it is of type nodular: P = 73/125 = P(C. on Extremities | Nodular)

Figure 4.6.1 Ilustration of the multiplication rule.

From Chance Encounters by C.J. Wild and G.A.F. Seber, © John Wiley & Sons, 2000.




A tree diagram for computing
conditional probabilities

Suppose we draw 2 balls at random one at a time
without replacement from an urn containing 4 black
and 3 white balls, otherwise identical. What is the
probability that the second ball is black? Sample Spc?
Mutually

P({2-nd ball is black}) = ] exclusive
P({2-nd is black} &{1-st is black})/+

P({2-nd is black} &{1-st is white}) =
417 x 306 + 416 x 317 = 4/7.

Tree diagram for poverty in Israel

Ethnic Poverty Product
Group Level Equals
1A)= 052 pgor  pr(Poor and Arabic

Arabic  pr(Poo”
*)

Not  pr(Not and Arabic)

pr(Poort =01 poor pr(Poor and Jewish

r> Jex;l)sh

Not  pr(Not and Jewish)

2-way table for poverty in Israel cont.

pr(Poor and Arabic) = r(Poor and Jewish) =
pr(Poor|Arabic) x pr(Arabic) /;r(PoorHewish) X pr(Jewish)

[ =52% of 14%] Ethnicity [ = 11% of 86%]

Arabic  Jewish /| Total
v
Poverty Poor 52x .14 .11x.86 ?
Not poor ? ? ?
Total .14 .86 1.00

pr(Arabic) = .14 / \ pr(Jewish) = .86
TABLE 4.6.3 Proportions by Ethnicity
and Poverty

Ethnicity

Arabic__ Jewish Total
Poverty  Poor .0728 .0946 1674
Not Poor  [.0672 7654 .8326

Total 14 .86

First
Draw

A tree

diagram

Second

Path
Draw a

I 2-way table for poverty in Israel

pr(Poor and Arabic) =
pr(Poor|Arabic) x pr(Arabic)

r(Poor and Jewish) =
/gr(Poorerish) X pr(Jewish
[ = 11% of 86%]

Figure 4.6.4

pr(Arabic) = .14 /

[ =52% of 14%] Ethnicity
Arabic  Jewish /[ Total
X 7
Poverty FOOT  |52x.14 11x 86| 2
Not poor ? ? 2
Total 14 .86 1.00

\' pr(Jewish) = .86

Proportions by Ethnicity and Poverty.

Conditional probabilities and 2-way tables

® Many problems involving conditional probabilities
can be solved by constructing two-way tables

® This includes reversing the order of conditioning




Classes vs. Evidence Conditioning

® Classes: healthy(NC), cancer
® Evidence: positive mammogram (pos), negative
mammogram (neg)

® |f a woman has a positive mammogram result, what is the
probability that she has breast cancer?

P(evidence | class) x P(class)
P(evidence)

P(class | evidence) =

P(cancer)=0.01
P(pos | cancer )= 0.8

P(positive) = 0.107
P(cancer | pos)="?

Oral contraceptives cont.

pr(Failed and Oral) = pr(Failed and 1UD) =
pr(Failed | Oral) x pr(Oral) pr(Failed | IUD) x pr(IUD)
[ = 5% of 32%] [ = 6% of 3%]
Method
Steril.  \Oral Barrier IUD " Sperm. | Total

Failed |0x.38 .0§x.32 14x.24 .06x.03 .26x.03 ?

Outcome "
Didn’t ? ? ? ? ? ?
Total .38 .32 .24 .03 .03 1.00
pr(Steril.) = .38 —/pr(Barrier) =.24 —/ pr(lUD) = .03
TABLE 4.6.4 Table Constructed from the Data in Example 4.6.8
Method
Steril. Oral Barrier 1UD Sperm. Total
Outcome  Failed 0 .0160 .0336 .0018 .0078 .0592
Didn't .3800 .3040 .2064 .0282 .0222 .9408
Total .3800 .3200 .2400 .0300 .0300 1.0000

TABLE 4.6.5 Number of Individuals
Having a Given Mean Absorbance Ratio
(MAR) in the ELISA for HIV Antibodies

MAR Healthy Donor HIV patients
<2 202 275 0 2 False-.
2 - 2.99 73 9 Test cut-off2 9  Negatived
(FNE)
i ) i'gz 12 . Power of
I False- a test is:
5-599 2 positives 15 1-P(ENE)=
6 -11.99 2 36 1-P(Neg|HIV)
12+ 0 21 ~0976
Total 297 88

Proportional usage of oral contraceptives
and their rates of failure

e two-way contingency table of proportions

pr(Failed and Oral) =

pr(Failed | Oral) x pr(Oral)
[ = 5% of 32%] [ = 6% of 3%]

Method

pr(Failed and IUD) =
pr(Failed | IUD) x pr(1UD)

Steril.  \Oral Barrier IUD ~ Sperm. | Total

Kl
Failed |[0x.38 .05x.32 .14x.24 .06x.03 .26 x.03 ?

Outcome )
Didn’t ? ? ? ? ? ?
Total .38 .32 .24 .03 .03 1.00
pr(Steril.) =.38 Jpr(Barrier) =.24 \—pr(IUD) =.03
Remarks ...

@ In pr(A | B), how should the symbol * | " is read
given that.

® How do we interpret the fact that: The event A
always occurs when B occurs? What can you say
about pr(A | B)?

® \When drawing a probability tree for a particular
problem, how do you know what events to use for
the first fan of branches and which events to use for
the Subsequent branching? (at each branching stage condition on

all the info available up to here. E.g., at first branching use all simple events, no
prior is available. At 3-rd branching condition of the previous 2 events, etc.).

HIV cont.
pr(HIV and Positive) = pr(Not HIV and Negative) =
pr(Positive[HIV) x pr(HIV) pr(Negative|Not HIV) x pr(Not HI
[ = 98% of 1%] [ = 93% of 99%]
Test result
Positive Negative /| Total
K}
Disease HIV .98 x .01 ? .01 — pr(HIV) =.01
status  Not HIV ? 93x.99 | .99 ~—pr(Not HIV) = .99
Total ? ? 1.00
Figure 4.6.6 Putting HIV information into the table.

Adapted from Weiss et al.[1985]

From Chance Encounters by C.J. Wild and G.A.F. Seber, © John Wiley & Sons, 2000.




HIV - reconstructing the contingency table

pr(HIV and Positive) =
pr(Positive|HIV) x pr(HIV)

pr(Not HIV and Negative) =
pr(Negative|Not HIV) x pr(Not HIV)

[ =98% of 1%] [ = 93% of 99%]
Test result
Positive Negative [ Total
¥
Disease HIV .98 x.01 ? / .01 < pr(HIV)=.01
status Not HIV ? 93%.99 | .99 ~— pr(Not HIV) = .99
Total ? ? 1.00

TABLE 4.6.6 Proportions by Disease Status
and Test Result

Test Result
Positive Negative Total
Disease HIV .0098 .0002 .01
Status Not HIV. .0693 .9207 .99
Total .0791 .9209 1.00

Statistical independence

® Events A and B are statistically independent if
knowing whether B has occurred gives no new
information about the chances of A occurring,

ie. if pr(A|B)=pr(A)
® Similarly, P(B | A) = P(B), since
P(BJA)=P(B & A)/P(A) = P(AIB)P(B)/P{A) = P(B)

® If A and B are statistically independent, then

pr( Aand B) = pr(A) x pr(B)

Formula summary cont.

epr(S)=1
®pr(A) =1-pr(A)
@ If A and B are mutually exclusive events, then
pr(A or B) = pr(A) + pr(B)
(here “or” is used in the inclusive sense)

® If A, A, ..., A are mutually exclusive events, then
pr(A,or A, or ... or A, ) = pr(A)+pr(A)+...+pr(A)

Proportions of HIV infections by country

TABLE 4.6.7 Proportions Infected with HIV
No. AIDS  Population Having | Test

Country Cases (millions) pr(HIV) pr(HIV | Positive)
United States 218,301 252.7 0.00864 0.109
Canada 6,116 26.7 0.00229 0.031
Australia 3,238 16.8 0.00193 0.026

New Zealand 323 3.4 0.00095 0.013
United Kingdom 5,451 57.3 0.00095 0.013
Ireland 142 3.6 0.00039 0.005

People vs. Collins

TABLE4.7.2 Frequencies Assumed by the Prosecution

Yellow car 1 Girl with blond hair 1
10 3
Man with mustache 1 Black man with beard 1
4 10
Girl with ponytail 1 Interracial couple in car L
10 1000

® The first occasion where a conviction was made in an American court of law,
largely on statistical evidence, 1964. A woman was mugged and the offender
was described as a wearing dark cloths, with blond hair in a pony tail who
got into a yellow car driven by a black male accomplice with mustache and
beard. The suspect brought to trial were picked out in a line-up and fit all of
the descriptions. Using the product rule for probabilities an expert witness
computed the chance that a random couple meets these characteristics, as
1:12,000,000.

Formula summary cont.

Conditional probability

® Definition:
pr(Aand B)

A|B) =
priAlB) = S

® Multiplication formula:

pr(A and B) = pr(B|A)pr(A) = pr(A[B)pr(B)




Formula summary cont.

Multiplication Rule under independence:
® If A and B are independent events, then
pr(A and B) = pr(A) pr(B)

® If A, A, ..., A, are mutually independent,
pr(A;and A, and ... and A,)) = pr(A,) pr(A,) ... pr(A,)

Bayesian Rule

® If {A,, A,, ..., A } are a non-trivial partition of the
sample space (mutually exclusive and UA;=S, P(A;)>0)
then for any non-trivial event and B ( P(B)>0)

P(Ai| B) = P(A;[B) / P(B) = [P(B | A) xP(A)] / P(B) =

__P(B|A)xP(A)
> P(BIA)P(A)

Classes vs. Evidence Conditioning

® Classes: healthy(NC), cancer

® Evidence: positive mammogram (pos), negative
mammogram (neg)

® |f a woman has a positive mammogram result, what is the
probability that she has breast cancer?

P(evidence | class) x P(class)
P(evidence | class) x P(class)

P(class | evidence) =

classes

P(cancer)=0.01
P(pos | cancer )= 0.8

P( pos| healthy) =0.1 PCIP)=PPICIXPCNIP(PICP(C)+ PRIH)P(H)
P(C|P)=0.8x0.01 / [0.8x0.01 + 0.1x0.99] = ?
P(cancer | pos)="?

Law of Total Probability

® If {A,, A,, ..., A } are a partition of the sample space
(mutually exclusive and UA;=S) then for any event B

P(B) = P(BIA)P(A) + P(B|A)P(A,) +...+ P(B|A)P(A,)
S

Ex:
P(B) = P(BIA)P(A) +
P(BIA)P(A,)

Bayesian Rule

P(A) = i(A' | B) = P(#) D = the test person has the disease.
Zk:lP(B [ Ak)P(Ak) T = the test result is positive.

EX: (Laboratory blood test) Assume: | Find:

P(positive Test| Disease) = 0.95 P(Disease|positive Test)=?

P(positive Test| no Disease)=0.01 PD|T)="?

P(Disease) = 0.005

P(DNT) _ P(T | D)x P(D)

P(T)  P(T|D)xP(D)+P(T | D%)xP(D)
B 0.95x0.005 000475
~ 0.95x0.005+0.01x0.995  0.02465

P(D|T) =

0.193

Bayesian Rule (different data/example!)

True Disease State

3 No Disease Disease Total

2 : False Negative I1

B| Negative | OK (0.98505) oIt heaave Il 09853

B - False Positive |

8| Positive | "5 00008 | OK (0.00475) | 0.0147
Total 0.995 0.005 10

P{r[\0€)=P{r 1 DC )« PDC )= 0.01x0.995=0.00995

Power of Test = 1 - P(TC | D) = 0.00025/0.005 = 0.95
Sensitivity: TP/(TP+FN) = 0.00475/(0.00475+ 0.00025)= 0.95
Specificity: TN/(TN+FP) = 0.98505/(0.98505+ 0.00995) = 0.99

10



Examples — Birthday Paradox |

@ The Birthday Paradox: In a random group of N people, what is the
change that at least two people have the same birthday?

® E.x., if N=23, P>0.5. Main confusion arises from the fact that in
real life we rarely meet people having the same birthday as us, and
we meet more than 23 people.

® The reason for such high probability is that any of the 23 people
can compare their birthday with any other one, not just you
comparing your birthday to anybody else’s.

® There are N-Choose-2 = 20*19/2 ways to select a pair or people.
Assume there are 365 days in a year, P(one-particular-pair-same-
B-day)=1/365, and

® P(one-particular-pair-failure)=1-1/365 ~ 0.99726.

® For N=20, 20-Choose-2 = 190. E={No 2 people have the same
birthday is the event all 190 pairs fail (have different birthdays)},
then P(E) = P(failure)!® = 0.997261% = 0.59.

® Hence, P(at-least-one-success)=1-0.59=0.41, quite high.

® Note: for N=42 = P>0.9 ...

The two-color urn model

N balls in an urn, of which there are
M black balls
N -M white balls -

Sample n balls and count X = # black balls in sample

The biased-coin tossing model

lo e

toss 1 toss 2 toss n
pr(H) =p pr(H) =p pr(H) =p

Perform n tosses and count X = # heads

The answer is: Binomial distribution

® The distribution of the number of heads in n
tosses of a biased coin is called the Binomial
distribution.

Binary random process

The biased-coin tossing model is a physical model for
situations which can be characterized as a series of
trials where:

Meach trial has only two outcomes: success or
failure;

M = P(success) is the same for every trial; and
Mtrials are independent.

Individual pr(X=x) 0.001 0.010 0.060 “0.185 0.324 0.303 0.118
Cumulative pr(X=x)| 0.001 ,0.011 0.070 ,0.256 0.580 0.882 1.000

® The distribution of X = number of successes (heads)
in N such trials is

Binomial(N, p)




Sampling from a finite population —
Binomial Approximation

If we take a sample of size n

® from a much larger population (of size N)

® in which a proportion p have a characteristic of
interest, then the distribution of X, the number in
the sample with that characteristic,

® s approximately Binomial(n, p).
O (Operating Rule: Approximation is adequate if n / N< 0.1.)

® Example, polling the US population to see what
proportion is/has-been married.

Expected values

® The game of chance: cost to play:$1.50; Prices {$1, $2, $3},
probabilities of winning each price are {0.6, 0.3, 0.1}, respectively.

® Should we play the game? What are our chances of
winning/loosing?

Prize ($) x| 1 2 3
Probability prx) | 06 0.3 0.1

\What we would ""expect’ from 100 games add across row
Number of games won 0.6 x 100 0.3 X100 0.1 x 100
$won 1x0.6 x100 2x0.3 X100 3x0.1 x100 Sum

otal prize money = Sum; Average prize money = Sum/100
=1x0.6 +2x0.3 + 3x0.1
5

price to play expected return

Example

or at most 3 children
of Girls} we have:

Binomial Probabilities —
the moment we all have been waiting for!

® Suppose X ~ Binomial(n, p), then the probability
n

P(X =x)= p'l-p)™, 0<x<n
X

® Where the binomial coefficients are defined by

(nj =m N=1x2x3x..x(nh=1)xn
- - - \

n-factorial

Definition of the expected value, in general.

® The expected value:

o= 2 X P(X)|= [x P(x)dx
all x all X

® = Sum of (value times probability of value)

The expected value and population mean

= E(X) is called the mean of the distribution of X.

Hy = E(X) is usually called the population mean.

wx is the point where the bar graph of P(X = x) balances.

12



Population standard deviation

The population standard deviation is

sd(X) = yEI(X - )]

Note that if X is a RV, then (X-[) is also a RV,
and so is (X-1)% Hence, the expectation,
E[(X-W1)?], makes sense.

For the Binomial distribution . .. Mean & SD

sd(X) = /np-p)

Linear Scaling (affine transformations) aX + b

Why is that so?
E(@X +b)=aE(X) +b SD(aX +b) = |a] SD(X)

Population mean & standard deviation

E ted value:
xpected value E(X)=ZXP(X:X)

X

Variance Var(X)= Z(X —E(X))P(X =x)

Standard Deviation

SD(X) = Var(X)= \/Z(x— E(x)P(X = x)

The Normal Distribution

Linear Scaling (affine transformations) aX + b

And why do we care?
E(aX +b) =a E(X) +b SD(aX +b) = |a| SD(X)

-E.g., say the rules for the game of chance we saw before change and
the new pay-off is as follows: {$0, $1.50, $3}, with probabilities of
{0.6, 0.3, 0.1}, as before. What is the newly expected return of the
game? Remember the old expectation was equal to the entrance fee of
$1.50, and the game was fair!

Y = 3(X-1)/2
{$1, $2, $3} > {30, $1.50, $3},
E(Y) = 32 E(X)-3/2=3/4=$0.75

And the game became clearly biased. Note how easy it is to compute E(Y).
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The Normal Distribution

]
The Normal Distribution

1
Areas under the normal curve

The Normal Distribution

]

Areas under the normal curve

—
Areas under the normal curve
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]
Relationship to the Empirical Rule

]
Application to Data

1
Application to Data

]
Relationship to the Empirical Rule

]
Application to Data

]
Application to Data
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Normal approximation to Binomial

® Suppose Y~Binomial(n, p)
® Then Y=Y+ Y,+ Yy+...+ Y, where
® Y, ~Bernoulli(p) , E(Y,)=p & Var(Y,)=p(1-p) D
B E(Y)=np & Var(Y)=np(1-p), sow= (np(-p)+
B Standardize Y:
Q Z=(Y-np) / (np(1-p))=
QO By CLT = Z ~ N(0, 1). So, Y ~ N [np, (np(1-p))}2]

® Normal Approx to Binomial is reasonable
when np >=10 & n(1-p)>10 (p & (1-p)are

NOT too small relative to n).

Assessing Normality

Normal Probability Plots

Scatterplot of Y vs Nscore

Normal approximation to Binomial — Example

® Roulette wheel investigation:
® Compute P(Y>=58), where Y~Binomial(100, 0.47) —

B The proportion of the Binomial(100, 0.47) population having more
than 58 reds (successes) out of 100 roulette spins (trials).

m since Np=47>=10 & n(1-p)=53>10 Normal
approx is justified.
® Z=(Y-np)/Sqrt(np(1-p)) =
(58-100*0.47)/Sqrt(100*0.47*0.53)=2.2
® P(Y>=58) €= P(z>=2.2)=0.0139
® True P(Y>=58) = 0.0177, using SOCR (demo!)

® Binomial approx useful when no access to SOCR
available or when N is large!

Normal Probability Plots

Normal Probability Plots




. Normal Probability Plots - Simulation
Normal Probability Plots

Probability Plot of height (in)
Normal K

Histogram of height (in) Scatterplot of height (in) vs Nscore

®
height ()
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