## UCLA STAT 13

Introduction to Statistical Methods for the Life and Health Sciences

Instructor: Ivo Dinov,

Asst. Prof. of Statistics and Neurology

## Teaching Assistants:

Jacquelina Dacosta \& Chris Barr

University of California, Los Angeles, Fall 2006
http://www.stat.ucla.edu/~dinov/courses_students.html

## Random Sampling

- A simple random sample of $n$ items is a sample in which:
- every member of the population has an equal chance of being selected.
- the members of the sample are chosen independently.


## Probability

- Probability is important to statistics because:
- study results can be influenced by variation
- it provides theoretical groundwork for statistical inference
- $0 \leq P(A) \leq 1$
- In English please: the probability of event A must be between zero and one.
Note: $\operatorname{P}(\mathrm{A})=\operatorname{Pr}(\mathrm{A})$


## Random Sampling

Example: Consider our class as the population under study. If we select a sample of size 5 , each possible sample of size 5 must have the same chance of being selected.

- When a sample is chosen randomly it is the process of selection that is random.
- How could we randomly select five members from this class randomly?


## Random Sampling

Random Number Table (e.g., Table 1 in text)

- Random Number generator on a computer (e.g., www.socr.ucla.edu socr Modeler $\rightarrow$ Random Number Generation
- Which one is the best?
- Example (cont'): Let's randomly select five students from this class using the table and the computer.


## Random Sampling

Table Method (p. 670 in book):

1. Randomly assign id's to each member in the population (1-n)
2. Choose a place to start in table (close eyes)
3. Start with the first number (must have the same number of digits as $n$ ), this is the first member of the sample.
4. Work left, right, up or down, just stay consistent.
5. Choose the next number (must have the same number of digits as $n$ ), this is the second member of the sample.
6. Repeat step 5 until all members are selected. If a number is repeated or not possible move to the next following your algorithm.


## Key Issue

Example: Suppose a weight loss clinic is interested in studying the effects of a new diet proposed by one of it researchers. It decides to advertise in the LA Times for participants to come be part of the study.

Example: Suppose a lake is to be studied for toxic emissions from a nearby power plant. The samples that were obtained came from the portion of the lake that was the closest possible location to the plant.

## Key Issue

- How representative of the population is the sample
likely to be?
- The sample wont exactly resemble the population, there will be some chance variation. This discrepancy is called "chance error due to sampling".
- Definition: Sampling bias is non-randomness that refers to some members having a tendency to be selected more readily than others.

When the sample is biased the statistics turn out to be poor estimates.

## Let's Make a Deal Paradox aka, Monty Hall 3-door problem

- This paradox is related to a popular television show in the 1970's. In the show, a contestant was given a choice of three doors/cards of which one contained a prize (diamond). The other two doors contained gag gifts like a chicken or a donkey (clubs).



## Let's Make a Deal Paradox.

- After the contestant chose an initial door, the host of the show then revealed an empty door among the two unchosen doors, and asks the contestant if he or she would like to switch to the other unchosen door. The question is should the contestant switch. Do the odds of winning increase by switching to the remaining door?



## Let's Make a Deal Paradox.

- The intuition of most people tells them that each of the doors, the chosen door and the unchosen door, are equally likely to contain the prize so that there is a 50-50 chance of winning with either selection? This, however, is not the case.
- The probability of winning by using the switching technique is $2 / 3$, while the odds of winning by not switching is $1 / 3$. The easiest way to explain this is as follows:


## Let's Make a Deal Paradox.

- The probability of picking the wrong door in the initial stage of the game is $2 / 3$.
- If the contestant picks the wrong door initially, the host must reveal the remaining empty door in the second stage of the game. Thus, if the contestant switches after picking the wrong door initially, the contestant will win the prize.
- The probability of winning by switching then reduces to the probability of picking the wrong door in the initial stage which is clearly $2 / 3$.
- Demos:
- file:///C://Ivo.dir/UCLA_Classes/Applets.dir/SOCR/Prototype1.1/classes/TestExperiment.html
- C:Ivo.dir\UCLA_Classes\Applets.dir\StatGames.exe


## Definitions ...

- The law of averages about the behavior of coin tosses - the relative proportion (relative frequency) of heads-to-tails in a coin toss experiment becomes more and more stable as the number of tosses increases. The law of averages applies to relative frequencies not absolute counts of \#H and \#T.
- Two widely held misconceptions about what the law of averages about coin tosses:
■ Differences between the actual numbers of heads \& tails becomes more and more variable with increase of the number of tosses - a seq. of 10 heads doesn't increase the chance of a tail on the next trial.
■ Coin toss results are fair, but behavior is still unpredictable



## Types of Probability

- Probability models have two essential components (sample space, the space of all possible outcomes from an experiment; and a list of probabilities for each event in the sample space). Where do the outcomes and the probabilities come from?
- Probabilities from models - say mathematical/physical description of the sample space and the chance of each event. Construct a fair die tossing game.
- Probabilities from data - data observations determine our probability distribution. Say we toss a coin 100 times and the observed Head/Tail counts are used as probabilities.
- Subjective Probabilities - combining data and psychological factors to design a reasonable probability table (e.g., gambling, stock market).


## Sample Spaces and Probabilities

- When the relative frequency of an event in the past is used to estimate the probability that it will occur in the future, what assumption is being made?
$\square$ The underlying process is stable over time;
- Our relative frequencies must be taken from large numbers for us to have confidence in them as probabilities.
- All statisticians agree about how probabilities are to be combined and manipulated (in math terms), however, not all agree what probabilities should be associated with for a particular real-world event.
- When a weather forecaster says that there is a 70\% chance of rain tomorrow, what do you think this statement means? (Based on our past knowledge, according to the barometric pressure, temperature, etc. of the conditions we expect tomorrow, $70 \%$ of the time it did rain under such conditions.)


Figure 4.4.1 An event $A$ in the sample space $S$.
Slide 21 Stat 33, UCLA. vo Dinov

## Probability distributions

- Probabilities always lie between 0 and 1 and they sum up to 1 (across all simple events).
- $\boldsymbol{p r}(\mathbf{A})$ can be obtained by adding up the probabilities of all the outcomes in $A$.
$\operatorname{pr}(A)={ }_{\Sigma} \operatorname{pr}(E)$


## Sample spaces and events

- A sample space, $S$, for a random experiment is the set of all possible outcomes of the experiment.
- An event is a collection of outcomes.
- An event occurs if any outcome making up that event occurs.


## Combining events - all statisticians agree on

- "A or B" contains all outcomes in $A$ or $B$ (or both).
- "A and B" contains all outcomes which are in both $A$ and $B$.




## Properties of probability distributions

- A sequence of number $\left\{\mathrm{p}_{1}, \mathrm{p}_{2}, \mathrm{p}_{3}, \ldots, \mathrm{pn}\right\}$ is a probability distribution for a sample space $S=\left\{s_{1}, s_{2}, s_{3}, \ldots, s_{n}\right\}$, if $\operatorname{pr}\left(s_{k}\right)=p_{k}$, for each $1<=k<=n$. The two essential properties of a probability distribution $p_{1}, p_{2}, \ldots, p_{n}$ ?

$$
p_{k} \geq 0 ; \sum_{k} p_{k}=1
$$

- How do we get the probability of an event from the probabilities of outcomes that make up that event?
- If all outcomes are distinct \& equally likely, how do we calculate $\operatorname{pr}(A)$ ? If $A=\left\{a_{1}, a_{2}, a_{3}, \ldots, a_{9}\right\}$ and $\operatorname{pr}\left(a_{1}\right)=\operatorname{pr}\left(a_{2}\right)=\ldots=\operatorname{pr}\left(a_{9}\right)=p ;$ then

$$
\operatorname{pr}(A)=9 \times \operatorname{pr}\left(a_{1}\right)=9 p .
$$

For mutually exclusive events, $\operatorname{pr}(A$ or $B)=\operatorname{pr}(A)+\operatorname{pr}(B)$



## Example of probability distributions

- Tossing a coin twice. Sample space $\mathrm{S}=\{\mathrm{HH}, \mathrm{HT}, \mathrm{TH}$, TT\}, for a fair coin each outcome is equally likely, so the probabilities of the 4 possible outcomes should be identical, $p$. Since, $p(H H)=p(H T)=p(T H)=p(T T)=p$ and

$$
p_{k} \geq 0 ; \quad \sum_{k} p_{k}=1
$$

- $p=1 / 4=0.25$.



## Rules for manipulating <br> Probability Distributions




## Review

If $A$ and $B$ are mutually exclusive, what is the probability that both occur? (o) What is the probability that at least one occurs? (sum of probabilities)

- If we have two or more mutually exclusive events, how do we find the probability that at least one of them occurs? (sum of probabilities)
- Why is it sometimes easier to compute $\operatorname{pr}(A)$ from $\operatorname{pr}(A)=1-\operatorname{pr}(\bar{A})$ ? (The complement of the even may be easer to find or may have a known probability. E.g., a random number between 1 and 10 is drawn. Let $\mathrm{A}=\{\mathrm{a}$ number less than or equal to 9 appears $\}$. Find $\operatorname{pr}(\mathrm{A})=1-\operatorname{pr}(\bar{A}))$. probability of $\bar{A}$ is $\operatorname{pr}(\{10$ appears $\})=1 / 10=0.1$. Also Monty Hall 3 door example!

The conditional probability of $\boldsymbol{A}$ occurring given that $B$ occurs is given by

$$
\operatorname{pr}(A \mid B)=\frac{\operatorname{pr}(A \text { and } B)}{\operatorname{pr}(B)}
$$

Suppose we select one out of the 400 patients in the study and we want to find the probability that the cancer is on the extremities given that it is of type nodular: $\mathrm{P}=73 / 125=\mathrm{P}$ (C. on Extremities $\mid$ Nodular)
\#nodular patients with cancer on extremities \#nodular patients

## Unmarried couples

Select an unmarried couple at random - the table proportions give us the probabilities of the events defined in the row/column titles.
TABLE 4.5.2 Proportions of Unmarried Male-Female Couples Sharing Household in the US, 1991

| Male | Female |  |  |  | Total |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | Never Married | Divorced | Widowed | Married to other |  |
| Never M arried | 0.401 | . 111 | . 017 | . 025 | . 554 |
| Divorced | . 117 | . 195 | . 024 | . 017 | . 353 |
| Widowed | . 006 | . 008 | . 016 | . 001 | . 031 |
| Married to other | . 021 | . 022 | . 003 | . 016 | . 062 |
| Total | . 545 | . 336 | . 060 | . 059 | 1.000 |
| Slide 32 Stac l3, UCLA. vo Dinov |  |  |  |  |  |


| an exam | noma of laws | ype of f cond |  |  |
| :---: | :---: | :---: | :---: | :---: |
| TABLE 4.6.1: 400 | anoma Pat | nts by | and Site |  |
|  |  |  |  |  |
| Type | Head and Neck | Trunk | Extremities | Row Totals |
| Hutchinson's |  |  |  |  |
| melanomic freckle | 22 | 2 | 10 | 34 |
| Superficial | 16 | 54 | 115 | 185 |
| Nodular | 19 | 33 | 73 | 125 |
| Indeterminant | 11 | 17 | 28 | 56 |
| Column Totals | 68 | 106 | 226 | 400 |
| Contingency table based on Melanoma histological type and its location |  |  |  |  |
| Slide 34 Stal3, UCIALvo |  |  |  |  |

## Multiplication rule- what's the percentage of Israelis that are poor and Arabic?

$$
\operatorname{pr}(A \text { and } B)=\operatorname{pr}(A \mid B) \operatorname{pr}(B)=\operatorname{pr}(B \mid A) \operatorname{pr}(A)
$$



Figure 4.6.1 Illustration of the multiplication rule.
From Chance Encoumters by C.J. Wild and G.A.F. Seber, ©. John Wiley \& Sons, 2000.

## A tree diagram for computing conditional probabilities

Suppose we draw 2 balls at random one at a time without replacement from an urn containing 4 black and 3 white balls, otherwise identical. What is the probability that the second ball is black? Sample Spc?
$\mathrm{P}(\{2-n d$ ball is black $\})=$
$\mathrm{P}(\{2-n d$ is black $\}$ \& $\{1$-st is black $\})+$
$\mathrm{P}(\{2-\mathrm{nd}$ is black $\}$ \& $\{1$-st is white $\})=$

$$
4 / 7 \times 3 / 6+4 / 6 \times 3 / 7=4 / 7 .
$$




## Classes vs. Evidence Conditioning

- Classes: healthy(NC), cancer
- Evidence: positive mammogram (pos), negative mammogram (neg)
- If a woman has a positive mammogram result, what is the probability that she has breast cancer?
$P($ class $\mid$ evidence $)=\frac{P(\text { evidence } \mid \text { class }) \times P(\text { class })}{P(\text { evidence })}$
$P($ cancer $)=0.01$
$P($ pos $\mid$ cancer $)=0.8$
$P($ positive $)=0.107$
$P($ cancer $\mid$ pos $)=$ ?




## Statistical independence

- Events $A$ and $B$ are statistically independent if knowing whether $B$ has occurred gives no new information about the chances of $A$ occurring,

$$
\text { i.e. if } \operatorname{pr}(A \mid B)=\operatorname{pr}(A)
$$

- Similarly, $\mathrm{P}(B \mid A)=\mathrm{P}(B)$, since

$$
\mathrm{P}(\mathrm{~B} \mid \mathrm{A})=\mathrm{P}(\mathrm{~B} \& \mathrm{~A}) / \mathrm{P}(\mathrm{~A})=\mathrm{P}(\mathrm{~A} \mid \mathrm{B}) \mathrm{P}(\mathrm{~B}) / \mathrm{P}(\mathrm{~A})=\mathrm{P}(\mathrm{~B})
$$

- If $A$ and $B$ are statistically independent, then

$$
\operatorname{pr}(A \text { and } B)=\operatorname{pr}(A) \times \operatorname{pr}(B)
$$

## Formula summary cont.

- $\operatorname{pr}(S)=1$
- $\operatorname{pr}(\bar{A})=1-\operatorname{pr}(A)$
- If $A$ and $B$ are mutually exclusive events, then $\operatorname{pr}(A$ or $B)=\operatorname{pr}(A)+\operatorname{pr}(B)$
(here "or" is used in the inclusive sense)
- If $A_{1}, A_{2}, \ldots, A_{k}$ are mutually exclusive events, then $\operatorname{pr}\left(A_{1}\right.$ or $A_{2}$ or $\ldots$ or $\left.A_{k}\right)=\operatorname{pr}\left(A_{1}\right)+\operatorname{pr}\left(A_{2}\right)+\ldots+\operatorname{pr}\left(A_{k}\right)$


## Proportions of HIV infections by country



## People vs. Collins

TABLE 4.7.2 Frequencies Assumed by the Prosecution

| Yellow car | $\frac{1}{10}$ | Girl with blond hair | $\frac{1}{3}$ |
| :--- | :---: | :--- | :---: |
| Man with mustache | $\frac{1}{4}$ | Black man with beard | $\frac{1}{10}$ |
| Girl with ponytail | $\frac{1}{10}$ | Interracial couple in car | $\frac{1}{1000}$ |

- The first occasion where a conviction was made in an American court of law, largely on statistical evidence, 1964. A woman was mugged and the offender was described as a wearing dark cloths, with blond hair in a pony tail who got into a yellow car driven by a black male accomplice with mustache and beard. The suspect brought to trial were picked out in a line-up and fit all of the descriptions. Using the product rule for probabilities an expert witness computed the chance that a random couple meets these characteristics, as computed the
$1: 12,000,000$.

Slide 52

## Formula summary cont.

## Conditional probability

- Definition:

$$
\operatorname{pr}(A \mid B)=\frac{\operatorname{pr}(A \text { and } B)}{\operatorname{pr}(B)}
$$

- Multiplication formula:

$$
\operatorname{pr}(A \text { and } B)=\operatorname{pr}(B \mid A) \operatorname{pr}(A)=\operatorname{pr}(A \mid B) \operatorname{pr}(B)
$$



## Bayesian Rule

- If $\left\{A_{1}, A_{2}, \ldots, A_{n}\right\}$ are a non-trivial partition of the sample space (mutually exclusive and $U A_{i}=S, P\left(A_{i}\right)>0$ ) then for any non-trivial event and $B(P(B)>0)$
$P\left(A_{i} \mid B\right)=P\left(A_{i} \cap B\right) / P(B)=\left[P\left(B \mid A_{i}\right) \times P\left(A_{i}\right)\right] / P(B)=$

$$
=\frac{P\left(B \mid A_{i}\right) \times P\left(A_{i}\right)}{\sum_{k=1}^{n} P\left(B \mid A_{k}\right) P\left(A_{k}\right)}
$$

## Classes vs. Evidence Conditioning

## - Classes: healthy(NC), cancer

- Evidence: positive mammogram (pos), negative mammogram (neg)
- If a woman has a positive mammogram result, what is the probability that she has breast cancer?
$P($ class $\mid$ evidence $)=\frac{P(\text { evidence } \mid \text { class }) \times P(\text { class })}{\sum_{\text {classes }} P(\text { evidence } \mid \text { class }) \times P(\text { class })}$ $P($ cancer $)=0.01$
$P($ pos $\mid$ cancer $)=0.8$
$P($ pos $\mid$ healthy $)=0.1 \quad \mathrm{P}(\mathrm{C} \mid \mathrm{P})=\mathrm{P}(\mathrm{P} \mid \mathrm{CC)} \times \mathrm{P}(\mathrm{C}) / \mathrm{P}(\mathrm{P}(\mathrm{PC)}) \times \mathrm{P}(\mathrm{C})+\mathrm{P}(\mathrm{P}(\mathrm{H}) \times \mathrm{P}(\mathrm{H})$
$P($ cancer $\mid$ pos $)=? \quad \mathrm{P}(C \mathrm{P})=0.8 \times 0.01 /[0.8 \times 0.01+0.1 \times 0.99]=$ ? $P($ cancer $\mid$ pos $)=$ ?


## Law of Total Probability

- If $\left\{A_{1}, A_{2}, \ldots, A_{n}\right\}$ are a partition of the sample space (mutually exclusive and $\cup A_{i}=S$ ) then for any event $B$

$$
P(B)=P\left(B \mid A_{1}\right) P\left(A_{1}\right)+P\left(B \mid A_{2}\right) P\left(A_{2}\right)+\ldots+P\left(B \mid A_{n}\right) P\left(A_{n}\right)
$$

Ex:
$P(B)=P\left(B \mid A_{1}\right) P\left(A_{1}\right)+$
$\boldsymbol{P}\left(B \mid A_{2}\right) \boldsymbol{P}\left(A_{2}\right)$


## Bayesian Rule

$$
P\left(A_{i}\right)=\frac{P\left(A_{i} \mid B\right) \times P\left(A_{i}\right)}{\sum_{k=1}^{n} P\left(B \mid A_{k}\right) P\left(A_{k}\right)} \quad \begin{array}{ll}
\boldsymbol{D}=\text { the test person has the disease. } \\
\boldsymbol{T}=\text { the test result is positive. }
\end{array}
$$

Ex: (Laboratory blood test) Assume: Find:
$\mathrm{P}($ positive Test $\mid$ Disease $)=0.95$
$\mathbf{P}$ (positive Test| no Disease) $=\mathbf{0 . 0 1}$
P(Disease|positive Test)=?
$\mathbf{P}(\mathbf{D} \mid \mathbf{T})=$ ?
$\mathrm{P}($ Disease $)=0.005$

$$
P(D \mid T)=\frac{P(D \cap T)}{P(T)}=\frac{P(T \mid D) \times P(D)}{P(T \mid D) \times P(D)+P\left(T \mid D^{c}\right) \times P\left(D^{C}\right)}
$$

$$
=\frac{0.95 \times 0.005}{0.95 \times 0.005+0.01 \times 0.995}=\frac{0.00475}{0.02465}=0.193
$$

## Bayesian Rule (different data/example!)

|  | True Disease State |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
|  |  | No Disease | Disease | Total |
|  | Negative | OK (0.98505) | False Negative II (0.00025) | 0.9853 |
|  | Positive | False Positive I $(0.00995)$ | OK (0.00475) | 0.0147 |
|  | Total | 0.995 | 0.005 | 1.0 |
| $P\left(T \bigcap D^{C}\right)=P\left(T \mid D^{C}\right) \times P\left(D^{C}\right)=0.01 \times 0.995=0.00995$ |  |  |  |  |

Power of Test $=\mathbf{1}-\boldsymbol{P}\left(\boldsymbol{T}^{C} \mid \boldsymbol{D}\right)=0.00025 / 0.005=0.95$
Sensitivity: TP/(TP+FN) $=0.00475 /(0.00475+0.00025)=0.95$
Specificity: TN/(TN+FP) $=0.98505 /(0.98505+0.00995)=0.99$

## Examples - Birthday Paradox

The Birthday Paradox: In a random group of N people, what is the change that at least two people have the same birthday?

- E.x., if $\mathrm{N}=23, \mathrm{P}>0.5$. Main confusion arises from the fact that in real life we rarely meet people having the same birthday as us, and we meet more than 23 people.
- The reason for such high probability is that any of the 23 people can compare their birthday with any other one, not just you comparing your birthday to anybody else's.
- There are N-Choose- $2=20 * 19 / 2$ ways to select a pair or people. Assume there are 365 days in a year, P(one-particular-pair-same-B-day) $=1 / 365$, and
- P (one-particular-pair-failure) $=1-1 / 365 \sim 0.99726$.
- For N=20, 20-Choose-2 = 190. $\mathrm{E}=\{$ No 2 people have the same birthday is the event all 190 pairs fail (have different birthdays)\}, then $\mathrm{P}(\mathrm{E})=\mathrm{P}(\text { failure })^{190}=0.99726^{190}=0.59$.
- Hence, P (at-least-one-success) $=1-0.59=0.41$, quite high.
- Note: for $\mathrm{N}=42 \rightarrow \mathrm{P}>0.9 \ldots$


The answer is: Binomial distribution

- The distribution of the number of heads in $n$ tosses of a biased coin is called the Binomial distribution.



## Binary random process

The biased-coin tossing model is a physical model for situations which can be characterized as a series of trials where:
■each trial has only two outcomes: success or failure;
$\square p=\mathrm{P}$ (success) is the same for every trial; and

- trials are independent.
- The distribution of $X=$ number of successes (heads) in $N$ such trials is

Binomial $(N, p)$

## Sampling from a finite population - <br> Binomial Approximation

If we take a sample of size $n$

- from a much larger population (of size $N$ )
- in which a proportion $p$ have a characteristic of interest, then the distribution of $X$, the number in the sample with that characteristic,
- is approximately $\operatorname{Binomial}(n, p)$.
- (Operating Rule: Approximation is adequate if $n / N<0.1$.)
- Example, polling the US population to see what proportion is/has-been married.


## Expected values

- The game of chance: cost to play:\$1.50; Prices $\{\$ 1, \$ 2, \$ 3\}$, probabilities of winning each price are $\{0.6,0.3,0.1\}$, respectively.
- Should we play the game? What are our chances of winning/loosing?



## Example

In the at least one of each or at most 3 children example, where $\mathrm{X}=$ \{number of Girls $\}$ we have:

| $\boldsymbol{X}$ | $\mathbf{0}$ | $\mathbf{1}$ | $\mathbf{2}$ | $\mathbf{3}$ |
| :---: | :---: | :---: | :---: | :---: |
| $\operatorname{pr}(x)$ | $\frac{1}{8}$ | $\frac{5}{8}$ | $\frac{1}{8}$ | $\frac{1}{8}$ |

$\mathrm{E}(X)=\sum_{x} x \mathrm{P}(x)$
$=0 \times \frac{1}{8}+1 \times \frac{5}{8}+2 \times \frac{1}{8}+3 \times \frac{1}{8}$
$=1.25$


Binomial Probabilities -
the moment we all have been waiting for!

- Suppose $\mathrm{X} \sim \operatorname{Binomial(n,~p),~then~the~probability~}$
$P(X=x)=\binom{n}{x} p^{x}(1-p)^{(n-x)}, \quad 0 \leq x \leq n$
- Where the binomial coefficients are defined by
$\binom{n}{x}=\frac{n!}{(n-x)!x!}, \quad n!=1 \times 2 \times 3 \times \ldots \times(n-1) \times n$


## Definition of the expected value, in general.

> - The expected value:
> $\mathrm{E}(\mathrm{X})=\sum_{\text {all } x} x \mathrm{P}(x)\left(=\int_{\text {all } X} x \mathrm{P}(x) d x\right)$
> $\bullet \quad=$ Sum of (value times probability of value)

The expected value and population mean
$\boldsymbol{\mu}_{\mathrm{x}}=\mathbf{E}(\boldsymbol{X})$ is called the mean of the distribution of $X$. $\mu_{X}=\mathbf{E}(\boldsymbol{X})$ is usually called the population mean.
$\mu_{\mathrm{x}}$ is the point where the bar graph of $\mathrm{P}(X=x)$ balances.

Population standard deviation

The population standard deviation is $\operatorname{sd}(X)=\sqrt{\mathrm{E}\left[(X-\mu)^{2}\right]}$

Note that if $X$ is a $R V$, then $(X-\mu)$ is also a $R V$, and so is $(X-\mu)^{2}$. Hence, the expectation, $\mathrm{E}\left[(\mathrm{X}-\mu)^{2}\right]$, makes sense.


Linear Scaling (affine transformations) $a X+b$

$$
\begin{aligned}
& \text { Why is that so? } \\
& \qquad \mathrm{E}(a \boldsymbol{X}+b)=\boldsymbol{a} \mathrm{E}(\boldsymbol{X})+b \quad \mathrm{SD}(a \boldsymbol{X}+b)=|\boldsymbol{a}| \mathrm{SD}(\boldsymbol{X}) \\
& E(a X+b)=\sum_{x=0}^{n}(a x+b) P(X=x)= \\
& n \\
& \sum_{x=0}^{n} a x P(X=x)+\sum_{x=0}^{n} b P(X=x)= \\
& a \sum_{x=0}^{n} x P(X=x)+b \sum_{x=0}^{n} P(X=x)= \\
& x=0 \\
& a E(X)+b \times 1=a E(X)+b .
\end{aligned}
$$

Population mean \& standard deviation

## Expected value:

$$
E(X)=\sum_{x} x P(X=x)
$$

Variance $\operatorname{Var}(X)=\sum_{x}(x-E(x))^{2} P(X=x)$

## Standard Deviation

$S D(X)=\sqrt{\operatorname{Var}(X)}=\sqrt{\sum_{x}(x-E(x))^{2} P(X=x)}$

## The Normal Distribution

Recall: in chapter 2 we used histograms to represent frequency distributions.

■ We can think of a histogram as an approximation of the true population distribution.

- A smooth curve representing a frequency distribution is called a density curve.

Linear Scaling (affine transformations) $a X+b$
And why do we care?

$$
\mathrm{E}(a \boldsymbol{X}+b)=\boldsymbol{a} \mathrm{E}(\boldsymbol{X})+b \quad \mathrm{SD}(a \boldsymbol{X}+b)=|\boldsymbol{a}| \mathrm{SD}(\boldsymbol{X})
$$

-E.g., say the rules for the game of chance we saw before change and the new pay-off is as follows: $\{\$ 0, \$ 1.50, \$ 3\}$, with probabilities of $\{0.6,0.3,0.1\}$, as before. What is the newly expected return of the game? Remember the old expectation was equal to the entrance fee of \$1.50, and the game was fair!

$$
Y=3(X-1) / 2
$$

$$
\{\$ 1, \$ 2, \$ 3\} \rightarrow\{\$ 0, \$ 1.50, \$ 3\},
$$

$$
E(Y)=3 / 2 E(X)-3 / 2=3 / 4=\$ 0.75
$$

And the game became clearly biased. Note how easy it is to compute $\mathrm{E}(\mathrm{Y})$.

## The Normal Distribution

## The Normal Distribution

The normal distribution is described by a unimodal, bell shaped, symmetric density curve


Area under density curve between $a$ and $b$ is equal to the proportion of Y values between a and b .

- The area under the whole curve is equal 1.0
- Each normal curve is characterized by it's $\mu$ and $\sigma$

- If random variable Y is normal with mean $\mu$ and standard deviation $\sigma$, we write

$$
\mathrm{Y} \sim \mathrm{~N}\left(\mu, \sigma^{2}\right)
$$

http://www.SOCR.ucla.edu/htmls/SOCR_Distributions.html

## The Normal Distribution

- A normal density curve can be summarized with the following formula:

$$
f(y)=\frac{1}{\sigma \sqrt{2 \pi}} e^{-\frac{1}{2}\left(\frac{y-\mu}{\sigma}\right)^{2}}
$$

- Every normal curve uses this formula, what makes them different is what gets plugged in for $\mu$ and $\sigma$
- Each normal curve is centered at $\mu$ and the width depends on $\sigma$
- $($ small $=$ tall, large $=$ short/wide $)$.


## Areas under the normal curve

- Because each normal curve is the result of a single formula the areas under the normal curve have been computed and tabulated for ease of use.
- The Standard Scale
- Any normal curve can be converted into a normal curve with
$\mu=0$ and $\sigma=1$. This is called the standard normal.


## Areas under the normal curve

The process of converting normal data to the standard scale is called standardizing.

- To convert $Y$ into $Z$ (a z-score) use the following formula:

$$
Z=\frac{Y-\mu}{\sigma}
$$

What does a z-score measure?

## Areas under the normal curve

- Table 3 (also in front of book) gives areas under the standard normal curve
Example: Find the area that corresponds to $z<2.0$
- Always good to draw a picture!

Example: Find the area that corresponds to $z>2.0$
Example: Find the area that corresponds to $1.0<z<2.0$
Example: Find the area that corresponds to $z<2.56$
Tables are antiquated $\rightarrow$ Use tools like SOCR (socr.ucla.edu)

## Relationship to the Empirical Rule

## Relationship to the Empirical Rule

$$
\bar{y} \pm s \approx 68 \%
$$

- Recall the Empirical Rule
$\bar{y} \pm 2 s \approx 95 \%$
$\bar{y} \pm 3 s \approx>99 \%$
- How can we use the standard normal distribution to verify the properties of the empirical rule?

The area: $-1<z<1=0.8413-0.1587=0.6826$
The area: $-2.0<z<2.0=0.9772-0.0228=0.9544$
The area: $-3.0<z<3.0=0.9987-0.0013=0.9974$

## Application to Data

## Application to Data

Example: Suppose that the average systolic blood pressure (SBP) for a Los Angeles freeway commuter follows a normal distribution with mean 130 mmHg and standard deviation 20 mmHg .

Find the percentage of LA freeway commuters that have a SBP less than 100.

- First step: Rewrite with notation!

$$
Y \sim N(130,20)
$$

- Second step: Identify what we are trying to solve! Find the percentage for: $y<100$
- Third step: Standardize

$$
Z=\frac{Y-\mu}{\sigma}=\frac{100-130}{20}=-1.5
$$

- Fourth Step: Use the standard normal table to solve $y<100=z<-1.5=0.0668$

Therefore approximately $6.7 \%$ of LA freeway commuters have SBP less than 100 mmHg .

## Application to Data

- Try these:
- What percentage of LA freeway commuters have SBP greater than 155 mmHg ?
- Between 120 and 175?
- Can also be interpreted in terms of probability.
- What is the probability that a randomly selected freeway commuter will have a SBP less than 100 ?

$$
P(Y<100)=0.0668
$$



## Assessing Normality

How can we tell if our data is normally distributed?

- Several methods for checking normality
- Mean = Median
- Empirical Rule
$\square$ Check the percent of data that within $1 \mathrm{sd}, 2 \mathrm{sd}$ and 3 sd
(should be approximately 68\%, 95\% and 99.7\%).
- Histogram or dotplot
- Normal Probability Plot
- Why do we care if the data is normally distributed?


Normal approximation to Binomial - Example

- Roulette wheel investigation:
- Compute $\mathrm{P}(\mathrm{Y}>=58)$, where $\mathrm{Y} \sim \operatorname{Binomial}(100,0.47)$
- The proportion of the Binomial $(100,0.47)$ population having more than 58 reds (successes) out of 100 roulette spins (trials).
- Since $n p=47>=10$ \& $n(1-p)=53>10$ Normal approx is justified.
- $\mathrm{Z}=(\mathrm{Y}-\mathrm{np}) / \mathrm{Sqrt(np(1-p))}=$

Roulette has 38 slots
(58-100*0.47)/Sqrt(100*0.47*0.53)=2.2

- $\mathrm{P}(\mathrm{Y}>=58) \leftrightarrow \quad \mathrm{P}(\mathrm{Z}>=2.2)=0.0139$
- True $P(Y>=58)=0.0177$, using SOCR (demo!)
- Binomial approx useful when no access to SOCR available or when $N$ is large!


## Normal Probability Plots

- A normal probability plot is a graph that is used to assess normality in a data set.
- When we look at a normal plot we want to see a straight line.
- This means that the distribution is approximately normal.
- Sometimes easier to see if a line is straight, than if a histogram is bell shaped.


## Normal Probability Plots

Example: height example from book p.134-135
Suppose we have the height for 11 women.

| height (in) | Nscore |  |
| :--- | :--- | :--- |
| 61.0 | -1.59322 | Calculated using |
| 62.5 | -1.06056 | SOCR, slightly |
| 63.0 | -0.72791 | different than |
| 64.0 | -0.46149 | formula from text. |
| 64.5 | -0.22469 |  |
| 65.0 | 0.00000 |  |
| 66.5 | 0.22469 |  |
| 67.0 | 0.46149 |  |
| 68.0 | 0.72791 |  |
| 68.5 | 1.06056 |  |
| 70.5 | 1.59322 |  |
|  |  | Slide 96 |




