UCLA STAT 13

Introduction to Statistical Methods for the Life and Health Sciences

Instructor: Ivo Dinov,

Asst. Prof. of Statistics and Neurology

Teaching Assistants:

Jacquelina Dacosta \& Chris Barr

University of California, Los Angeles, Fall 2006
http://www.stat.ucla.edu/~dinov/courses_students.html

Sampling Distributions

Definition: Sampling Variability is the variability among random samples from the same population.

- A probability distribution that characterizes some aspect of sampling variability is called a sampling distribution.
- tells us how close the resemblance between the sample and the population is likely to be.
- We typically construct a sampling distribution for a statistic.
- Every statistics has a sampling distribution.

The Meta-Experiment

- Meta-experiments are important because probability can be interpreted as the long run relative frequency of the occurrence of an event.
- Meta-experiments also let us visualize sampling distributions.
\square and therefore understand the variability among the many random samples of a meta-experiment.

Chapter 5

 Sampling Distributions

Dichotomous Observations

- Dichotomous - two outcomes
- (yes or no, good or evil, etc...)
- We use the following notation for a dichotomous outcome

P population proportion
$\hat{p} \quad$ sample proportion

- The big question is how close is \hat{p} to P ?
- To determine this we need to examine the sampling distribution of \hat{p}
- What we want to know is:
- if we took many samples of size n and observed \hat{p} each time, how would those values of be distributed around p ?

Dichotomous Observations

Example: Suppose we would like to estimate the true proportion of male students at UCLA. We could take a random sample of 50 students and calculate the sample proportion of males.

- What is the correct notation for:
\square the true proportion of males?
- the sample proportion of males?
- Suppose we repeat the experiment over and over. Would we get the same proportion of males for the second sample?

An Application of a Sampling Distribution

Example: Mendel's pea experiment. Suppose a tall offspring is the event of interest and that the true proportion of tall peas (based on a $3: 1$ phenotypic ratio) is $3 / 4$ or $p=$ 0.75 . If we were to randomly select samples with $n=10$ and $p=0.75$ we could create a probability distribution as

An Application of a Sampling Distribution				
Example: Mendel's pea experiment. Suppose a tall offspring is the event of interest and that the true proportion of tall peas (based on a $3: 1$ phenotypic ratio) is $3 / 4$ or $p=$ 0.75 . If we were to randomly select samples with $n=10$ and $p=0.75$ we could create a probability distribution as				
follows:	\hat{p} 0.0	$\begin{gathered} \text { Number } \\ \text { Tall } \\ 0 \end{gathered}$	Number Dwarf 10	Probability 0.000
Lab Mendel Pea Experiment.html	0.1	1	9	0.000
(work out in discussion/lab)	0.2 0.3	${ }_{3}$	8	0.000 0.003
	0.4 0.5	4 5	6 5	0.016 0.058
Validate using:	0.6	6	4	0.146
E.g., $\mathrm{B}(\mathrm{n}=10, \mathrm{p}=0.75, \mathrm{a}=6, \mathrm{~b}=6)=0.146$	0.7 0.8	7	3 2	0.250 0.282
	0.9 1.0	9 10	1	0.188 0.056
Slide 9 stoulsuciavio				

An Application of a Sampling Distribution

- If we think about this in terms of a meta-experiment and we sample 10 offspring over and over, about 5.8% of the \hat{p} 's will be 0.5 .
- This is the sampling distribution of sample proportion of tall offspring is the distribution of in repeated samples of size 10.
- If we take a random sample of size 10 , what is the probability that six or more offspring are tall?

$$
P(\hat{p} \geq 0.6)=0.146+0.250+0.282+0.188+0.056
$$

$$
=0.922
$$

Reece's Pieces Experiment

Example: Suppose we would like to estimate the true proportion of orange reece's pieces in a bag. To investigate we will take a random sample of 10 reece's pieces and count the number of orange. Next we will make an approximation to a sampling distribution with our class results.
What you need to calculate:

- the number of orange
- the sample proportion of orange (number of orange/10)

An Application of a Sampling Distribution

- What is the probability that 5 are tall and 5 are dwarf?
$P(5$ tall and 5 dwarf $)=P(\hat{p}=5 / 10)$

$$
=\mathrm{P}(\hat{p}=0.5)
$$

$$
=0.058
$$

We can also use our sampling distribution of to estimate how much sampling error there is within 5 percentage points of p. Because we knew p from the previous example ($p=0.75$), we might want to estimate:

$$
\mathrm{P}(0.7 \leq \hat{p} \leq 0.8)
$$

$=0.250+0.282=0.532$
There is a 53% chance that for a sample of size $10, \hat{p}$ will be within ± 0.05 of p.
This seems a little crazy, why?

\hat{p}	Number Tall	Number Dwarf	Probability
0.0	0	10	0.000
0.1	1	9	0.000
0.2	2	8	0.000
0.3	3	7	0.003
0.4	4	6	0.016
0.5	5	5	0.058
0.6	6	4	0.146
0.7	7	3	0.250
0.8	8	2	0.282
0.9	9	1	0.188
1.0	10	0	0.056
$\mathbf{1 3}$			

Sample Size

- As n gets larger, \hat{p} will become a better estimate of p.
- Just to show...

\mathbf{N}	$\mathbf{P}(\mathbf{0 . 7} \leq \hat{p} \mathbf{0} \leq \mathbf{0 . 8})$
10	0.53
20	0.673
50	0.798

*These calculations were done using the SOCR binomial distribution Calculator.
http://socr.stat.ucla.edu/Applets.dir/Normal_T_Chi2_F_Tables.htm
E.g., $B(n=20, p=0.75, a=0.7 \times 20=14, b=0.8 \times 20=16)=0.5606$ THE POINT: A larger sample improves the chance that \hat{p} is close to p .

- Caution: this doesn't necessarily mean that the estimate will be closer to p, only that there is a better chance that it will be close to p. Slide 15

