### UCLA STAT 13

Introduction to Statistical Methods for the Life and Health Sciences

> Instructor: IVO Dinov, Asst. Prof. of Statistics and Neurology

### Teaching Assistants:

### Jacquelina Dacosta & Chris Barr

University of California, Los Angeles, Fall 2006 http://www.stat.ucla.edu/~dinov/courses\_students.html Chapter 5 Sampling Distributions

### **Sampling Distributions**

• **Definition:** Sampling Variability is the variability among random samples from the same population.

• A probability distribution that characterizes some aspect of sampling variability is called a sampling distribution.

tells us how close the resemblance between the sample and the population is likely to be.

• We typically construct a sampling distribution for a statistic.

Every statistics has a sampling distribution.

# <section-header>**Dual of the problem is an explosible samples that might be drawn from to expoulation (infinity repetitions).Bother words if we were to repeatedly take samples of the same size from the same population, over and over.Description of the same population (over and over and**

### The Meta-Experiment

• Meta-experiments are important because probability can be interpreted as the long run relative frequency of the occurrence of an event.

• Meta-experiments also let us visualize sampling distributions.

and therefore understand the variability among the many random samples of a meta-experiment.

### **Dichotomous Observations**

Dichotomous - two outcomes
(yes or no, good or evil, etc...)

• We use the following notation for a dichotomous outcome

- P population proportion
- $\hat{p}$  sample proportion
- The big question is how close is  $\hat{p}$  to P?

• To determine this we need to examine the sampling distribution of  $\hat{p}$ 

What we want to know is:

if we took many samples of size n and observed  $\hat{p}$  each time, how would those values of be distributed around p?

### **Dichotomous Observations**

**Example**: Suppose we would like to estimate the true proportion of male students at UCLA. We could take a random sample of 50 students and calculate the sample proportion of males.

- What is the correct notation for:
  - the true proportion of males?
  - the sample proportion of males?

• Suppose we repeat the experiment over and over. Would we get the same proportion of males for the second sample?

### **Reece's Pieces Experiment**

**Example**: Suppose we would like to estimate the true proportion of orange reece's pieces in a bag. To investigate we will take a random sample of 10 reece's pieces and count the number of orange. Next we will make an approximation to a sampling distribution with our class results.

What you need to calculate:

- the number of orange
- the sample proportion of orange (number of orange/10)

An Application of a Sampling Distribution

**Example**: Mendel's pea experiment. Suppose a tall offspring is the event of interest and that the true proportion of tall peas (based on a 3:1 phenotypic ratio) is 3/4 or p = 0.75. If we were to randomly select samples with n = 10 and p = 0.75 we could create a probability distribution as follows:

|                                                                  |     | ran | Dwarr |       |
|------------------------------------------------------------------|-----|-----|-------|-------|
|                                                                  | 0.0 | 0   | 10    | 0.000 |
| Lab Mandal Day Engening and Istarl                               | 0.1 | 1   | 9     | 0.000 |
| Lab_Mendel_Pea_Experiment.ntml                                   | 0.2 | 2   | 8     | 0.000 |
| (work out in discussion/lab)                                     | 0.3 | 3   | 7     | 0.003 |
| ()                                                               | 0.4 | 4   | 6     | 0.016 |
|                                                                  | 0.5 | 5   | 5     | 0.058 |
| Validate using:                                                  | 0.6 | 6   | 4     | 0.146 |
| http://socr.stat.ucla.edu/Applets.dir/Normal_T_Chi2_F_Tables.htm | 0.7 | 7   | 3     | 0.250 |
| E.g., $B(n=10, p=0.75, a=6, b=6)=0.146$                          | 0.8 | 8   | 2     | 0.282 |
|                                                                  | 0.9 | 9   | 1     | 0.188 |
|                                                                  | 1.0 | 10  | 0     | 0.056 |

## An Application of a Sampling Distribution

• What is the probability that 5 are tall and 5 are dwarf?

P(5 tall and 5 dwarf) = P( $\hat{p} = 5/10$ )

### $= P(\hat{p} = 0.5)$

| = 0.058 |                |                 |             |  |
|---------|----------------|-----------------|-------------|--|
| p       | Number<br>Tall | Number<br>Dwarf | Probability |  |
| 0.0     | 0              | 10              | 0.000       |  |
| 0.1     | 1              | 9               | 0.000       |  |
| 0.2     | 2              | 8               | 0.000       |  |
| 0.3     | 3              | 7               | 0.003       |  |
| 0.4     | 4              | 6               | 0.016       |  |
| <br>0.5 | 5              | 5               | 0.058       |  |
| 0.6     | 6              | 4               | 0.146       |  |
| 0.7     | 7              | 3               | 0.250       |  |
| 0.8     | 8              | 2               | 0.282       |  |
| 0.9     | 9              | 1               | 0.188       |  |
| 1.0     | 10             | 0               | 0.056       |  |
|         | C1: J .        | 10              |             |  |

### An Application of a Sampling Distribution

• If we think about this in terms of a meta-experiment and we sample 10 offspring over and over, about 5.8% of the  $\hat{p}$  's will be 0.5.

This is the sampling distribution of sample proportion of tall offspring is the distribution of in repeated samples of size 10.

• If we take a random sample of size 10, what is the probability that six or more offspring are tall?

 $P(\hat{p} \ge 0.6) = 0.146 + 0.250 + 0.282 + 0.188 + 0.056$ 

= 0.922

Slide 11 Star 13



| Re | latic | onship | to Sta | tistical | Inference |
|----|-------|--------|--------|----------|-----------|
|----|-------|--------|--------|----------|-----------|

• We can also use our sampling distribution of to estimate how much sampling error there is within 5 percentage points of p. Because we knew p from the previous example (p=0.75), we might want to estimate:  $P(0.7 \le \hat{p} \le 0.8) = 0.522$ 

| = 0.250 + 0.282 = 0.532            | p   | Number<br>Tall | Number<br>Dwarf | Probability |
|------------------------------------|-----|----------------|-----------------|-------------|
| Thora is a 52% chance that         | 0.0 | 0              | 10              | 0.000       |
| There is a 55% chance that         | 0.1 | 1              | 9               | 0.000       |
| for a sample of size 10, $\hat{p}$ | 0.2 | 2              | 8               | 0.000       |
| will be within + 0.05 of p         | 0.3 | 3              | 7               | 0.003       |
| will be within $\pm 0.05$ of p.    | 0.4 | 4              | 6               | 0.016       |
|                                    | 0.5 | 5              | 5               | 0.058       |
| This seems a little grant why?     | 0.6 | 6              | 4               | 0.146       |
| This seems a little crazy, why?    | 0.7 | 7              | 3               | 0.250       |
|                                    | 0.8 | 8              | 2               | 0.282       |
|                                    | 0.9 | 9              | 1               | 0.188       |
|                                    | 1.0 | 10             | 0               | 0.056       |
| Slide                              | 13  | Stat 13. UCL   | A. Ivo Dinov    |             |

# **Relationship to Statistical Inference** • So far we have been using p to determine the sampling distribution of $\hat{p}$ . • Why sample for $\hat{p}$ when we already know p? We don't need to know p to get a good estimate (this will come later).

Slide 14

| Sample Size                                                                                                                                                                         | •                          |                                                                                 |  |  |  |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|---------------------------------------------------------------------------------|--|--|--|--|
| • As n gets larger, $\hat{p}$ will become a better estimate of p.                                                                                                                   |                            |                                                                                 |  |  |  |  |
| Just to show                                                                                                                                                                        | N<br>10<br>20<br>50<br>100 | <b>P(0.7 <u>&lt;</u> <sup>p̂</sup> ≤ 0.8)</b><br>0.53<br>0.56<br>0.673<br>0.798 |  |  |  |  |
| *These calculations were done using the SOCR binomial distribution<br>Calculator.<br>http://socr.stat.ucla.edu/Applets.dir/Normal_T_Chi2_F_Tables.htm                               |                            |                                                                                 |  |  |  |  |
| E.g., B(n=20, p=0.75, a=0.7x20=14, b=0.8x20=16)=0.5606<br><u>THE POINT</u> : A larger sample improves the chance that $\hat{p}$<br>is close to p.                                   |                            |                                                                                 |  |  |  |  |
| Caution: this doesn't necessarily mean that the estimate will be<br>closer to p, only that there is a better chance that it will be close to p.<br>Slide 15 Start B. UCLA the Dimer |                            |                                                                                 |  |  |  |  |