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Chapter 9 

Paired Data
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In chapter 7 we discussed how to compare 
two independent samples

In chapter 9 we discuss how to compare two 
samples that are paired

In other words the two samples are not 
independent, Y1 and Y2 are linked in some way, 
usually by a direct relationship

For example, measure the weight of subjects 
before and after a six month diet

Comparison of Paired Samples
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Paired data

To study paired data we would like to 
examine the differences between each pair

d = Y1 - Y2
each Y1, Y2 pair will have a difference calculated

With the paired t test we would like to 
concentrate our efforts on this difference data

we will be calculating the mean of the 
differences and the standard error of the 
differences
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Paired data

The mean of the differences is calculated 
just like the one sample mean we calculated in 
chapter 2

it also happens to be equal to the difference in 
the sample means – this is similar to the t test

This sample mean differences is an estimate 
of the population mean difference μd= μ1 – μ2
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Paired data

Because we are focusing on the differences, we can 
use the same reasoning as we did for a single sample 
in chapter 6 to calculate the standard error 

aka. the standard deviation of the sampling distribution of 

Recall: 

Using similar logic:

where sd is the standard deviation of the differences and 
nd is the sample size of the differences
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Paired data

Example:  Suppose we measure the thickness of 
plaque (mm) in the carotid artery of 10 randomly 
selected patients with mild atherosclerotic disease.  
Two measurements are taken, thickness before 
treatment with Vitamin E (baseline) and after two 
years of taking Vitamin E daily.

What makes this paired data 
rather than independent data?

Why would we want to use 
pairing in this example?

Subject Before After Difference
1 0.66 0.60 0.06 
2 0.72 0.65 0.07 
3 0.85 0.79 0.06 
4 0.62 0.63 -0.01 
5 0.59 0.54 0.05 
6 0.63 0.55 0.08 
7 0.64 0.62 0.02 
8 0.70 0.67 0.03 
9 0.73 0.68 0.05 

10 0.68 0.64 0.04 
mean 0.682 0.637 0.045 

sd 0.0742 0.0709 0.0264 
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Paired data
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Paired data

Calculate the mean of the differences and the 
standard error for that estimate
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Paired CI for  μd

A 100(1 - α )% confidence interval for μd

where df = nd - 1

Very similar to the one sample confidence 
interval we learned in section 6.3, but this time we 
are concentrating on a difference column rather 
than a single sample

)()(
2 dSEdftd α±
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Paired CI for  μd

Example:  Vitamin E (cont’)

Calculate a 90% confidence interval for the true mean 
difference in plaque thickness before and after 
treatment with Vitamin E
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Paired CI for  μd

CONCLUSION:  We are highly confident, at 
the 0.10 level, that the true mean difference in 
plaque thickness before and after treatment 
with Vitamin E is between 0.03 mm and 0.06 
mm.

Great, what does this really mean?

Does the zero rule work on this one?
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Paired t test

Of course there is also a hypothesis test for paired data

#1 Hypotheses:
Ho: μd = 0
Ha: μd != 0    or      Ha: μd < 0   or      Ha: μd > 0

#2 test statistic
Where df = nd – 1

#3 p-value and #4 conclusion similar idea to that of the 
independent t test

d
s SE

dt 0−
=
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Paired t test

Example:  Vitamin E (cont’)
Do the data provide enough evidence to indicate that 

there is a difference in plaque before and after 
treatment with vitamin E for two years?  Test using    
α = 0.10

Ho: μd = 0 (thickness in plaque is the same before and after 
treatment with Vitamin E )

Ha: μd != 0 (thickness in plaque after treatment is different than 
before treatment with Vitamin E )

df = 10 – 1 = 9
p < 2(0.0005) = 0.001, so we reject Ho. 402.5

00833.0
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Paired t test

CONCLUSION:  These data show that the true 
mean thickness of plaque after two years of 
treatment with Vitamin E is statistically 
significantly different than before the treatment
(p < 0.001).  

In other words, vitamin E appears to be a effective in 
changing carotid artery plaque after treatment

May have been better to conduct this as an upper-
tailed test because we would hope that vitamin E will 
reduce clogging 

however, researchers need to make this decision before 
analyzing data
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Paired t test
Paired T-Test and CI: Before, After 
Paired T for Before - After

N      Mean     StDev SE Mean
Before      10  0.682000  0.074207  0.023466
After       10  0.637000  0.070875  0.022413
Difference  10  0.045000  0.026352  0.008333
90% CI for mean difference: 

(0.029724, 0.060276)
T-Test of mean difference = 0 

(vs not = 0): 
T-Value = 5.40  P-Value = 0.000
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Results of Ignoring Pairing

Suppose we accidentally analyzed the groups 
independently (like an independent t-test) rather 
than  a paired test?

keep in mind this would be an incorrect way of 
analyzing the data

How would this change our results?
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Results of Ignoring Pairing

Example Vitamin E (con’t)
Calculate the test statistic and p-value as if this were an independent 
t test 

df = 17
2(0.05) < p < 2(0.1)

0.10 < p < 0.2 Fail To Reject Ho!
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Results of Ignoring Pairing

What happens to a CI?
Calculate a 90% confidence interval for μ1 - μ2

How does the significance of this interval compare to the paired 90% 
CI (0.03 mm and 0.06 mm)?   
Why is this happening?
Is there anything better about the independent CI?  Is it worth it in 
this situation?
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Paired T for Before - After
N      Mean     StDev SE Mean

Before      10  0.682000  0.074207  0.023466
After       10  0.637000  0.070875  0.022413
Difference  10  0.045000  0.026352  0.008333
90% CI for mean difference: (0.029724, 0.060276)
T-Test of mean difference = 0 (vs not = 0): 
T-Value = 5.40  P-Value = 0.000

Paired T-Test and CI: Before, After

Two Two-Sample T-Test and CI: Before, After
Two-sample T for Before vs After

N    Mean   StDev SE Mean
Before  10  0.6820  0.0742    0.023
After   10  0.6370  0.0709    0.022
Difference = mu (Before) - mu (After)
Estimate for difference:  0.045000
90% CI for difference:  (-0.011450, 0.101450)
T-Test of difference = 0 (vs not =): 
T-Value = 1.39  P-Value = 0.183  DF = 17
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Why would the SE be smaller for correctly paired data?  
If we look at the within each sample at the data we notice 

variation from one subject to the next
This information gets incorporated into the SE for the 

independent t-test via s1 and s2

The original reason we paired was to try to control for some of
this inter-subject variation

This inter-subject variation has no influence on the SE for the 
paired test because only the differences were used in the 
calculation.

The price of pairing is smaller df.  
However, this can be compensated with a smaller SE if we had 

paired correctly.

Results of Ignoring Pairing
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Conditions we must meet for the paired t test 
to be valid:

It must be reasonable to regard the differences as 
a random sample from some large population

The population distribution of the differences must 
be normally distributed.  

The methods are approximately valid if the population is 
approximately normal or the sample size nd is large.

These conditions are the same as the conditions 
we discussed in chapter 6.

Conditions for the validity of the paired t test
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Conditions for the validity of the paired t test

How can we check:
check the study design to assure that the 

differences are independent (ie no hierarchical 
structure within the d's) 

create normal probability plots to check normality 
of the differences

NOTE:  p.355 summary of formulas
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The Paired Design

Ideally in the paired design the members of a pair are 
relatively similar to each other

Common Paired Designs
Randomized block experiments with two units per block
Observational studies with individually matched controls
Repeated measurements on the same individual
Blocking by time – formed implicitly when replicate 

measurements are made at different times.

IDEA of pairing: members of a pair are similar to each 
other with respect to extraneous variables
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The Paired Design

Example:  Vitamin E (cont’)
Same individual measurements made at different 

times before and after treatment (controls for within 
patient variation).

Example:  Growing two types of bacteria cells 
in a petri dish replicated on 20 different days.  

These are measurements on 2 different bacteria 
at the same time (controls for time variation).
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Purpose of Pairing

Pairing is used to reduce bias and increase precision
By matching/blocking we can control variation due to 

extraneous variables.

For example, if two groups are matched on age, then 
a comparison between the groups is free of any bias 
due to a difference in age distribution

Pairing is a strategy of design, not analysis 
Pairing needs to be carried out before the data are observed
It is not correct to use the observations to make pairs after 

the data has been collected
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Paired vs. Unpaired

If the observed variable Y is not related to factors 
used in pairing, the paired analysis may not be effective

For example, suppose we wanted to match subjects on 
race/ethnicity and then we compare how much ice cream men 
vs. women can consume in an hour

The choice of pairing depends on practical 
considerations (feasibility, cost, etc…) and on precision 
considerations

If the variability between subjects is large, then pairing is 
preferable

If the experimental units are homogenous then use the 
independent t
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The Sign Test

The sign test is a non-parametric version of the 
paired t test

We use the sign test when pairing is appropriate, but 
we can’t meet the normality assumption required for the 
t test

The sign test is not very sophisticated and therefore 
quite easy to understand

Sign test is also based on differences
d = Y1 – Y2

The information used by the sign test from this difference is the 
sign of d (+ or -)
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The Sign Test

#1 Hypotheses:
Ho: the distributions of the two groups is the same
Ha: the distributions of the two groups is different 
or Ha: the distribution of group 1 is less than group 2
or Ha: the distribution of group 1 is greater than group 2

#2 Test Statistic Bs
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The Sign Test - Method

#2 Test Statistic Bs:
1.  Find the sign of the differences
2.  Calculate N+ and N-

3. If Ha is non-directional, Bs is the larger of N+ and N-

If Ha is directional, Bs is the N that jives with the
direction of Ha:
if Ha: Y1<Y2 then we expect a larger N-,
if Ha: Y1>Y2 then we expect a larger N+.

NOTE:  If we have a difference of zero it is not included in N+ or N-, therefore nd
needs to be adjusted
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The Sign Test

#3 p-value:
Table 7 p.684
Similar to the WMW
Use the number of pairs with “quality information”
http://www.socr.ucla.edu/htmls/SOCR_Analyses.html

#4 Conclusion:
Similar to the Wilcoxon-Mann-Whitney Test
Do NOT mention any parameters!
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The Sign Test

Example: 12 sets of identical 
twins are given psychological 
tests to determine whether the 
first born of the set tends to be 
more aggressive than the 
second born.  Each twin is 
scored according to 
aggressiveness, a higher score 
indicates greater 
aggressiveness.  

Because of the natural 
pairing in a set of twins these 
data can be considered paired.  

Set 1st born 2nd born Sign of d
1 86 88 - 
2 71 77 - 
3 77 76 + 
4 68 64 + 
5 91 96 - 
6 72 72 Drop 
7 77 65 + 
8 91 90 + 
9 70 65 + 
10 71 80 - 
11 88 81 + 
12 87 72 + 
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The Sign Test (cont’)

Do the data provide sufficient evidence to indicate that 
the first born of a set of twins is more aggressive than 
the second?  Test using α = 0.05.

Ho:  The aggressiveness is the same for 1st born and 2nd born 
twins
Ha:  The aggressiveness of the 1st born twin tends to be more 
than 2nd born.

NOTE: Directional Ha (we’re expecting higher scores for 
the 1st born twin), this means we predict that most of the 
differences will be positive
N+ = number of positive = 7
N- = number of negative = 4
nd = number of pairs with useful info = 11 
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The Sign Test

Bs = N+ = 7 (because of directional alternative) 

P > 0.10, Fail to reject Ho

CONCLUSION:  These data show that the aggressiveness of 1st born 
twins is not significantly greater than the 2nd born twins (P > 0.10).

X~B(11, 0.5)
P(X>=7)=0.2744140625
http://socr.stat.ucla.edu/htmls/SOCR_Distributions.html (Binomial Distribution)
http://socr.stat.ucla.edu/Applets.dir/Normal_T_Chi2_F_Tables.htm

Stat 13, UCLA, Ivo DinovSlide 35

The Sign Test

Hold on did we actually need to carry out a sign test?  
What should we have checked first?
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Practice

Suppose Ha: one-tailed, nd = 11

And Bs = 10

Find the appropriate p-value
0.005 < p < 0.01

Pick the smallest p-value for Bs = 10 and bracket
NOTE:  Distribution for the sign test is 

discrete, so probabilities are somewhat smaller 
(similar to Wilcoxon-Mann-Whitney)
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Applicability of the Sign Test

Valid in any situation where d’s are 
independent of each other

Distribution-free, doesn’t depend on 
population distribution of the d’s

although if d’s are normal the t-test is more 
powerful

Can be used quickly and can be applied 
on data that do not permit a t-test
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Applicability of the Sign Test

Example: 10 randomly selected rats were chosen to see if 
they could be trained to escape a maze.  The rats were 
released and timed (sec.) before and after 2 weeks of 
training.  Do the data provide evidence to suggest that the 
escape time of rats is different after 2 weeks of training?  
Test using  α = 0.05. Rat Before After Sign of d

1 100 50 + 
2 38 12 + 
3 N 45 + 
4 122 62 + 
5 95 90 + 
6 116 100 + 
7 56 75 - 
8 135 52 + 
9 104 44 + 

10 N 50 + 
N denotes a rat that could not escape 
the maze. 
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Applicability of the Sign Test

Ho:  The escape times (sec.) of rats are the same 
before and after training.

Ha:  The escape times (sec.) of rats are different 
before and after training.

N+ = 9;  N- = 1; nd = 10

Bs = larger of N+ or N- = 9

0.01 < p < 0.05, reject Ho

CONCLUSION:  These data show that the escape 
times (sec.) of rats before training are different from 
the escape times after training (0.01 < p < 0.05).

X~Bin(10, 0.5)
P(X>=9)=0.0107421875
http://socr.stat.ucla.edu/Applets.dir/Normal_T_Chi2_F_Tables.htm
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Further Considerations in Paired Experiments

Many studies compare measurements 
before and after treatment

There can be difficulty because the effect of 
treatment could be confounded with other changes 
over time or outside variability

for example suppose we want to study a cholesterol 
lowering medication.  Some patients may have a 
response because they are under study, not because of 
the medication.

We can protect against this by using 
randomized concurrent controls
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Further Considerations in Paired Experiments

Example:  A researcher conducts a study to examine the 
effect of a new anti-smoking pill on smoking behavior.  
Suppose he has collected data on 25 randomly selected 
smokers, 12 will receive treatment (a treatment pill once a 
day for three months) and 13 will receive a placebo (a 
mock pill once a day for three months).  The researcher 
measures the number of cigarettes smoked per week 
before and after treatment, regardless of treatment group.  
Assume normality.  The summary statistics are:

# cigs / week      
 n beforey  aftery  d  dSE  

Treatment 12 163.92 152.50 11.42 1.10 
Placebo 13 163.08 160.23 2.85 1.29 

  
Stat 13, UCLA, Ivo DinovSlide 42

Further Considerations in Paired Experiments

Test to see if there is a difference in number of cigs 
smoked per week before and after the new 
treatment, using     = 0.05 

Ho:  μd = 0 

Ha: μd != 0

df = nd – 1 = 12 – 1 = 11
p < (0.0005)2 = 0.001, reject Ho.
These data show that there is a statistically significant 
difference in the true mean number of cigs/week before and 
after treatment with the new drug

α

38.10
10.1
42.11

==st

# cigs / week    
 n d  dSE  

Treatment 12 11.42 1.10 
Placebo 13 2.85 1.29 
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Further Considerations in Paired Experiments

This result does not necessarily demonstrate 
the effectiveness of the new medication

Smoking less per week could be due to the fact that 
patients know they are being studied (i.e., difference 
statistically significantly different from zero)

All we can say is that he new medication appears to 
have a significant effect on smoking behavior
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Further Considerations in Paired Experiments

Test to see if there is a difference in number of cigs 
smoked per week before and after in the placebo
group, using  α = 0.05

Ho: μd = 0 

Ha: μd != 0

df = nd – 1 = 13 – 1 = 12
(0.02)2 < p < (0.025)2 
0.04 < p < 0.05 , reject Ho

These data show that there is a statistically significant 
difference in the true mean number of cigs/week before and 
after treatment with the a placebo

21.2
29.1
85.2

==st

# cigs / week    
 n d  dSE  

Treatment 12 11.42 1.10 
Placebo 13 2.85 1.29 
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Further Considerations in Paired Experiments

Patients who did not receive the new drug 
also experienced a statistically significant drop 
in the number of cigs smoked per week

This doesn’t necessarily mean that the treatment 
was a failure because both groups had a significant 
decrease

We need to isolate the effect of therapy on the 
treatment group 

Now the question becomes: was the drop in # of 
cigs/week significantly different between the 
medication and placebo groups?

How can we verify this?
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Further Considerations in Paired Experiments

Test to see if there is the difference in number of cigs 
smoked per week before and after treatment was significant 
between the treatment and placebo groups, using  α = 
0.05

Ho:   μd = 0 

Ha: μd != 0

df = 22 
p < (0.0005)2 = 0.001, reject Ho

These hypothesis tests provide strong evidence that the new anti-
smoking medication is effective.  If the experimental design had not 
included the placebo group, the last comparison could not have been 
made and we could not support the efficacy of the drug. 
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# cigs / week n d  dSE  
Treatment 12 11.42 1.10 
Placebo 13 2.85 1.29 
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Reporting of Paired Data

Common in publications to report the 
mean and standard deviation of the two 
groups being compared

In a paired situation it is important to 
report the mean of the differences as well 
as the standard deviation of the differences

Why?
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Limitations of

There are two major limitations of 
1.  we are restricted to questions concerning 

When some of the differences are positive and some 
are negative, the magnitude of  does not reflect the 
“typical” magnitude of the differences.

Suppose we had the following differences: +40, -35, 
+20, -42, +61, -31. 

What is the problem with this? Small average, but 
differences are large.

What other statistic would help the reader recognize 
this issue?

d

d

d

Descriptive Statistics: data 

Variable  N  N*  Mean SE Mean  StDev Minimum     Q1  Median    Q3  Max
data      6   0  2.17 17.9   43.9 -42.0  -36.8   -5.50  45.3  61.0
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Limitations of

2.  limited to questions about aggregate differences
If treatment A is given to one group of subjects and 

treatment B is given to a second group of subjects, it is 
impossible to know how a person in group A would have 
responded to treatment B.  

Need to beware of these viewpoints and 
take time to look at the data, not just the 
summaries

To verify accuracy we need to look at the 
individual measurements.  

Accuracy implies that the d’s are small

d
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Inference for Proportions

We have discussed two major methods of data 
analysis:

Confidence intervals: quantitative and categorical data
Hypothesis Testing: quantitative data

In chapter 10, we will be discussing hypothesis tests 
for categorical variables

RECALL:  Categorical data
Gender (M or F)
Type of car (compact, mid-size, luxury, SUV, Truck)

We typically summarize this type of data with 
proportions, or probabilities of the various categories


