UCLA STAT 13

Introduction to Statistical Methods for the Life and Health Sciences

Instructor: Ivo Dinov,

Asst. Prof. of Statistics and Neurology

Teaching Assistants:

Jacquelina Dacosta \& Chris Barr

University of California, Los Angeles, Fall 2006
http://www.stat.ucla.edu/~dinov/courses_students.html

Chapter 10

Chi-Square Test
Relative Risk/Odds Ratios

The χ^{2} Goodness of Fit Test

- Like other test statistics a smaller value for indicates that the data agree with H_{0}
- If there is disagreement from H_{0}, the test stat will be large because the difference between the observed and expected values is large
- \#3 P-value:
- Table 9, p. 686

■http://socr.stat.ucla.edu/htmls/SOCR_Distributions.html

- Uses df (similar idea to the t table)
\square After first $\mathrm{n}-1$ categories have been specified, the last can be determined because the proportions must add to 1
- One tailed distribution, not symmetric (different from t table)
- \#4 Conclusion similar to other conclusions (TBD)

The χ^{2} Goodness of Fit Test

Suppose the data were:
$\mathrm{N}=1064$ (Total)
Tall $=787$ These are the O's (observed values)
Dwarf $=277$
To calculate the E's (expected values), we will take the hypothesized proportions under H_{0} and multiply them by the total sample size

Tall $=(0.75)(1064)=798$ These are the E's (expected values),
Dwarf $=(0.25)(1064)=266$
Quick check to see if total = 1064

The χ^{2} Goodness of Fit Test

Next calculate the test statistic (\#2)

$$
\chi_{s}^{2}=\frac{(787-798)^{2}}{798}+\frac{(277-266)^{2}}{266}=0.152+0.455=0.607
$$

The p -value (\#3):

$$
d f=2-1=1
$$

$P>0.20$, fail to reject H_{0}
CONCLUSION: These data provide evidence that the true proportions of tall and dwarf offspring are not statistically significantly different from their hypothesized values of 0.75 and 0.25 , respectively. In other words, these data are reasonably consistent with the Mendelian 3:1 phenotypic ratio.

The χ^{2} Goodness of Fit Test

- Tips for calculating χ^{2} (p.393):
- Use the SOCR Resource (www.socr.ucla.edu)
-The table of observed frequencies must include ALL categories, so that the sum of the Observed's is equal to the total number of observations
- The O's must be absolute, rather than relative frequencies (i.e., counts not percentages)
- Can round each part to a minimum of 2 decimal places, if you aren't using your calculator's memory

Compound Hypotheses

The hypotheses for the t-test contained one assertion: that the means were equal or not.

- The goodness of fit test can contain more than one assertion (e.g., $a=a_{0}, b=b_{0}, \ldots, c=c_{0}$)
- this is called a compound hypothesis
- The alternative hypothesis is non-directional, it measures deviations in all directions (at least one probability differs from its hypothesized value)

Directionality

RECALL: dichotomous - having two categories

- If the categorical variable is dichotomous, H_{0} is not compound, so we can specify a directional alternative
\square when one category goes up the other must go down
■ RULE OF THUMB: when df = 1 , the alternative can be specified as directional

Directionality

Example: A hotspot is defined as a $10 \mathrm{~km}^{2}$ area that is species rich (heavily populated by the species of interest). Suppose in a study of butterfly hotspots in a particular region, the number of butterfly hotspots in a sample of 2,588, $10 \mathrm{~km}^{2}$ areas is 165 . In theory, 5% of the areas should be butterfly hotspots. Do the data provide evidence to suggest that the number of butterfly hotspots is increasing from the theoretical standards? Test using $\alpha=0.01$.

Directionality

$$
\begin{aligned}
& H_{0}: \quad p(\text { hotspot })=0.05 \\
& \mathrm{p} \text { (other spot) }=0.95 \\
& H_{a}: \quad p(h o t s p o t)>0.05 \\
& \text { p(other spot) < } 0.95
\end{aligned}
$$

Directionality

$$
d f=2-1=1
$$

$0.001<p<0.01$, however because of directional alternative the p-value needs to be divided by 2 (* see note at top of table 9)
Therefore, $0.0005<\mathrm{p}<0.005$; Reject H_{0}
CONCLUSION: These data provide evidence that in this region the number of butterfly hotspots is increasing from theoretical standards (ie. greater than 5\%).

Goodness of Fit Test, in general

The expected cell counts can be determined by:

- Pre-specified proportions set-up in the experiment
\square For example: 5% hot spots, 95% other spots
- Implied

For example: Of 250 births at a local hospital is there evidence that there is a gender difference in the proportion of males and females? Without further information this implies that we are looking for $P($ males $)=0.50$ and $P($ females $)=0.50$.

Goodness of Fit Test, in general

- Goodness of fit tests can be compound
(i.e., Have more than 2 categories):
- For example: Of 250 randomly selected CP college students is there evidence to show that there is a difference in area of home residence, defined as: Northern California (North of SLO); Southern California (In SLO or South of SLO); or Out of State? Without further information this implies that we are looking for $\mathrm{P}(\mathrm{N} . \mathrm{Cal})=0.33$, $P(S . C a l)=0.33$, and $P($ Out of State $)=0.33$.
■http://socr.stat.ucla.edu/Applets.dir/SOCRCurveFitter.html Slide 15
\qquad

The χ^{2} Test for the 2×2 Contingency Table

- We will now consider analysis of two samples of categorical data
- This type of analysis utilizes tables, called contingency tables
- Contingency tables focus on the dependency or association between column and row variables

The χ^{2} Test for the 2×2 Contingency Table

Example: Suppose 200 randomly selected cancer patients were asked if their primary diagnosis was Brain cancer and if they owned a cell phone before their diagnosis. The results are presented in the table below:

The χ^{2} Test for the 2×2 Contingency Table

The χ^{2} Test for the 2×2 Contingency Table

- The goal: We want to analyze the association, if any, between brain cancer and cell phone use
- This is a 2×2 table because there are two possible outcomes for each variable (each variable is dichotomous)
- Consider the following population parameters: $\mathrm{P}(\mathrm{CP} \mid \mathrm{BC})=$ true probability of owning a cell phone (CP) given that the patient had brain cancer (BC) is estimated by $\hat{P}=(C P \mid B C)=0.72$
$P(C P \mid N B C)=$ true probability of owning a cell phone given that the patient had another cancer, is estimated by $\hat{P}=(C P \mid N B C)=0.46$

The χ^{2} Test for the 2×2 Contingency Table

The general form of a hypothesis test for a contingency table:
\# \#1 The hypotheses:
H_{0} : there is no association between variable 1 and variable 2 (independence)
H_{2} : there is an association between variable 1 and variable 2 (dependence)
NOTE: Using symbols can be tricky, be careful and read section 10.3

The χ^{2} Test for the 2×2 Contingency Table

\# \#2 The test statistic:
Expected cell counts can be calculated by

$$
\begin{gathered}
E=\frac{(\text { row total })(\text { column total })}{\text { grand total }} \\
\chi_{s}^{2}=\sum \frac{(O-E)^{2}}{E} \\
\text { with df }=(\# \text { rows }-1)(\# \mathrm{col}-1)
\end{gathered}
$$

- \#3 p-value and \#4 conclusion are similar to the goodness of fit test.

The χ^{2} Test for the 2×2 Contingency Table
Example: Brain cancer (cont')
Test to see if there is an association between brain cancer and cell phone use using $\alpha=0.05$
H_{0} : there is no association between brain cancer and cell phone (using notation $\mathrm{P}(\mathrm{CP} \mid \mathrm{BC})=\mathrm{P}(\mathrm{CP} \mid \mathrm{NBC})$)
H_{2} : there is an association between brain cancer and cell phone (using notation $P(C P \mid B C) \neq P(C P \mid N B C)$)

$d f=(2-1)(2-1)=1$
$0.01<\mathrm{p}<0.02$, reject H_{0}.
CONCLUSION: These data show that there is a statistically significant association between brain cancer and cell phone use in patients that have been previously diagnosed with cancer.

The χ^{2} Test for the 2×2 Contingency Table

- Output:

Chi-Square Test: C1, c2
Expected counts are printed below observed counts Chi-Square contributions are printed below expected counts

The χ^{2} Test for the 2×2 Contingency Table

- NOTE: $d f=1$, we could have carried this out as a one-tailed test
- The probability that a patient with brain cancer owned a cell phone is greater than the probability that another cancer patient owned a cell phone
$\square H_{\mathrm{a}}: P(\mathrm{CP} \mid \mathrm{BC})>\mathrm{P}(\mathrm{CP} \mid \mathrm{NBC})$
- Why didn't we carry this out as a one tailed test?

CAUTION: Association does not imply Causality!

Computational Notes

1. Contingency table is useful for calculations, but not nice for presentation in reports.
2. When calculating observed values should be absolute frequencies, not relative frequencies. Also sum of observed values should equal grand total.

- To eyeball a contingency table for differences,
check for proportionality of columns:
- If the columns are nearly proportional then the data seem to agree with H_{0}
- If the columns are not proportional then the data seem to disagree with H_{0}

Independence and Association in the 2x2 Contingency Table

There are two main contexts for contingency tables:

- Two independent samples with a dichotomous observed variable
- One sample with two dichotomous observed variables NOTE: The χ^{2} test procedure is the same for both situations
Example: Vitamin E. Subjects treated with either vitamin E or placebo for two years, then evaluated for a reduction in plaque from their baseline (Yes or No).

Any study involving a dichotomous observed variable and completely randomized allocation to two treatments can be viewed this way
Example: Brain cancer and cell phone use. One sample, cancer patients, two observed variables: brain cancer (yes or no) and cell phone use (yes or no)
slide 27

The r X k Contingency Table

- We now consider tables that are larger than a 2×2 (more than 2 groups or more than 2 categories), called rxk contingency tables
- Testing procedure is the same as the 2×2 contingency table, just more work and no possibility for a directional alternative
- The goal of an rxk contingency table is to investigate the relationship between the row and column variables
- NOTE: Ho is a compound hypothesis because it contains more than one independent assertion - This will be true for all rxk tables larger than 2×2 - In other words, the alternative hypothesis for rxk tables larger than 2×2, will always be non-directional.

Independence and Association in the 2x2 Contingency Table

When a dataset is viewed as a single sample with two observed variables, the relationship between the variables is thought of as independence or association.

- Ho: independence (no association) between the variables
- Ha: dependence (association) between the variables
χ^{2} is often called a test of independence or a test of association.

NOTE: If columns and rows are interchanged test statistic will be the same

The r X k Contingency Table

Example: Many factors are considered when purchasing earthquake insurance. One factor of interest may be location with respect to a major earthquake fault. Suppose a survey was mailed to California residents in four counties (data shown below). Is there a statistically significant association between county of residence and purchase of earthquake insurance? Test using $\alpha=0.05$.

	County					Total
		Contra Costa CC	Santa Clara SC	Los Angeles LA	$\begin{array}{\|c\|} \hline \text { San } \\ \text { Bernardino } \\ \text { SB } \end{array}$	
Earthquake	Yes	117	222	133	109	581
Insurance	No	404	334	204	263	1205
	Total	521	556	337	372	1786

The r X k Contingency Table

H_{0} : There is no association between Earthquake insurance and county of residence in California.

$$
\left\{\begin{array}{l}
P(Y \mid C C)=P(Y \mid S C)=P(Y \mid L A)=P(Y \mid S B) \\
P(N \mid C C)=P(N \mid S C)=P(N \mid L A)=P(N \mid S B)
\end{array}\right.
$$

H_{a} : There is an association between Earthquake insurance and county of residence in California.

The probability of having earthquake insurance is not the same in each county.

The r X k Contingency Table

$p=0.000<0.05$, reject H_{0}.

CONCLUSION: These data show that there is a statistically significant association between purchase of earthquake insurance and county of residence in California.

The r X k Contingency Table

Chi-Square Test: C1, C2, C3, C4
http://socr.stat.ucla.edu/Applets.dir/ChiSquareTable.html
Expected counts are printed below observed counts
Chi-Square contributions are printed below expected counts

Applicability of Methods

- Conditions for validity of the χ^{2} test:

1. Design conditions

- for a goodness of fit, it must be reasonable to regard the data as a random sample of categorical observations from a large population.
- for a contingency table, it must be appropriate to view the data in one of the following ways:
as two or more independent random samples, observed with respect to a categorical variable
as one random sample, observed with respect to two categorical variables
* for either type of test, the observations within a sample must be independent of one another.

Verification of Conditions

- Data consisting of several samples need to be independent sample.
- If the design contains blocking or pairing the samples are not independent
- Try to reduce bias
- Only simple random sampling
- No pairing for the version we are learning, although there is a paired Chi-Square test (section 10.8)
- No hierarchical structure
- Check expected cell counts

3. Form of H_{o}

- for goodness of fit, H_{0} specifies values
- for contingency table, H_{0} : row and column are not associated or use notation

Cl for the difference between probabilities

Chi-Square tests for contingency tables tell us if there is an association or not between categories.

- They tell us that there is a difference, but is it an important difference?
- They do not give us any information as to the magnitude of any differences between probabilities
- For this we will calculate a confidence interval for the difference between probabilities

CI for the difference between probabilities
Example: Brain cancer continued

Brain cancer				
Cell Phone		Yes	No	Total
	Yes	18	80	98
	No	7	95	102
	Total	25	175	200

Calculate a 95% confidence interval for the difference in cell phone use between brain cancer and other cancer patients

$$
\tilde{p}_{1}=\frac{18+1}{25+2}=0.704 \quad \tilde{p}_{2}=\frac{80+1}{175+2}=.458
$$

CI for the difference between probabilities

What does this mean?

Does this seem like a significant difference?

Can we say that based on this data it appears that owning a cell phone increases the probability of brain cancer?

Cl for the difference between probabilities

- A 95\% confidence interval for $p_{1}-p_{2}$

$$
\left(\tilde{p}_{1}-\tilde{p}_{2}\right) \pm z_{0.025}\left(S E_{\tilde{p}_{1}-\tilde{p}_{2}}\right)
$$

\[

\]

$$
S E_{\tilde{p}_{1}-\tilde{p}_{2}}=\sqrt{\frac{\tilde{p}_{1}\left(1-\tilde{p}_{1}\right)}{n_{1}+2}+\frac{\tilde{p}_{2}\left(1-\tilde{p}_{2}\right)}{n_{2}+2}}
$$

Cl for the difference between probabilities

95\% CI continued...

$$
\begin{gathered}
S E_{\tilde{p}_{1}-\tilde{p}_{2}}=\sqrt{\frac{0.704(0.296)}{25+2}+\frac{0.457(0.543)}{175+2}}=\sqrt{0.009}=0.095 \\
(0.704-0.458) \pm 1.96(0.095) \\
=0.246 \pm 0.186=(0.06,0.432)
\end{gathered}
$$

We are 95% confident that the difference in the proportion of cell phone ownership between patients with brain cancer and those without brain cancer, is between 6% and 43%.

Relative Risk

- The chi-square test is often referred to as a test of independence
- Another measure of dependence is relative risk
- Allows researchers to compare probabilities in terms of their ratio $\left(p_{1} / p_{2}\right)$ rather than their difference $\left(p_{1}-p_{2}\right)$ \square widely used in studies of public health
- In general a relative risk of 1 indicates that the probabilities of two events are the same.
\square A relative risk >1 implies that there is increased risk
- A relative risk <1 implies that there is decreased risk

Relative Risk

Example: Brain Cancer and cell phone use (continued)

Brain cancer				
Cell Phone	Yes	No	Total	
	Yes	18	80	98
	No	7	95	102
	Total	25	175	200

Thinking in terms of conditional probability again, but switching the conditional probability around

$$
\begin{array}{ll}
\hat{P} & =(B C \mid C P)=18 / 98=0.184 \\
\hat{P} & =(B C \mid N C P)=7 / 102=0.069
\end{array}
$$

So the relative risk is $0.184 / 0.069=2.67$
The risk of having brain cancer is more than 2.5 times greater for cell phone owners when compared to non-cell phone owners.

Odds Ratio

Another way to compare two probabilities is in terms of odds

If an event takes place with probability p, then the odds in favor of the event are $p /(1-p)$
\square If event $A \mid B$ has $p=1 / 2$, then the odds are $(1 / 2) /(1 / 2)$ $=1$ or
1 to 1 (the probability that event $A \mid B$ occurs is equal to the probability that it does not occur)

- If event A|C has $p=3 / 4$, then the odds are (3/4) / (1/4) $=3$ or 3 to 1 (the probability that event $A \mid C$ occurs is three times as large as the probability that it does not occur)

Odds Ratio: OR

- The odds ratio is the ratio of odds for two probabilities

$$
\hat{\theta}=\frac{\frac{\hat{P}(A \mid B)}{1-\hat{P}(A \mid B)}}{\frac{\hat{P}(A \mid C)}{1-\hat{P}(A \mid C)}}
$$

- In general an OR and it's relationship to 1 is similar to relative risk
- An OR = 1indicates that the probabilities of two events are the same
- An OR > 1 implies that there is increased risk
- An OR < 1 implies that there is decreased risk

Odds Ratio

- We could have compared the odds of owning a cell phone given that a patient had brain cancer versus an other cancer (i.e., the column-wise probabilities)
$\hat{P}(C P \mid B C)=18 / 25=0.72$ versus $\hat{P}(C P \mid N B C)=80 / 175=0.457$
However this does not seem as important scientifically
- But if we did calculate the OR of owning a cell phone given that a patient had brain cancer versus an other cancer we'd get:

$$
\hat{\theta}=\frac{\frac{0.72}{0.28}}{\frac{0.457}{0.543}}=\frac{2.57}{0.842}=3.05
$$

- Note that this OR comes out to be approximately equal!

Odds Ratio

- Shortcut formula for an odds ratio:

$$
\hat{\theta}=\frac{n_{11} n_{22}}{n_{12} n_{21}}
$$

Now it is easier to see why the OR would be the same for the row-wise and column-wise probabilities!

Where the table structure looks like:

n_{11}	n_{12}
n_{21}	n_{22}

Relative Risk vs. Odds Ratio

The formula and reasoning for the relative risk is a little bit easier to follow

- In most cases the two measures are roughly equal to each other
- Odds ratios have an advantage over relative risk because they can be calculated no matter the row or column comparison
- Relative risk runs into problems when the study design is a cohort study or a case-control design - Odds ratios are an approximation of relative risk $\mathrm{OR}=\mathrm{RR} *\left(1-\mathrm{P}_{2}\right) /\left(1-\mathrm{P}_{1}\right)$

Relative Risk vs. Odds Ratio

Example: Suppose a group of 200 people who have experienced a heart attack and 200 with no heart attack were asked if they were ever smokers.

- We can reasonably calculate $\hat{P}($ SMK \mid HA $)=33 / 200=$ 0.165 and $\hat{P} \quad($ SMK|NHA $)=18 / 200=0.09$ - However, the row-wise probabilities (incidence of heart attacks given that someone is a smoker or non-smoker) should not be estimated
\square Because the number of subject with and without heart
attacks were predetermined in the study design
We have no information about the incidence of heart attacks Slide 50

Relative Risk vs. Odds Ratio

Because these estimates of the odds ratio are the same for column-wise and row-wise probabilities (see p. 449)

- And we know that the odds ratio is an approximation of relative risk
- We can say that we estimate the relative risk of a heart attack is about 2 twice as great for those who smoke versus who do not smoke

Without incorrectly calculating the row-wise probabilities

Odds Ratio Confidence Interval

- Common to report odds ratios along with their Cl
- One problem with our estimate of the odds ratio $\hat{\theta}$
is that its sampling distribution is not normal!!!
- To solve this we take the log of $\hat{\theta}$ and so that the sampling distribution of $\ln (\hat{\theta})$ is normally distributed
SE of $\ln (\hat{\theta}): \quad \quad S E_{\ln (\hat{\theta})}=\sqrt{\frac{1}{n_{11}}+\frac{1}{n_{12}}+\frac{1}{n_{21}}+\frac{1}{n_{22}}}$

Where the table structure looks like:

Odds Ratio Confidence Interval

```
- A 100(1-\alpha) Cl for }\operatorname{ln}(0)\mathrm{ is
```


$\ln (\hat{\theta}) \pm Z_{\alpha / 2}\left(S E_{\ln (\hat{\theta})}\right)$
Where $\quad \hat{\theta}=\frac{n_{11} n_{22}}{n_{12} n_{21}}$ and $S E_{\ln (\hat{\theta})}=\sqrt{\frac{1}{n_{11}}+\frac{1}{n_{12}}+\frac{1}{n_{21}}+\frac{1}{n_{22}}}$

HINT: You can use your t table to find certain values of $\quad Z_{\alpha / 2}$

Odds Ratio Confidence Interval

So the $90 \% \mathrm{Cl}$ for $\ln (\theta)$ is

$$
\begin{aligned}
& \ln (\hat{\theta})=\ln (1.998)=0.6921 \\
& \quad \ln (\hat{\theta}) \pm Z_{\alpha / 2}\left(S E_{\ln (\hat{\theta})}\right) \\
& 0.6921 \pm Z_{0.05}(0.3120)= \\
& 0.6921 \pm 1.645(0.3120)= \\
& \\
& (0.1789,1.2053)
\end{aligned}
$$

But right now this is transformed data (natural log) so we need to untransform it by taking the exponent of the Cl

$$
\left(e^{0.1789}, e^{1.2053}\right)=(1.196,3.338)
$$

Odds Ratio Confidence Interval

We are confident at the 0.10 level that the true odds of smoking for heart attack subjects and non-heart attack subjects are between 1.196 and 3.338

- So what does this actually mean?
- Does the zero rule work here? One rule?

What if the Cl came out to be $(0.196,1.338)$?

