UCLA STAT 13

Introduction to Statistical Methods for the Life and Health Sciences

> Instructor: IVO Dinov, Asst. Prof. of Statistics and Neurology

Teaching Assistants:

Jacquelina Dacosta & Chris Barr

University of California, Los Angeles, Fall 2006

http://www.stat.ucla.edu/~dinov/courses_students.html

Example: $R(X,Y) = \frac{1}{N-1} \sum_{k=1}^{N} \left(\frac{x_{k} - \mu_{k}}{\sigma_{k}} \right) \left(\frac{y_{k} - \mu_{k}}{\sigma_{k}} \right)$ Student Height Weight $x_{1} - \overline{x} - y_{1} - \overline{y} - \overline{y}^{2} - (x_{1} - \overline{x})(y_{1} - \overline{y})$ $\frac{1}{1} - \frac{x_{1}}{167} - \frac{y_{1}}{60} - \frac{5}{6} - \frac{4.67}{61} - \frac{36}{75} - \frac{21.6069}{76.1069} - \frac{28.02}{78.03}$ $\frac{3}{160} - 57 - 1 - 1.67 - 1 - 2.7669 - 1.67$ $\frac{4}{152} - \frac{46}{45}99.33 - 81 - 67.0469 - 83.97$ $\frac{5}{5} - 157 - 55 - 4 - 0.33 - 16 - 0.1069 - 1.32$ $\frac{6}{160} - 50 - 1 - 5.33 - 1 - 28.4069 - 5.33$ $\overline{\text{Total}} - \frac{966}{332} - 0 = 0 - 216 - 215.3334 - 195.0$				Со	rrela	ation	Coeff	icient	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	E	xample	e: R(2	(X,Y)	$=\frac{1}{N}$	$\frac{1}{1-1}k$	$\sum_{x=1}^{N} \left(\frac{x}{x}\right)$	$\frac{1}{\sigma_x} - \mu_x \int \frac{y}{\sigma_x}$	$\left(\frac{\sigma_{x}-\mu_{y}}{\sigma_{y}}\right)$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		Student	Height	Weight	¥j - ¥	ÿi-ÿ	(×i-x) ²	(y ₁ -y) ²	(x ₁ - x)(y ₁ - y)
1 167 60 6 4.67 36 21.9089 28.02 2 170 64 9 8.67 81 75.1689 78.03 3 160 57 -1 1.67 1 2.7089 -1.67 4 152 46 -9 -9.33 81 67.0489 83.97 5 157 55 -4 -0.33 16 0.1089 1.32 6 180 50 -1 -5.33 1 28.009 5.33 Total 966 332 0 ≈0 216 215.3334 195.0	Ι.	1	4	УI					
2 170 64 9 8.67 61 75,1689 78.03 3 160 57 -1 1.67 1 2.7689 -1.67 4 152 46 -9 -9.33 61 67.0489 83.97 5 157 55 -4 -0.33 16 0.1089 1.32 6 160 50 -1 -5.33 1 28.4089 5.33 Total 966 332 0 ≈0 216 215.3334 195.0	1	1	167	60	6	4.67	36	21.8089	28.02
3 160 57 -1 1.67 1 2.7869 -1.67 4 152 46 -9 -9.33 81 67.0469 83.97 5 157 55 -4 -0.33 16 0.1089 1.32 6 160 50 -1 -5.33 1 28.04069 5.33 Total 966 332 0 ≈0 216 215.3334 195.0		2	170	64	9	8.67	81	75.1689	78.03
4 152 46 -9 -9.33 61 67,0469 63.97 5 157 55 -4 -0.33 16 0.1089 1.32 <u>6 160 50 -1 -5.33 1 28,4089 5.33</u> Total 966 332 0 ≈0 216 215,3334 195.0		3	160	57	-1	1.67	1	2.7889	-1.67
5 157 55 -4 -0.33 16 0.1089 1.32 6 160 50 -1 -5.33 1 28.4089 6.33 Total 966 332 0 ≈0 216 215.3334 195.0		4	152	46	-9	9.33	81	67.0489	63.97
<u>6 160 50 -1 -5.33 1 28.4089 5.33</u> Total 966 332 0 ≈0 216 215.3334 196.0		5	157	55	-4	-0.33	16	0.1089	1.32
Total 966 332 0 ≈0 216 215.3334 195.0		6	160	50	-1	-5.33	1	26.4069	5.33
		Total	966	332	0	=0	216	215.3334	195.0

Correlation Coefficient
Example: $R(X,Y) = \frac{1}{N-1} \sum_{k=1}^{N} \left(\frac{x_{k} - \mu_{k}}{\sigma_{k}} \right) \left(\frac{y_{k} - \mu_{k}}{\sigma_{k}} \right)$
$\mu_x = \frac{966}{6} = 161 \mathrm{cm}, \mu_x = \frac{332}{6} = 55 \mathrm{kg},$
$\sigma_x = \sqrt{\frac{216}{5}} = 6.573, \sigma_y = \sqrt{\frac{215.3}{5}} = 6.563,$
Corr(X,Y) = R(X,Y) = 0.904

Linear	Relatior	ships			
Example	<u>e</u> : The	data t	below are	airfare	s
(\$) and (distance	e (mile	es) to vari	ous US	
cities fro	m Balti	more,	Marylanc	Ι.	
Destination	Distance	Airfare	Destination	Distance	Airfare
Atlanta	576	178	Miami	946	198
Boston	370	138	New Orleans	998	188
Chicago	612	94	New York	189	98
Dallas	1216	278	Orlando	787	179
Detroit	409	158	Pittsburgh	210	138
Denver	1502	258	St. Louis	737	98
			Slide 12 st	at 13, UCLA, Ivo Dir	nov

		ł	Iands	s – on	work	sheet	t !	
1.	X={-1	, 2, 3,	4}, Y	={0, -	1, 1, 2	$, \bar{x} =$	2, <u>j</u>	$\bar{v} = 0.5$
	х	Y	$x - \overline{x}$	$y - \overline{y}$	$(x-\overline{x})^2$	$(y - \overline{y})^2$	$\begin{array}{c} (x-\overline{x}) \times \\ (y-\overline{y}) \end{array}$	
	-1	0	-3	-0.5	9	0.25	1.5	
	2	-1	0	-1.5	0	2.25	0	
	3	1	1	0.5	1	0.25	0.5	
	4	2	2	1.5	4	2.25	3	$\beta_1 = 5/14$ $\beta_0 = y^- \beta_1 x^4$
	2	0.5		1	14	5	5	β₀= 0.5 -10/1
				S	lide 20	Stat 1	3. UCLA. Ivo	Dinov

Equation of the	e Re	egression	n Line		
• <u>Example</u> : Airfare (c Regression Analysis	ont') s: Ai	irfare ver	sus Dist	ance	
The regression of	equa + 0	tion is	ance		
Predictor Constant 83	pef	SE Coel		P	
Distance 0.11	738	0.02832	2 4.14	0.002	50 50
S = 37.8270 R	-Sq	= 63.2%	K-2d	(adj) =	59.5%
Analysis of Var	ianc	e		_	_
Source	DF.	SS	MS	F.	Р
Regression	1	24574	24574	17.17	0.002
Residual Error	10	14309	1431		
Total	11	38883			

S_{Y|}

• The best straight line is the one that minimizes the residual sums of squares

• The residual standard deviation can be used as our description of the closeness of the data points to the regression line

$$x = \sqrt{\frac{SS(resid)}{n-2}} = \sqrt{\frac{\sum (y_i - \hat{y})^2}{n-2}}$$

how far off predictions tend to be that are made using the regression model

Similar idea to s (measures variability around y
) s_{Y|X} (measures variability about the regression line)

The Standard Error of β_1

- Before we can start with inference we need to discuss the sampling distribution of β_{t}
- b₁ is our estimate of β₁
 b₁ will have some sampling error because it is an estimate based on the data

Scatter of data, less scatter about regression line = better estimate of β_1

• SE_{b1} is used to describe this variability

$$EE_{b_1} = \frac{S_{Y|X}}{\sqrt{\sum (x_i - \overline{x})^2}}$$

Spread along x axis, larger = better estimate of β_1

The Standard Error of
$$\beta_I$$

Example: Airfare (cont')
Calculate the standard deviation of the sampling
distribution of b₁ (ie. SE_{b1})
We know that s_{YIX} = 37.83
And suppose $\sum_{i}^{n} (x_i - \overline{x})^2$ was given as 1,786,499
 $SE_{k_i} = \frac{s_{YIX}}{\sqrt{\sum (x_i - \overline{x})^2}} = \frac{37.83}{\sqrt{1.786,499}} = 0.0283$
Example:

http://socr.stat.ucla.edu/Applets.dir/RegressionApplet.html
Slide 31 Surfa Participation

The Stand	ard	Error	of β_1		
Example: A	irfa	tre (con	nt')	ug Digta	2220
	.,		C VCID		mee
The regression	equa	tion is			
Airfare = 83.3	+ 0.	117 Dist	ance		
Predictor (Coef	SE Coef	Т	P	
Constant 8	3.27	22.95	3.63	0.005	
Distance 0.1	1738	0.02832	4.14	0.002	
S = 37.8270	R-Sq	= 63.2%	R-Sq	(adj) =	59.5%
Analyzis of Va	ciano				
Analysis of Va.	Lianc	e			
Source	DF	SS	MS	F	P
Regression	1	24574	24574	17.17	0.002
Residual Error	10	14309	1431		
Total	11	38883			
IUCUI		50005			

Slide 32

Stat 12 LICEA I

Using similar logic:

$$b_1 \pm t(df)_{\alpha/2} (SE_{b_1})$$

Where $100(1 - \alpha)$ is the desired confidence With df = n - 2

We are highly confident, at the <u>0.05 level</u>, that the <u>true slope</u> of the <u>regression of airfare on distance</u> is between <u>0.054 and 0.180 \$/mi</u>

The Standar	d E	rror of	f β 1		
Regression Anal	ysis	: Airfar	e versu	ıs Dista	ance
The regression	equa	tion is			
Airfare = 83.3	+ 0.	117 Dist	ance		
Predictor C	oef	SE Coef	т	P	
Constant 83	.27	22.95	3.63	0.005	
Distance 0.11	738	0.02832	4.14	0.002	
S = 37.8270 R	-Sq	= 63.2%	R-Sq	(adj) =	59.5%
Analysis of Var	ianc	e			
Source	DF	SS	MS	F	P
Regression	1	24574	24574	17.17	0.002
Residual Error	10	14309	1431		
		20002			

Testing the True Slope β_1

Example: Airfare (cont')

- Imagine the population of *all* cities you could fly to from Baltimore
- Is the relationship we found in this sample of 12 cities strong enough to convince you that there really is a relationship for the entire population?

Testing the True Slope β_1

Test to see if distance is useful for predicting airfare in a linear model, using $\alpha = 0.05$

#1
$$H_0: \beta_I = 0$$

 $H_a: \beta_I != 0$

2
$$t_s = \frac{b_1 - 0}{SE_{b_1}} = \frac{0.11738 - 0}{0.02832} = 4.145$$

#3 df = 10; 2(0.0005) Reject H_o

Testing the True Slope β_1

#4 CONCLUSION: These data provide evidence to suggest that there is a <u>significant LINEAR relationship</u> between <u>distance and airfare</u> to <u>US cities from</u> <u>Baltimore, MD</u> (0.001 < p < 0.01)

NOTE: We're not asking if the relationship is linear

We are already assuming that the linear relationship holds

■ Why n – 2 df?

It takes two points to determine a straight line
 Also n – 2 is the denominator of s_{YIX}

Testing the True Slope β_1 Variability in Regression Suppose we wanted to test to see if the mean airfare Consider our airfare increases with increasing distance, using $\alpha = 0.05$ Scatterplot of Airfare vs Dist example What would change in our hypothesis test from before? The dependent variable, airfare, varies from airport to airport, This means we are expecting a positive slope regardless of distance $H_{a}: \beta_{1} > 0$ 1000 1200 1400 A statistical measure Does t_s jive with H_a ? $t_s = 4.14$ of the total variability in 0.0005 < p < 0.005 $SS(total) = \sum (y_i - \overline{y})^2$ airfare is called sums of squares total

Regression Anal	ysis	: Airfa	re vers	us Dist	ance
The regression	equa	tion is			
Airfare = 83.3	+ 0.	117 Dis	tance		
Predictor C	oef	SE Coe	f T	P	
Constant 83	.27	22.9	5 3.63	0.005	
Distance 0.11	738	0.0283	2 4.14	0.002	
S = 37.8270 R	-Sq	= 63.2%	R-Sq	((adj) =	59.5%
Analysis of Var	ianc	e			
Source	DF	SS	MS	F	P
Regression	1	24574	24574	17.17	0.002
Residual Error	10	14309	1431		

Variability	in Regr	ession	
NOTE: The	e sums of	Squares ap	pear on minitab
The balance for ANOVA, j	ce of the ta ust differer	ble is the sam nt formulas	e as we learned
Source	df	SS	MS
Regression	1	$\sum (\hat{y}_i - \overline{y})^2$	$\frac{SS(reg)}{df(reg)}$
Residual	n [*] –2	$\sum (y_i - \hat{y}_i)^2$	$\frac{SS(resid)}{df(resid)}$
Total	n [*] - 1	$\sum (y_i - \overline{y})^2$	
		CI: 1. 50	

tegression Anal	ysis	: AITIA	re vers	us Dista	ance
The regression	equa	tion is			
Airfare = 83.3	+ 0.	II7 Dis	tance f m	П	
Constant 83	.27	22.9	5 3.63	0.005	
Distance 0.11	738	0.0283	2 4.14	0.002	
S = 37.8270	-Sq	= 63.2%	R-Sq	(adj) =	59.5%
Analysis of Var	ianc	e			
Source	DF	SS	MS	F	P
Regression	1	24574	24574	17.17	0.002
Residual Error	10	14309	1431		
rotal	11	38883			

The Coefficient of Correlation

• The correlation coefficient is also a measure of the linear relationship between X and Y

 $r = \left(\sqrt{r^2}\right) \times \left(sign \text{ of slope}\right) \quad \text{OR} \qquad r = \frac{\sum (x_i - \bar{x})(y_i - \bar{y})}{\sqrt{\sum (x_i - \bar{x})^2 \sum (y_i - \bar{y})^2}}$

If there is no linear relationship between X and Y then r will be close to 0

If there is a strong positive linear relationship between X and Y then r will be close to +1

If there is a strong negative linear relationship between X and Y then r will be close to -1 $\,$

Slide 55

The Coefficient of Correlation

• Example: Airfare (cont') Calculate and interpret r

$$r = (\sqrt{0.632}) \times (+1) = 0.795$$

This indicates that distance and airfare have a fair positive linear relationship Correlation describes the tightness of the linear relationship between X and Y RULE OF THUMB: 0.9 to 1.0 strong linear relationship; 0.8 to <0.9 good; 0.7 to <0.8 fair; <0.7 poor

The Coefficient of Correlation

• Computer output for correlation (e.g., SOCR)

Correlations: Airfare, Distance

Pearson corr. of Airfare and Distance = 0.795
P-Value = 0.002

The Coefficient of Correlation

• If X and Y are switched the coefficient of correlation will remain unchanged.

- There is statistical inference we can make about r
 - **The population correlation coefficient is** ρ (rho)
 - Inference about requires a bivariate random sample each (x, y) as having been sampled at random from a population of all (x, y) pairs
 - NOTE: Won't work when X is specified by researcher (doses)

It turns out that H_0 : $\rho = 0$ is equivalent to H_0 : $\beta_1 = 0$

Guidelines for Regression and Correlation

 Need to be careful interpreting correlation
 Similar to Ch 8, an observed association between variables does not necessarily indicate causation

Because two variables are highly correlated does not mean that one causes the other.

Curvilinear Data

- Curvilinear data can distort regression results by:
 - a fitted line that doesn't represent the data
 - the correlation is misleadingly small
 - s_{YIX} is inflated

Curvilinear Data

Example: For married couples with one or more offspring, a demographic study was conducted to determine the effect of the families annual income (at marriage) on time (months) between marriage and the birth of the first child.

			Income	Time	Income	Time	
These			5775	16.20	4608	9.70	
			9800	35.00	24210	20.00	
		. * Č k	13795	37.20	19625	38.20	
			4120	9.00	18000	41.25	
_			25015	24.40	13000	44.00	
			12200	36.75	5400	9.20	
10			7400	31.75	6440	20.00	
a			9340	30.00	9000	40.20	
	1000	incerne.	20170	36.00	18180	32.00	
			22400	30.80	15385	39.20	
			Slide 61	Sta	t 13. UCLA. Ivo Dini	21	

Curvilinear Data

Regression Analysis: Time versus Income

The regression equation is Time = 19.6 + 0.000714 Income Predictor Coef SE Coef T P Constant 19.626 5.213 3.76 0.001 Income 0.0007138 0.0003528 2.02 0.058 S = 10.4958 R-Sq = 18.5% R-Sq(adj) = 14.0% Analysis of Variance Source DF SS MS F P Regression 1 450.9 450.9 4.09 0.058 Residual Error 18 1982.9 110.2 Total 19 2433.8

Curvilinear 1	Dat	a			
Regression Anal	ysis	: Time v	ersus In	.come, I	ncomeSQ
The regression	equa	tion is			
Time = - 18.6 +	0.0	0770 Inc	ome - 0.	000000	IncomeSQ
Predictor	C	loef	SE Coef	т	P
Constant	-18.	639	4.679	-3.98	0.001
Income 0.	0077	004 0.	0007699	10.00	0.000
IncomeSO -0.0	0000	025 0.0	0000003	-9.25	0.000
S = 4.39819 R	-Sq	= 86.5%	R-Sq(a	dj) = 8	4.9%
Analysis of Var	ianc	e			
Source	DF	SS	MS	F	P
Regression	2	2104.9	1052.5	54.41	0.000
Regidual Error	17	328.8	19.3		
COTGGGT DITOI					

Outliers

• We know outliers as observations that are unusually large when compared to the rest of the data

• In regression analysis an outlier is a data points that is unusually far from the linear trend formed by the data

- Outliers can distort regression results by:
 - inflating s_{Y|X} and reducing r
 - influencing the regression line

_					_	
Outliers						
Regression Ana	lysis	: Airfa	re vers	us Di	stance	
The regression	equa	tion is				
Airfare = 95.2	+ 0.	121 Dis	tance			
Predictor	Coef	SE Coe	f I		P	
Constant 9	5.24	39.6	3 2.40	0.0	35	
Distance 0.1	2104	0.0491	9 2.46	0.0	32	
S = 65.7151	R-Sq	= 35.5%	R-Sq	(adj)	= 29.6%	
Analysis of Va	rianc	-				
Source	DF	ss	MS	F	P	
Regression	1	26150	26150	6.06	0.032	
Residual Error	11	47503	4318			
Total	12	73654				
Unusual Observa	ation	s				
Obs Distance	Airf	are	Fit SE	Fit	Residual	St Resid
13 750	36	1.0 18	6.0	18.3	175.0	2.77R
R denotes an ol	oserv	ation w	ith a l	arge	standardiz	ed residual.
			Slide	68	Stat 12 UCL	Inc Dinon

Influential Observations

- Influential observations also affect regression results, usually in an artificially positive way
- Influential observations can distort regression results by:
 - changing fitted line
 - influences correlation

Influential Observations

Regression Analysis: Airfare versus Distance											
The regression equation is											
Airfare = 105 +	0.084	2 Dista	nce								
Predictor C	loef S	E Coef	т	P							
Constant 104	1.54	18.01	5.80	0.000							
Distance 0.08	8421 0	.01638	5.14	0.000							
S = 39.4741 F	l-Sq =	70.6%	R-Sq(adj) =	67.9%						
Analysis of Var	iance										
Source	DF	SS	MS	F	P						
Regression	1 4	1173 4	1173	26.42	0.000						
Residual Error	11 1	7140	1558								
Total	12 5	8313									
Unusual Observa	tions										
Obs Distance	Airfar	e Fi	t SE	Fit Re	esidual	St Resid					
13 2800	312.	0 340.	3 3	33.4	-28.3	-1.35 X					
X denotes an ob	servat	ion who	se X v	value gi	ives it	large influence					

- $\blacksquare \ \mu_{Y|X} = \beta_0 + \beta_1 X$
- $\sigma_{_{Y|X}}$ does not depend on X

• Conditions concerning population distribution: the conditional distribution of Y for each fixed X is normally distributed

ide 72 Stat 13. UCLA. Ivo Dinov

Conditions for Inference

• SUMMARY:

- Same SD, for all levels of X
- Independent observations
- Normal distribution of Y for each fixed X

Slide 73

Random sample

Multiple Regression

Regression can be quite complicated

• Multiple regression is an extension of simple linear regression

- Does distance completely determine airfare?
- Are there other factors that might influence airfare?

• There are multiple regression models that can accommodate more than one independent variable

These topics are covered in other statistics classes.

Slide 74 Stat 13. UCLA. Ivo E