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Chapter 13

Regression & Correlation
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Linear Relationships

Analyze the relationship, if any, between 
variables x and y by fitting a straight line to the 
data

If a relationship exists we can use our analysis to 
make predictions

Data for regression consists of (x,y) pairs for 
each observation

For example: the height and weight of individuals
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Lines in 2D
(Regression and Correlation)

Vertical Lines

Horizontal Lines

Oblique lines

Increasing/Decreasing

Slope of a line

Intercept

Y=α X + β, in general.

Math Equation for the Line?
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Lines in 2D
(Regression and Correlation)

Draw the following lines:

Y=2X+1

Y=-3X-5

Line through (X1,Y1) and 
(X2,Y2). 

(Y-Y1)/(Y2-Y1)= 

(X-X1)/(X2-X1). 

Math Equation for the Line?

Stat 13, UCLA, Ivo DinovSlide 6

Correlation Coefficient 

Correlation coefficient (-1<=R<=1): a measure of linear 
association, or clustering around a line of multivariate 
data. 

Relationship between two variables (X, Y) can be 
summarized by: (µX, σX), (µY, σY) and the correlation 
coefficient, R. R=1, perfect positive correlation (straight 
line relationship),   R =0, no correlation (random cloud 
scatter), R = –1, perfect negative correlation.  

Computing R(X,Y): (standardize, multiply, average)
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Correlation Coefficient 

Example:
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Correlation Coefficient 

Example:
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Correlation Coefficient - Properties

Correlation is invariant w.r.t. linear transformations of X or Y
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Correlation Coefficient - Properties

Correlation is Associative

Correlation measures linear association, NOT an association in 
general!!! So, Corr(X,Y) could be misleading for X & Y related in 
a non-linear fashion.
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Correlation Coefficient - Properties

1. R measures the extent of
linear association between
two continuous variables. 

2. Association does not imply
causation - both variables
may be affected by a third
variable – age was a 
confounding variable.

),(
1

1),( XYRyN

k

x
N

YXR
y

yk

x

xk

=⎟
⎠
⎞

⎜
⎝
⎛ −

∑
=

⎟
⎠
⎞

⎜
⎝
⎛ −

=
σ

µ
σ

µ

Stat 13, UCLA, Ivo DinovSlide 12

Example:  The data below are airfares 
($) and distance (miles) to various US 
cities from Baltimore, Maryland.

Destination Distance Airfare Destination Distance Airfare
Atlanta 576 178 Miami 946 198 
Boston 370 138 New Orleans 998 188 
Chicago 612 94 New York 189 98 
Dallas 1216 278 Orlando 787 179 
Detroit 409 158 Pittsburgh 210 138 
Denver 1502 258 St. Louis 737 98 

 

Linear Relationships
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Until now we have described data using 
statistics such as the sample mean

What seems to be

missing from this

one sample view

of the data?

Descriptive Statistics: Distance, Airfare

Variable   N  N*   Mean  SE Mean  StDev Minimum     Q1  Median     Q3  Maximum
Distance  12   0    713      116    403      189    380     675 985     1502
Airfare   12   0  166.9     17.2   59.5     94.0  108.0   168.0 195.5    278.0

Linear Relationships
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This scatterplot gives us a 
view of how the dependent 
variable airfare (y) changes 
with the independent variable 
distance (x) 

From this data there 
appears to be a linear trend, 
but the data do not fall in an 
exact straight line

Still may be reasonable to 
fit a line to this data Distance
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Scatterplot of Airfare vs Distance

Linear Relationships
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Two Contexts for regression:

1. Y is an observed variable and X is specified by 
the researcher

Ex.  Y is hair growth after 2 months, for individuals at 
certain dose levels of hair growth cream (X)

2. X and Y are observed variables
Ex.  Height (Y) and weight (X) for 20 randomly 

selected individuals

Linear Relationships
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Suppose we have n pairs (x,y)

If a scatterplot of the data suggests a general linear 
trend, it would be reasonable to fit a line to the data

The question is which is the best line?

Example Airfare (cont’)
We can see from the scatterplot that greater distance is 

associated with higher airfare
In other words airports that tend to be further from Baltimore

than tend to be more expensive airfare

To decide on the best fitting line, we use the least-
squares method to fit the least squares (regression) line

The Fitted Regression Line
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RECALL:  y = mx + b

In statistics we call this Y = b0 + b1X
where Y is the dependent variable

X is the independent variable

b0 is the y-intercept

b1 is the slope of the line

Equation of the Regression Line
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LS Estimates for the Linear Parameters

1. The least-squares line passes through 
the points (x = 0,    = ?) and (x =    ,     = ?). Supply 
the missing values.
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Hands – on worksheet !

1. X={-1, 2, 3, 4},  Y={0, -1, 1, 2}, 
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Hands – on worksheet !

1. X={-1, 2, 3, 4},  Y={0, -1, 1, 2}, 

32.2541.5224

0.50.2510.5113
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β0=y^-β1*x^
β0= 0.5-10/14

β1=5/14
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Example: Airfare (cont’)
Regression Analysis: Airfare versus Distance 

The regression equation is
Airfare = 83.3 + 0.117 Distance
Predictor     Coef SE Coef T      P
Constant     83.27    22.95  3.63  0.005
Distance   0.11738 0.02832  4.14  0.002
S = 37.8270   R-Sq = 63.2%   R-Sq(adj) = 59.5%

Analysis of Variance
Source          DF     SS     MS      F      P
Regression       1  24574  24574 17.17  0.002
Residual Error  10  14309   1431
Total           11  38883

Equation of the Regression Line
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When we write the least squares regression 
equation we use the following notation:

b1 expresses the rate of change of y with respect to x
For every one mile increase in distance, airfare will go up by

an additional 0.117 dollars.  
We could actually describe this as for a 100 mile increase in 

distance airfare rises by $11.70

b0 expresses where the regression line will hit the y axis
It may or may not be interpretable, depends on the context
In this case does an airfare of $83.27 when distance traveled is 

0 miles make sense?

xy 117.027.83ˆ +=

Equation of the Regression Line
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NOTE:  The least squares line  passes through ),( yx
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S 37.8270
R-Sq 63.2%
R-Sq(adj) 59.5%

Fitted Line Plot
Airfare =  83.27 + 0.1174 Distance

Equation of the Regression Line
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Predict the airfare for a city that is 576 miles away.  If 
you look at the original data set (first page), Atlanta's 
distance was 576 miles and the airfare was $178  

= 83.27 + 0.11738(576) 
= $150.88 (watch units!)

Calculate the corresponding residual
HOLD that thought
Residual = 178 – 150.88 = $27.12

xbby 10ˆ +=

Equation of the Regression Line
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The best straight line is the one that minimizes the 
residual sums of squares

The residual standard deviation can be used as our 
description of the closeness of the data points to the 
regression line

how far off predictions tend to be that are made using the 
regression model

Similar idea to s (measures variability around    ) 
sY|X (measures variability about the regression line)

Residual Standard Deviation
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Similar interpretation to ch 2.
68% of our data falls within + 1 sY|X from the line
95% of our data falls within + 2 sY|X from the line

We expect most of our data to fall within 2sY|X
from the regression line

Example: Airfare (cont’)
Predictions tend to be off by $37.83
Most of our observed values will fall within + 2(37.83) 

= $75.66 from their predicted values.

83.37
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Residual Standard Deviation
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Example: Airfare (cont’) 
Regression Analysis: Airfare versus Distance 

The regression equation is
Airfare = 83.3 + 0.117 Distance
Predictor     Coef SE Coef T      P
Constant     83.27    22.95  3.63  0.005
Distance   0.11738  0.02832  4.14  0.002
S = 37.8270 R-Sq = 63.2%   R-Sq(adj) = 59.5%

Analysis of Variance

Source          DF     SS     MS      F      P
Regression       1  24574  24574 17.17  0.002
Residual Error  10  14309   1431
Total           11  38883

Residual Standard Deviation
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Statistical Inference Concerning  β1

How can we use 
statistical inference in 
regression?

Suppose we would like to 
investigate the relationship 
between X and Y

If X is telling us nothing 
about Y, what will the slope 
of the regression line be?  

In other words, X is not 
useful for predicting Y
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Before we can start with inference we need to discuss the 
sampling distribution of β1

b1 is our estimate of β1

b1 will have some sampling error because it is an estimate based 
on the data  

SEb1 is used to describe this variability

The Standard Error of β1
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Spread along x axis, larger = better estimate of β1

Scatter of data, less scatter 
about regression line = better 
estimate of 

1β
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Two ways to make                     larger:
Increase n 

more terms in the summation

Increase dispersion in X values
more spread on x axis

( )∑ − 2xxi

Small 

( )∑ − 2xxi

Large 

will predict the 
slope more 
precisely!

( )∑ − 2xxi

The Standard Error of  β1
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Example: Airfare (cont’)
Calculate the standard deviation of the sampling 
distribution of b1 (ie. SEb1)

We know that sY|X = 37.83
And suppose                     was given as 1,786,499

Example: 
http://socr.stat.ucla.edu/Applets.dir/RegressionApplet.html
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The Standard Error of  β1
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Example: Airfare (cont’) 
Regression Analysis: Airfare versus Distance 

The regression equation is
Airfare = 83.3 + 0.117 Distance
Predictor     Coef SE Coef T      P
Constant     83.27    22.95  3.63  0.005
Distance 0.11738  0.02832 4.14  0.002
S = 37.8270   R-Sq = 63.2%   R-Sq(adj) = 59.5%

Analysis of Variance

Source          DF     SS     MS      F      P
Regression       1  24574  24574 17.17  0.002
Residual Error  10  14309   1431
Total           11  38883

The Standard Error of  β1
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In many studies β1 is a clinically meaningful value (the rate of 
change for Y with respect to X)

Before we define the formula for a CI for β1 let’s remember the 
formula for a CI for µ

RECALL:

Where 100(1 - α ) is the desired confidence

If we pick this apart we are really saying that a CI for µ is:
the estimate of µ + (an appropriate multiplier)x(SE)

⎟
⎠

⎞
⎜
⎝

⎛±
n
sdfty

2
)( α

The Standard Error of  β1

Stat 13, UCLA, Ivo DinovSlide 34

Using similar logic: 

Where 100(1 - α) is the desired confidence
With df = n – 2

( )
12

1 )( bSEdftb α±

The Standard Error of  β1
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Example: Airfare (cont’)
Calculate and interpret a 95% confidence interval 
for the slope

We are highly confident, at the 0.05 level, that the 
true slope of the regression of airfare on distance
is between 0.054 and 0.180 $/mi

( )

)180.0,054.0(
)02832.0(228.211738.0
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The Standard Error of  β1
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So what does that really mean?
In other words, if there is a 1 mile 

increase in distance the airfare will go up by 
between $0.054 and $0.180.

Would the zero rule make sense here?

The Standard Error of  β1
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Regression Analysis: Airfare versus Distance 

The regression equation is
Airfare = 83.3 + 0.117 Distance
Predictor     Coef SE Coef T      P
Constant     83.27    22.95  3.63  0.005
Distance   0.11738  0.02832 4.14  0.002

S = 37.8270   R-Sq = 63.2%   R-Sq(adj) = 59.5%

Analysis of Variance
Source          DF     SS     MS      F      P
Regression       1  24574  24574 17.17  0.002
Residual Error  10  14309   1431
Total           11  38883

The Standard Error of  β1
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If X is not useful for predicting Y this is like 
saying the true slope is zero 

In a hypothesis test our status quo null 
hypothesis would be that there is no 
relationship between X and Y

#1 Hypotheses:
Ho: β1 = 0
Ha: β1 != 0 or β1 > 0 or β1 < 0

Testing the True Slope β1
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Example: Airfare (cont’)

This line 
has a slope 
of zero.  It 
says that 
as distance 
changes 
airfare 
doesn't 
change

Does the slope of 
the regression line 
appear to be 
different from zero?

Testing the True Slope β1
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#2 The test statistic:

with n – 2 df

#3 P-value
based on the t table
can be directional or non-directional (multiply by 2)
one sided issues still apply

#4 Conclusion (TBD)

1

01

b
s SE

bt −
=

Testing the True Slope β1
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Example: Airfare (cont’)
Imagine the population of all cities you 
could fly to from Baltimore
Is the relationship we found in this sample 
of 12 cities strong enough to convince you 
that there really is a relationship for the 
entire population?  

Testing the True Slope β1

Stat 13, UCLA, Ivo DinovSlide 42

Test to see if distance is useful for predicting airfare in a 
linear model, using   α = 0.05

#1 Ho: β1 = 0 
Ha: β1 != 0

#2

#3 df = 10; 2(0.0005) < p < 2(0.005) = 0.001 < p < 0.01
Reject Ho

145.4
02832.0

011738.00

1

1 =
−

=
−

=
b

s SE
bt

Testing the True Slope β1
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#4 CONCLUSION: These data provide evidence to 
suggest that there is a significant LINEAR relationship
between distance and airfare to US cities from 
Baltimore, MD (0.001 < p < 0.01)

NOTE:  We’re not asking if the relationship is linear
We are already assuming that the linear relationship 

holds
Why n – 2 df?  

It takes two points to determine a straight line
Also n – 2 is the denominator of sY|X

Testing the True Slope β1
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Regression Analysis: Airfare versus Distance 

The regression equation is
Airfare = 83.3 + 0.117 Distance
Predictor     Coef SE Coef T      P
Constant     83.27    22.95  3.63  0.005
Distance 0.11738  0.02832  4.14  0.002
S = 37.8270   R-Sq = 63.2%   R-Sq(adj) = 59.5%

Analysis of Variance
Source          DF     SS     MS      F      P
Regression       1  24574  24574 17.17  0.002
Residual Error  10  14309   1431
Total           11  38883

Be careful, p-
value is for a 
two sided 
test!

Testing the True Slope β1
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Suppose we wanted to test to see if the mean airfare 
increases with increasing distance, using  α = 0.05

What would change in our hypothesis test from before?

This means we are expecting a positive slope
Ha: β1 > 0 
Does ts jive with Ha?  ts = 4.14
0.0005 < p < 0.005

Testing the True Slope β1
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Consider our airfare 
example 

The dependent 
variable, airfare, varies 
from airport  to airport, 
regardless of distance

A statistical measure 
of the total variability in 
airfare is called sums of 
squares total

Variability in Regression

( )∑ −= 2)( yytotalSS i
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Suppose we know Xi, the 
distance for each airport

We can use a regression 
model 
to predict airfare

Some airports have higher 
airfares than others and this 
is partly due to distance

The amount of variability in 
airfare that is explained by a 
linear regression with 
distance is called sums of 
squares regression

xbby 10ˆ +=

( )∑ −= 2ˆ)( yyregSS i

Variability in Regression
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The amount of variation in 
airfare not explained by 
distance is called sums of 
squares residual

this is the leftover 
variability not explained by 
our regression

NOTE:  SS(total) = 
SS(regr) + SS(resid)

total variation = explained 
variation + unexplained 
variation

( )∑ −= 2ˆ)( ii yyresidSS

Variability in Regression
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Regression Analysis: Airfare versus Distance 

The regression equation is
Airfare = 83.3 + 0.117 Distance
Predictor     Coef SE Coef T      P
Constant     83.27    22.95  3.63  0.005
Distance   0.11738  0.02832  4.14  0.002
S = 37.8270   R-Sq = 63.2%   R-Sq(adj) = 59.5%

Analysis of Variance
Source          DF     SS     MS      F      P
Regression       1  24574  24574 17.17  0.002
Residual Error  10  14309   1431
Total           11  38883

Variability in Regression
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NOTE:  The sums of Squares appear on minitab
in the ANOVA table

The balance of the table is the same as we learned 
for ANOVA, just different formulas

Source   df  SS    MS  

Regression   1  ( )∑ − 2ˆ yyi  )(
)(

regdf
regSS

 

Residual   n* –2  ( )∑ − 2ˆ ii yy  )(
)(

residdf
residSS

Total    n* - 1 ( )∑ − 2yyi  
 

Variability in Regression
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Known as the ratio of SS(reg) to SS(total) (ratio 
of explained variation over total variation)

The coefficient of determination is a measure of 
the strength of the linear relationship between X 
and Y

aka: “The proportion of the variability in Y that is 
explained by the linear regression of Y on X”

simply put this is a measure of the total variability of 
Y explained by X

Denoted by R2

The Coefficient of Determination

)(
)(1

)(
)(2

totalSS
residSS

totalSS
regSSR −==
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R2 will always be:
0 < R2 < 1
If there is no linear relationship between X 
and Y then R2 will be close to 0
If there is a strong linear relationship 
between X and Y then R2 will be close to 
1

The Coefficient of Determination
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Example: Airfare (cont’)
Calculate and interpret R2

Only 63.2% of the total variability in airfare can be 
explained by a linear regression with distance.
RULE OF THUMB:  81% to 100% indicates a strong linear 
relationship; 64% to <81% indicates is good; 49% to <64% 
is fair; and <49% is poor.
NOTE:  R2 close to zero does not mean that there is no 
relationship between X and Y, only that it is not a linear 
relationship.

632.0
38883
24574

)(
)(2 ===

totalSS
regSSR

The Coefficient of Determination
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Regression Analysis: Airfare versus Distance 

The regression equation is
Airfare = 83.3 + 0.117 Distance
Predictor     Coef SE Coef T      P
Constant     83.27    22.95  3.63  0.005
Distance   0.11738  0.02832  4.14  0.002
S = 37.8270   R-Sq = 63.2% R-Sq(adj) = 59.5%

Analysis of Variance
Source          DF     SS     MS      F      P
Regression       1  24574  24574 17.17  0.002
Residual Error  10  14309   1431
Total           11  38883

The Coefficient of Determination
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The correlation coefficient is also a measure of 
the linear relationship between X and Y

OR
-1 < r < 1
If there is no linear relationship between X and Y then r 
will be close to 0
If there is a strong positive linear relationship between 
X and Y then r will be close to +1
If there is a strong negative linear relationship between 
X and Y then r will be close to -1

The Coefficient of Correlation
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Example: Airfare (cont’)
Calculate and interpret r

This indicates that distance and airfare have a fair 
positive linear relationship
Correlation describes the tightness of the linear 
relationship between X and Y
RULE OF THUMB: 0.9 to 1.0 strong linear relationship; 
0.8 to <0.9 good; 0.7 to <0.8 fair; <0.7 poor

( ) ( ) 795.01632.0 =+×=r

The Coefficient of Correlation
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Computer output for correlation (e.g., SOCR)

Correlations: Airfare, Distance 

Pearson corr. of Airfare and Distance = 0.795
P-Value = 0.002

The Coefficient of Correlation
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If X and Y are switched the coefficient of 
correlation will remain unchanged.

There is statistical inference we can make about r
The population correlation coefficient is  ρ (rho)
Inference about  requires a bivariate random sample –

each (x, y) as having been sampled at random from a 
population of all (x, y) pairs

NOTE:  Won’t work when X is specified by researcher 
(doses)

It turns out that Ho: ρ = 0 is equivalent to Ho: β1 = 0

The Coefficient of Correlation
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Guidelines for Regression and Correlation

Need to be careful interpreting correlation
Similar to Ch 8, an observed association 

between variables does not necessarily indicate 
causation

Because two variables are highly correlated 
does not mean that one causes the other.
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Curvilinear Data

Curvilinear data can distort 
regression results by:

a fitted line that doesn't represent the 
data

the correlation is misleadingly small
sY|X is inflated
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Example: For married couples with one or more offspring, 
a demographic study was conducted to determine the 
effect of the families annual income (at marriage) on time 
(months) between marriage and the birth of the first child.

Income Time Income Time 
5775 16.20 4608 9.70 
9800 35.00 24210 20.00 

13795 37.20 19625 38.20 
4120 9.00 18000 41.25 

25015 24.40 13000 44.00 
12200 36.75 5400 9.20 
7400 31.75 6440 20.00 
9340 30.00 9000 40.20 

20170 36.00 18180 32.00 
22400 30.80 15385 39.20 

 

Curvilinear Data
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Clearly a straight 
line model does not 
accurately describe 
what is going on with 
this data.

Does this mean 
there is no 
relationship between 
income and time?

No, just that it isn’t 
linear!

Income
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S 10.4958
R-Sq 18.5%
R-Sq(adj) 14.0%

Fitted Line Plot
Time =  19.63 + 0.000714 Income

Curvilinear Data
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Regression Analysis: Time versus Income 

The regression equation is
Time = 19.6 + 0.000714 Income
Predictor       Coef SE Coef T      P
Constant      19.626      5.213  3.76  0.001
Income     0.0007138  0.0003528  2.02  0.058
S = 10.4958   R-Sq = 18.5% R-Sq(adj) = 14.0%

Analysis of Variance
Source          DF      SS     MS     F      P
Regression       1   450.9  450.9 4.09  0.058
Residual Error  18  1982.9  110.2
Total           19  2433.8

Curvilinear Data
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Our solution would be to 
fit a quadratic model to 
address the curvature 
seen in the scatter plot

The graph shows that 
visually we have a 
good fit with a 
quadratic model

NOTE:  Now that we 
have more than one 
independent variable this 
becomes a multiple 
regression problem

Income
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S 4.39819
R-Sq 86.5%
R-Sq(adj) 84.9%

Fitted Line Plot
Time =  - 18.64 + 0.007700 Income

- 0.000000 Income**2

Curvilinear Data
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Regression Analysis: Time versus Income, IncomeSQ

The regression equation is
Time = - 18.6 + 0.00770 Income - 0.000000 IncomeSQ
Predictor         Coef SE Coef T      P
Constant       -18.639       4.679  -3.98  0.001
Income       0.0077004   0.0007699  10.00  0.000
IncomeSQ -0.00000025  0.00000003  -9.25  0.000
S = 4.39819   R-Sq = 86.5% R-Sq(adj) = 84.9%

Analysis of Variance
Source          DF      SS      MS      F      P
Regression       2  2104.9  1052.5  54.41  0.000
Residual Error  17   328.8    19.3
Total           19  2433.8

Curvilinear Data
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We know outliers as observations that are 
unusually large when compared to the rest 
of the data

In regression analysis an outlier is a data 
points that is unusually far from the linear 
trend formed by the data

Outliers can distort regression results by:
inflating sY|X and reducing r
influencing the regression line

Outliers



12

Stat 13, UCLA, Ivo DinovSlide 67

Example: Airfare 

Suppose we an 
airport to our data 
set which is 750 
miles away with an 
airfare of $361

Distance
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S 65.7151
R-Sq 35.5%
R-Sq(adj) 29.6%

Fitted Line Plot
Airfare =  95.24 + 0.1210 Distance

Outliers
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Regression Analysis: Airfare versus Distance 
The regression equation is
Airfare = 95.2 + 0.121 Distance
Predictor     Coef SE Coef T      P
Constant     95.24    39.63  2.40  0.035
Distance   0.12104  0.04919  2.46  0.032
S = 65.7151   R-Sq = 35.5% R-Sq(adj) = 29.6%

Analysis of Variance
Source          DF     SS     MS     F      P
Regression       1  26150  26150 6.06  0.032
Residual Error  11  47503   4318
Total           12  73654
Unusual Observations
Obs Distance  Airfare    Fit  SE Fit  Residual  St Resid
13       750    361.0  186.0    18.3     175.0      2.77R
R denotes an observation with a large standardized residual.

Outliers
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Influential Observations

Influential observations also affect 
regression results, usually in an artificially 
positive way

Influential observations can distort 
regression results by:

changing fitted line
influences correlation
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Example: Airfare (cont’)
Suppose we an airport 
to our data set which is 
2800 miles away with 
an airfare of $312
NOTE:  Not an outlier 
because the residual is 
small Distance
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S 39.4741
R-Sq 70.6%
R-Sq(adj) 67.9%

Fitted Line Plot
Airfare =  104.5 + 0.08421 Distance

Influential Observations
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Regression Analysis: Airfare versus Distance 
The regression equation is
Airfare = 105 + 0.0842 Distance
Predictor     Coef SE Coef T      P
Constant    104.54    18.01  5.80  0.000
Distance   0.08421  0.01638  5.14  0.000
S = 39.4741   R-Sq = 70.6% R-Sq(adj) = 67.9%

Analysis of Variance
Source          DF     SS     MS      F      P
Regression       1  41173  41173 26.42  0.000
Residual Error  11  17140   1558
Total           12  58313

Unusual Observations
Obs Distance  Airfare    Fit  SE Fit  Residual  St Resid
13      2800    312.0  340.3    33.4     -28.3     -1.35 X

X denotes an observation whose X value gives it large influence.

Influential Observations
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Design conditions:
Random subsampling model: for each x the corresponding y is 

viewed as randomly chosen from the conditional population 
distribution of Y values

Bivariate random sampling model: each (x,y) pair is viewed as 
randomly chosen

Conditions concerning parameters

does not depend on X

Conditions concerning population distribution: the 
conditional distribution of Y for each fixed X is normally 
distributed

Conditions for Inference

XXY 10| ββµ +=
XY |σ
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SUMMARY:
Same SD, for all levels of X
Independent observations
Normal distribution of Y for each fixed X
Random sample

Conditions for Inference
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Regression can be quite complicated

Multiple regression is an extension of simple 
linear regression

Does distance completely determine airfare?  
Are there other factors that might influence airfare?

There are multiple regression models that can 
accommodate more than one independent 
variable

These topics are covered in other statistics classes. 

Multiple Regression


