UCLA STAT 13

Introduction to Statistical Methods for the Life and Health Sciences

Instructor: Ivo Dinov,

Asst. Prof. of Statistics and Neurology

Teaching Assistants:

Jacquelina Dacosta \& Chris Barr

University of California, Los Angeles, Fall 2006

http://www.stat.ucla.edu/~dinov/courses_students.html

Slide 1

Correlation Coefficient

Correlation coefficient ($-1<=R<=1$): a measure of linear association, or clustering around a line of multivariate data.
Relationship between two variables (X, Y) can be summarized by: $\left(\mu_{\mathrm{X}}, \sigma_{\mathrm{X}}\right),\left(\mu_{\mathrm{Y}}, \sigma_{\mathrm{Y}}\right)$ and the correlation coefficient, $R . R=1$, perfect positive correlation (straight line relationship), $R=0$, no correlation (random cloud scatter), $R=-1$, perfect negative correlation.
Computing $R(\mathrm{X}, \mathrm{Y})$: (standardize, multiply, average)

Correlation Coefficient

Example:

$$
R(X, Y)=\frac{1}{N-1} \sum_{k=1}^{N}\left(\frac{x_{k}-\mu_{k}}{\sigma_{x}}\right)\left(\frac{y_{k}-\mu_{k}}{\sigma_{y}}\right)
$$

$$
\boldsymbol{\mu}_{x}=\frac{966}{6}=161 \mathrm{~cm}, \quad \boldsymbol{\mu}_{x}=\frac{332}{6}=55 \mathrm{~kg}
$$

$$
\sigma_{x}=\sqrt{\frac{216}{5}}=6.573, \quad \sigma_{\mathrm{x}}=\sqrt{\frac{215.3}{5}}=6.563
$$

$$
\operatorname{Corr}(X, Y)=R(X, Y)=0.904
$$

Correlation Coefficient - Properties

Correlation Coefficient - Properties

Correlation is Associative

$$
\begin{aligned}
& \text { Correlation is invariant w.r.t. linear transformations of } \mathrm{X} \text { or } \mathrm{Y} \\
& R(X, Y)=\frac{1}{N-1} \sum_{k=1}^{N}\left(\frac{x k-\mu_{x}}{\sigma_{x}}\right)\left(\frac{y k-\mu_{y}}{\sigma_{y}}\right)= \\
& R(a X+b, c Y+d), \quad \text { since } \\
& \left(\frac{a x k+b-\mu a x+b}{\sigma_{a x}+b}\right)=\left(\frac{a x k+b-\left(a \mu_{x}+b\right)}{|a| \times \sigma_{x}}\right)= \\
& \left(\frac{a(x k-\mu)+b-b}{a \times \sigma_{x}}\right)=\left(\frac{x k-\mu_{x}}{\sigma_{x}}\right)
\end{aligned}
$$

$$
R(X, Y)=\frac{1}{N} \sum_{k=1}^{N}\left(\frac{x_{k}-\boldsymbol{\mu}_{k}}{\boldsymbol{\sigma}_{x}}\right)\left(\frac{y_{k}-\boldsymbol{\mu}_{v}}{\boldsymbol{\sigma}_{y}}\right)=R(Y, X)
$$

Correlation measures linear association, NOT an association in general!!! So, Corr(X,Y) could be misleading for X \& Y related in a non-linear fashion.

Linear Relationships

Example: The data below are airfares (\$) and distance (miles) to various US cities from Baltimore, Maryland.

Linear Relationships

Two Contexts for regression:

1. Y is an observed variable and X is specified by the researcher

Ex. Y is hair growth after 2 months, for individuals at certain dose levels of hair growth cream (X)
2. X and Y are observed variables

- Ex. Height (Y) and weight (X) for 20 randomly selected individuals

Linear Relationships

- This scatterplot gives us a view of how the dependent variable airfare (y) changes with the independent variable distance (x)
- From this data there appears to be a linear trend, but the data do not fall in an but the data do no
exact straight line
- Still may be reasonable to fit a line to this data

The Fitted Regression Line

- Suppose we have n pairs (x, y)
- If a scatterplot of the data suggests a general linear trend, it would be reasonable to fit a line to the data
- The question is which is the best line?

Example Airfare (cont')

- We can see from the scatterplot that greater distance is associated with higher airfare
- In other words airports that tend to be further from Baltimore than tend to be more expensive airfare
- To decide on the best fitting line, we use the leastsquares method to fit the least squares (regression) line

Equation of the Regression Line

RECALL: $y=m x+b$

- In statistics we call this $Y=b_{0}+b_{1} X$
where Y is the dependent variable X is the independent variable b_{0} is the y-intercept $\quad \bar{y}-b_{1} \bar{x}$ b_{1} is the slope of the line $\frac{\sum\left(x_{i}-\bar{x}\right)\left(y_{i}-\bar{y}\right)}{\sum\left(x_{i}-\bar{x}\right)^{2}}$

LS Estimates for the Linear Parameters

1. The least-squares line $\hat{y}=\hat{\beta}_{0}+\hat{\beta}_{1} x$ passes through the points ($x=0, \hat{y}=$?) and ($x=\frac{1}{x}, \hat{y}=$?). Supply the missing values.

$$
\hat{\boldsymbol{\beta}}_{1}=\frac{\sum_{i=1}^{n}\left[\left(x_{i}-\bar{x}\right)\left(y_{i}-\bar{y}\right)\right]}{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}} ; \quad \hat{\boldsymbol{\beta}}_{0}=\bar{y}-\hat{\boldsymbol{\beta}}_{1} \bar{x}
$$

Equation of the Regression Line

```
- Example: Airfare (cont')
Regression Analysis: Airfare versus Distance
The regression equation is
Airfare = 83.3 + 0.117 Distance
lrrrrer
Constant 
Distance 0.11738}00.02832 4.14 0.002
S = 37.8270 R-Sq=63.2% R-Sq(adj) = 59.5%
Analysis of Variance
Source DF SS MS F P
lrratsin
Residual Error 10
Total
    11 38883
```


Equation of the Regression Line

- When we write the least squares regression equation we use the following notation:

$$
\hat{y}=83.27+0.117 x
$$

$\square b_{1}$ expresses the rate of change of y with respect to x For every one mile increase in distance, airfare will go up by an additional 0.117 dollars.
We could actually describe this as for a 100 mile increase in distance airfare rises by $\$ 11.70$

- b_{0} expresses where the regression line will hit the y axis \square It may or may not be interpretable, depends on the context In this case does an airfare of $\$ 83.27$ when distance traveled is 0 miles make sense?

Equation of the Regression Line

- Predict the airfare for a city that is 576 miles away. If you look at the original data set (first page), Atlanta's distance was 576 miles and the airfare was \$178

$$
\begin{aligned}
& \hat{y}=b_{0}+b_{1} x \\
= & 83.27+0.11738(576) \\
= & \$ 150.88 \text { (watch units!) }
\end{aligned}
$$

- Calculate the corresponding residual
- HOLD that thought
Residual $=178-150.88=\$ 27.12$

Residual Standard Deviation

- The best straight line is the one that minimizes the residual sums of squares
- The residual standard deviation can be used as our description of the closeness of the data points to the regression line

$$
s_{Y \mid X}=\sqrt{\frac{S S(\text { resid })}{n-2}}=\sqrt{\frac{\sum\left(y_{i}-\hat{y}\right)^{2}}{n-2}}
$$

- how far off predictions tend to be that are made using the regression model
- Similar idea to s (measures variability around \bar{y})

$$
\mathrm{s}_{\mathrm{Y\mid X}} \text { (measures variability about the regression line) }
$$

Residual Standard Deviation

- Similar interpretation to ch 2.
68% of our data falls within $\pm 1 \mathrm{~s}_{Y \mid X}$ from the line 95% of our data falls within $\pm 2 s_{Y \mid X}$ from the line
- We expect most of our data to fall within $2 \mathrm{~s}_{\mathrm{Y} \mid \mathrm{X}}$ from the regression line
Example: Airfare (cont') $s_{Y \mid X}=\sqrt{\frac{S S(\text { resid })}{n-2}}=37.83$
- Predictions tend to be off by $\$ 37.83$

Most of our observed values will fall within \pm 2(37.83)
$=\$ 75.66$ from their predicted values.

Residual Standard Deviation

Example: Airfare (cont')
Regression Analysis: Airfare versus Distance
The regression equation is
Airfare $=83.3+0.117$ Distance
Predictor Coef SE Coef
$\begin{array}{llllll}\text { Constant } & 83.27 & 22.95 & 3.63 & 0.005\end{array}$
Distance $0.11738 \quad 0.02832 \quad 4.14 \quad 0.002$
Analysis of Variance

Source	DF	SS	MS	F	P
Regression	1	24574	24574	17.17	0.002
Residual Error	10	14309	1431		
Total	11	38883			

The Standard Error of $\boldsymbol{\beta}_{1}$

- Before we can start with inference we need to discuss the sampling distribution of β_{1}
- b_{1} is our estimate of β_{1}
b_{1} will have some sampling error because it is an estimate based on the data
- $\mathrm{SE}_{\mathrm{b} 1}$ is used to describe this variability

Spread along \times axis, larger $=$ better estimate of β_{1}

Statistical Inference Concerning $\boldsymbol{\beta}_{1}$

- How can we use statistical inference in regression?
- Suppose we would like to investigate the relationship between X and Y
- If X is telling us nothing about Y , what will the slope of the regression line be?
\square In other words, X is not useful for predicting Y

The Standard Error of $\boldsymbol{\beta}_{1}$

Two ways to make $\sum\left(x_{i}-\bar{x}\right)^{2}$ larger:

- Increase n
\square more terms in the summation
- Increase dispersion in X values \square more spread on x axis

The Standard Error of $\boldsymbol{\beta}_{1}$

Example: Airfare (cont')
Calculate the standard deviation of the sampling distribution of b_{1} (ie. $\mathrm{SE}_{\mathrm{b} 1}$)

We know that $\mathrm{S}_{Y \mid X}=37.83$
And suppose $\sum\left(x_{i}-\bar{x}\right)^{2}$ was given as $1,786,499$

$$
S E_{b_{1}}=\frac{s_{Y X}}{\sqrt{\sum\left(x_{i}-\bar{x}\right)^{2}}}=\frac{37.83}{\sqrt{1,786,499}}=0.0283
$$

Example:
http://socr.stat.ucla.edu/Applets.dir/RegressionApplet.html

The Standard Error of $\boldsymbol{\beta}_{1}$

- In many studies β_{1} is a clinically meaningful value (the rate of change for Y with respect to X)
- Before we define the formula for a CI for β_{1} let's remember the
formula for a Cl for μ
RECALL:

$$
\bar{y} \pm t(d f)_{\alpha / 2}\left(\frac{s}{\sqrt{n}}\right)
$$

Where $100(1-\alpha)$ is the desired confidence

- If we pick this apart we are really saying that a CI for μ is: the estimate of $\mu \pm$ (an appropriate multiplier) \times (SE)

The Standard Error of $\boldsymbol{\beta}_{1}$

Using similar logic:

$$
b_{1} \pm t(d f)_{\alpha / 2}\left(S E_{b_{1}}\right)
$$

Where $100(1-\alpha)$ is the desired confidence With $d f=\mathrm{n}-2$

The Standard Error of $\boldsymbol{\beta}_{1}$
Example: Airfare (cont')
Calculate and interpret a 95\% confidence interval for the slope

$$
\begin{aligned}
& b_{1} \pm t(d f)_{\alpha / 2}\left(S E_{b_{1}}\right) \\
& =0.11738 \pm t(10)_{0.025}(0.02832) \\
& =0.11738 \pm 2.228(0.02832) \\
& =(0.054,0.180)
\end{aligned}
$$

We are highly confident, at the 0.05 level, that the true slope of the regression of airfare on distance is between 0.054 and $0.180 \$ / \mathrm{mi}$

The Standard Error of $\boldsymbol{\beta}_{1}$

- So what does that really mean? - In other words, if there is a 1 mile increase in distance the airfare will go up by between $\$ 0.054$ and $\$ 0.180$.
- Would the zero rule make sense here?

The Standard Error of $\boldsymbol{\beta}_{1}$

```
Regression Analysis: Airfare versus Distance
```

```
The regression equation is
Airfare = 83.3 + 0.117 Distance
Predictor Coef SE Coef T
Distance 
S = 37.8270 R-Sq = 63.2% R-Sq(adj) = 59.5%
Analysis of Variance
Source 
Residual Error 10}14309 140, 1431 
Total 
```

Testing the True Slope β_{1}

Example: Airfare (cont')

Testing the True Slope β_{1}

Example: Airfare (cont')
Imagine the population of all cities you could fly to from Baltimore
Is the relationship we found in this sample of 12 cities strong enough to convince you that there really is a relationship for the entire population?

Testing the True Slope $\boldsymbol{\beta}_{1}$

If X is not useful for predicting Y this is like saying the true slope is zero

- In a hypothesis test our status quo null hypothesis would be that there is no relationship between X and Y
- \#1 Hypotheses:
$\mathrm{H}_{0}: \beta_{1}=0$
$\mathrm{H}_{\mathrm{a}}: \beta_{1}!=0 \quad$ or $\beta_{1}>0$ or $\beta_{1}<0$

Testing the True Slope β_{1}

\#2 The test statistic: $t_{s}=\frac{b_{1}-0}{S E_{b_{1}}}$
with $\mathrm{n}-2$ df
with $n-2$ df

- \#3 P-value
\square based on the t table
- can be directional or non-directional (multiply by 2)
- one sided issues still apply
- \#4 Conclusion (TBD)

Testing the True Slope $\boldsymbol{\beta}_{1}$

Test to see if distance is useful for predicting airfare in a linear model, using $\alpha=0.05$
\#1 $\mathrm{H}_{0}: \beta_{l}=0$
$\mathrm{H}_{\mathrm{a}}: \beta_{l}!=0$
\#2 $\quad t_{s}=\frac{b_{1}-0}{S E_{b_{1}}}=\frac{0.11738-0}{0.02832}=4.145$
\#3 df = 10; 2(0.0005) $<$ p < 2(0.005) $=0.001<p<0.01$ Reject H_{0}

Testing the True Slope β_{1}

\#4 CONCLUSION: These data provide evidence to suggest that there is a significant LINEAR relationship between distance and airfare to US cities from Baltimore, MD ($0.001<\mathrm{p}<0.01$)

- NOTE: We're not asking if the relationship is linear
\square We are already assuming that the linear relationship holds
Why n-2 df?
\square It takes two points to determine a straight line
Also $\mathrm{n}-2$ is the denominator of $\mathrm{s}_{\mathrm{Y} \mid \mathrm{X}}$

Testing the True Slope β_{1}

Variability in Regression

- Consider our airfare example

The dependent variable, airfare, varies from airport to airport, regardless of distance

- A statistical measure of the total variability in airfare is called sums of squares total

The Coefficient of Determination

- Known as the ratio of SS(reg) to SS(total) (ratio of explained variation over total variation)
- The coefficient of determination is a measure of the strength of the linear relationship between X and Y
- aka: "The proportion of the variability in Y that is
explained by the linear regression of Y on X "
- simply put this is a measure of the total variability of
Y explained by X
Denoted by R^{2}

$$
R^{2}=\frac{S S(\text { reg })}{S S(\text { total })}=1-\frac{\text { SS }(\text { resid })}{\text { SS(total })}
$$

The Coefficient of Determination

Example: Airfare (cont')
Calculate and interpret R^{2}

$$
R^{2}=\frac{S S(\text { reg })}{S S(\text { total })}=\frac{24574}{38883}=0.632
$$

Only 63.2% of the total variability in airfare can be explained by a linear regression with distance.
RULE OF THUMB: 81% to 100% indicates a strong linear relationship; 64% to $<81 \%$ indicates is good; 49% to $<64 \%$ is fair; and $<49 \%$ is poor.
NOTE: R^{2} close to zero does not mean that there is no relationship between X and Y, only that it is not a linear relationship.

Variability in Regression

NOTE: The sums of Squares appear on minitab in the ANOVA table

- The balance of the table is the same as we learned for ANOVA, just different formulas

Source	df	SS	MS
Regression	1	$\sum\left(\hat{y}_{i}-\bar{y}\right)^{2}$	$\frac{\text { SS (reg) }}{d f(\text { reg })}$
Residual	$\mathrm{n}^{*}-2$	$\sum\left(y_{i}-\hat{y}_{i}\right)^{2}$	$\frac{\text { SS (resid) }}{d f(\text { resid })}$
Total	$\mathrm{n}^{*}-1$	$\sum\left(y_{i}-\bar{y}\right)^{2}$	

The Coefficient of Determination

- R^{2} will always be:
$0 \leq R^{2} \leq 1$
If there is no linear relationship between X and Y then R^{2} will be close to 0 If there is a strong linear relationship between X and Y then R^{2} will be close to 1

The Coefficient of Determination

Regression Analysis: Airfare versus Distance

```
The regression equation is
Airfare = 83.3 + 0.117 Distance
Predictor Coef SE Coef T P
Constant 
Distance 0.11738 0.02832 4.14 0.002
S = 37.8270 R-Sq = 63.2% R-Sq(adj) = 59.5%
Analysis of Variance
Source DF SS MS M F F
```



```
Total 
```


The Coefficient of Correlation

The correlation coefficient is also a measure of the linear relationship between X and Y
$r=\left(\sqrt{r^{2}}\right) \times($ sign of slope $) \quad$ OR $\quad r=\frac{\sum\left(x_{i}-\bar{x}\right)\left(y_{i}-\bar{y}\right)}{\sqrt{\sum\left(x_{i}-\bar{x}\right)^{2} \sum\left(y_{i}-\bar{y}\right)^{2}}}$
$-1 \leq r \leq 1$
If there is no linear relationship between X and Y then r will be close to 0
If there is a strong positive linear relationship between
X and Y then r will be close to +1
If there is a strong negative linear relationship between X and Y then r will be close to -1

The Coefficient of Correlation

Example: Airfare (cont')
Calculate and interpret r

$$
r=(\sqrt{0.632}) \times(+1)=0.795
$$

This indicates that distance and airfare have a fair positive linear relationship
Correlation describes the tightness of the linear relationship between X and Y
RULE OF THUMB: 0.9 to 1.0 strong linear relationship; 0.8 to <0.9 good; 0.7 to <0.8 fair; <0.7 poor

The Coefficient of Correlation

- Computer output for correlation (e.g., SOCR)

Correlations: Airfare, Distance
Pearson corr. of Airfare and Distance $=0.795$ P -Value $=0.002$

The Coefficient of Correlation

- If X and Y are switched the coefficient of correlation will remain unchanged.
- There is statistical inference we can make about r
- The population correlation coefficient is ρ (rho)
- Inference about requires a bivariate random sample each (x, y) as having been sampled at random from a population of all (x, y) pairs
- NOTE: Won't work when X is specified by researcher (doses)
- It turns out that $\mathrm{H}_{0}: \rho=0$ is equivalent to $\mathrm{H}_{0}: \beta_{I}=0$

Guidelines for Regression and Correlation

Need to be careful interpreting correlation - Similar to Ch 8, an observed association between variables does not necessarily indicate causation
\square Because two variables are highly correlated does not mean that one causes the other.

Curvilinear Data

Curvilinear data can distort regression results by:

- a fitted line that doesn't represent the data
- the correlation is misleadingly small ${ }^{-} \mathrm{S}_{\mathrm{Y} \mid \mathrm{X}}$ is inflated
Example: For married couples with one or more offspring, a demographic study was conducted to determine the effect of the families annual income (at marriage) on time (months) between marriage and the birth of the first child.

Curvilinear Data

Regression Analysis: Time versus Income
The regression equation is
Time $=19.6+0.000714$ Income
$\begin{array}{lrrrr}\text { Predictor } & \text { Coef } & \text { SE Coef } & \text { T } & \text { P } \\ \text { Constant } & 19.626 & 5.213 & 3.76 & 0.001\end{array}$
$\begin{array}{lllll}\text { Income } & 0.0007138 & 0.0003528 & 2.02 & 0.058\end{array}$
$S=10.4958 \quad R-S q=18.5 \% \quad R-S q(\operatorname{adj})=14.0 \%$
Analysis of Variance

Source	DF	SS	MS	F	P
Regression	1	450.9	450.9	4.09	0.058
Residual Error	18	1982.9	110.2		
Total	19	2433.8			

$\begin{array}{llll}\text { Residual Error } & 18 & 1982.9 & 110.2\end{array}$
Slide 63

Curvilinear Data

Clearly a straight line model does not accurately describe what is going on with this data.

- Does this mean there is no
relationship between income and time? - No, just that it isn't
 linear!

Curvilinear Data

Our solution would be to fit a quadratic model to address the curvature seen in the scatter plot -The graph shows that visually we have a good fit with a quadratic model

- NOTE: Now that we
have more than one
independent variable this
becomes a multiple
regression problem

Outliers

We know outliers as observations that are unusually large when compared to the rest of the data

In regression analysis an outlier is a data points that is unusually far from the linear trend formed by the data
Outliers can distort regression results by:
\square inflating $\mathrm{s}_{\mathrm{Y} \mid \mathrm{X}}$ and reducing r

- influencing the regression line

Influential Observations

Influential observations also affect regression results, usually in an artificially positive way

- Influential observations can distort regression results by:
- changing fitted line
- influences correlation

Conditions for Inference

- Design conditions:
- Random subsampling model: for each x the corresponding y is
viewed as randomly chosen from the conditional population distribution of Y values
- Bivariate random sampling model: each (x, y) pair is viewed as randomly chosen
- Conditions concerning parameters
- $\mu_{Y \mid X}=\beta_{0}+\beta_{1} X$
- $\sigma_{Y \mid X}$ does not depend on X
- Conditions concerning population distribution: the conditional distribution of Y for each fixed X is normally distributed

Multiple Regression

- Regression can be quite complicated
- Multiple regression is an extension of simple linear regression
- Does distance completely determine airfare?
- Are there other factors that might influence airfare?
- There are multiple regression models that can accommodate more than one independent variable
- These topics are covered in other statistics classes.

