Stats 13.1 HW 2 Solutions

October 10, 2007

13.7

a) The probability that both are affected is 0% because female offspring have no chance of getting the disease.
b) The probability that only one sibling is affected can be written as:

$\mathrm{P}($ one child affected $)$		$\mathrm{P}($ male affected and female not $)$	+	P (female affected and male not)
	$=$	$50 \% \cdot 100 \%$	+	$0 \% \cdot 50 \%$
	$=$		50%	

$2 \quad 3.8$

a)

P (get question right)	$=$	P (studied the question)	+	P (didn't study the question \& got it right)
	$=$	40%	+	$60 \% \cdot 20 \%$
	$=$		52%	

$\begin{aligned} \mathrm{P}(\text { studied it }- \text { got it right }) & =\frac{\mathrm{P}(\text { studied question \& got it right })}{\mathrm{P}(\text { got it right })} \\ & =40 \%\end{aligned}$
b)

$$
\begin{aligned}
& =\frac{40 \%}{52 \%} \\
& =76.9 \%
\end{aligned}
$$

$3 \quad 3.11$

There are two ways to test positive, a true positive and a false positive. $\mathrm{P}($ test positive $)=\mathrm{P}($ true positive $)+$ $\mathrm{P}($ false positive $)=0.146$
b)

$$
\begin{aligned}
\mathrm{P}(\text { has disease }- \text { test positive }) & =\frac{\mathrm{P}(\text { has disease } \& \text { test positive })}{\mathrm{P}(\text { test positive })} \\
& =\frac{\mathrm{P}(\text { true positive })}{\mathrm{P}(\text { test positive })} \\
& =\frac{0.092}{0.146} \\
& =0.63
\end{aligned}
$$

$4 \quad 3.14$

The law of independence states:
A and B are independent if and only if $P(A+B)=P(A) \cdot P(B)$.
But,
P (husband and wife smoke) $=? \quad \mathrm{P}$ (husband smokes) $\cdot \mathrm{P}$ (wife smokes)

8%	$=?$	$30 \% \cdot 20 \%$
8%	\neq	6%

So the smoking status of the husband is not independet of the status of the wife.

$5 \quad 3.18$ and 3.20

a)

$$
\begin{aligned}
\mathrm{P}(\mathrm{Y}=3) & =\frac{\# \text { of broods with } \mathrm{Y}=3}{\text { total \# of broods }} \\
& =\frac{610}{5000} \\
& =0.122
\end{aligned}
$$

```
b)
\[
\begin{aligned}
\mathrm{P}(\mathrm{Y} \leq 7) & =\frac{\# \text { of broods with } \mathrm{Y} \leq 3}{\text { total \# of broods }} \\
& =\frac{130+26+3+1}{5000} \\
& =0.032
\end{aligned}
\]
```

c)

$$
\begin{aligned}
\mathrm{P}(4 \leq \mathrm{Y} \leq 6) & =\frac{\# \text { of broods with } 4 \leq \mathrm{Y} \leq 6}{\text { total \# of broods }} \\
& =\frac{1400+1760+750}{5000} \\
& =0.782
\end{aligned}
$$

$$
\begin{aligned}
\text { mean }= & \sum_{Y=1}^{10} Y \cdot(\text { proportion of nests with brood size Y) } \\
= & 1 \cdot \frac{90}{5000}+2 \cdot \frac{230}{5000}+3 \cdot \frac{610}{5000}+4 \cdot \frac{1400}{5000}+5 \cdot \frac{1760}{5000}+6 \cdot \frac{750}{5000} \\
& +7 \cdot \frac{130}{5000}+8 \cdot \frac{26}{5000}+9 \cdot \frac{3}{5000}+10 \cdot \frac{1}{5000} \\
= & 4.487
\end{aligned}
$$

$6 \quad 3.12$ and 3.22

a)
a)
b)
c)

$7 \quad 3.28$

a) P (all 20 will be cured)
$=\mathrm{P}\left(1^{\text {st }}\right.$ will be cured $) \cdot \mathrm{P}\left(2^{\text {nd }}\right.$ will be cured $) \cdot \ldots \cdot \mathrm{P}\left(20^{t h}\right.$ will be cured $)$
$=0.9^{20}=0.1216$
b) P (all but 1 is cured)
$=\mathrm{P}\left(\right.$ all but the $1^{s t}$ will be cured $) \cdot \mathrm{P}\left(\right.$ all but the $2^{\text {nd }}$ will be cured $) \cdot \ldots \cdot \mathrm{P}\left(\right.$ all but the $20^{t h}$ will be cured $)$
$=0.1 \cdot 0.9^{19}+0.9 \cdot 0.1 \cdot 0.9^{18}+\ldots+0.9^{19} \operatorname{cdot} 0.1$
$=(20) \cdot 0.1 \cdot 0.9^{19}=0.2702$
c) $\mathrm{P}($ exactly 18 are cured $)=(\#$ of ways to chooose the 2 uncured children $) \cdot 0.1^{2} \cdot 0.9^{18}$
$=20 \cdot C_{2} \cdot 0.1^{2} \cdot 0.9^{18}=190 \cdot 0.1^{2} \cdot 0.9^{18}=0.2852$
d) $\mathrm{P}(90 \%$ will be cured $)=\mathrm{P}(0.9 \cdot 20$ will be cured $)=\mathrm{P}(18$ will be cured $)=0.2852($ part c $)$

$$
\begin{aligned}
& \mathrm{P}(\mathrm{Y} \geq 2)=\mathrm{P}(\mathrm{Y}=2)+\mathrm{P}(\mathrm{Y}=3) \\
& =0.189+0.027 \\
& =0.973 \\
& \mathrm{P}(\mathrm{Y} \leq 2) \quad=\quad \mathrm{P}(\mathrm{Y}=0)+\mathrm{P}(\mathrm{Y}=1)+\mathrm{P}(\mathrm{Y}=2) \\
& =0.343+0.441+0.189 \\
& =0.973 \\
& \mathrm{P}(\mathrm{Y} \leq 2) \quad=\quad 1-\mathrm{P}(\mathrm{Y}=3) \\
& =1-0.027 \\
& =0.973 \\
& \text { mean }=\sum_{y=0}^{3} y \cdot \mathrm{P}(\# \text { of black flies }=y) \\
& =0 \cdot 0.343+1 \cdot 0.441+2 \cdot 0.189+3 \cdot 0.027 \\
& =0.9
\end{aligned}
$$

$8 \quad 3.34$

a) Let us consider a success as "high blood lead level." Then we have a binomial problem with $\mathrm{n}=16$ and $\mathrm{p}=$ $1 / 8$. Then,
P (none have high blood lead level)
$=\mathrm{P}$ (no successes)
$={ }_{16} C_{0} \cdot\left(\frac{7}{8}\right)^{16}=0.1181$
b) P (one has high blood lead level)
$=\mathrm{P}(1$ success $)$
$={ }_{16} C_{1} \cdot\left(\frac{7}{8}\right)^{15} \cdot\left(\frac{1}{8}\right)^{1}=0.2699$
c) P (two have high blood lead level)
$=\mathrm{P}(2$ successes $)$
$={ }_{16} C_{2} \cdot\left(\frac{7}{8}\right)^{14} \cdot\left(\frac{1}{8}\right)^{2}=0.2891$
d) $\mathrm{P}($ three or more have high blood lead level)
$=1-\mathrm{P}(2$ or fewer have high blood lead level $)$
$=1-(\mathrm{P}(0$ have high blood lead level $)+\mathrm{P}(1$ have high blood lead level $)+\mathrm{P}(2$ have high blood lead level $))$
$=1-(0.1181+0.2699+0.2891)$
$=0.3229$

