UCLA STAT 13

Introduction to Statistical Methods for the Life and Health Sciences

Instructor: Ivo Dinov,

Asst. Prof. of Statistics and Neurology

Teaching Assistants:

Brandi Shanata \& Tiffany Head

University of California, Los Angeles, Fall 2007
http://www.stat.ucla.edu/~dinov/courses_students.htmI

UCLA STAT 13

to just hear is to forget
to see is to remember to do it yourself is to understand ...
(... to listen in class is to ... comprehend ...)

Administrative

- The book for this course -- Statistics for the Life Sciences, by Samuels \& Witmer, $3^{\text {rd }}$ edition, 2003.
- Homework will be primarily assigned from the text - You are responsible for keeping up with reading - Some chapters will be covered by reading only

Life Sciences

What is Statistics? A practical example

Modeling the Spread of the Flu Virus
Goals: Quantify long-range dissemination of infectious diseases (e.g., flu virus)

Methods: Use influenza-related mortality data to analyze the between-state progression of inter-pandemic influenza in the United States over the past 30 years.

Results: Outbreaks show hierarchical spatial spread evidenced by higher pair-wise synchrony between more populous states. Seasons with higher influenza mortality are associated with higher disease transmission and more rapid spread than are mild level mortality/transmission.

Cécile Viboud, Ottar Bjernstad, David Smith, Lone Simonsen, Mark
Synchrony, Waves, and Spatial Hierarchies in the Spread of Influenza
Sychrony, Waves, and Spatial Hierarchies in the Spread of Influenza
Science 21 April 2006: Vol. 312. no. 5772, pp. 447 - 451 Dol: 10.1126/science.1125237

What is Statistics? A practical example

Modeling the Spread of the Flu Virus
Influenza spread and workflows. (A) Gray dots represent the observed phase synchrony in influenza epidemics (\boldsymbol{y} axis) plotted against the total number of individuals commuting between each pair of states (\boldsymbol{x} axis, $\log 10$ scale). Superimposed is the best fit statistical model (spline, blue curve) and $\mathbf{9 5 \%}$ confidence intervals (CI).

What is Statistics? A practical example

Parameter estimates for the piecewise gravity model fitted to U.S. workflow data by county. Models are fitted separately for distances above and below 119 km . \boldsymbol{d} is the Euclidian distance between the population centers of two counties; \boldsymbol{d} $\boldsymbol{t}_{1}, \boldsymbol{t}_{2}$, and ρ represent dependence of dispersal workflows on the population
of the donor (resident county) and recipient (work county) and the distance between them, respectively. A total of 3,109 counties in 49 continental U.S. states are used, yielding $\mathbf{1 6 1 , 7 1 0}$ pairs of counties with nonzero flow of workers. Why?

Parameter	Point Estimates (Standard Error)	
	$\mathbf{d = D i s t a n c e}<\mathbf{1 1 9} \mathbf{~ k m}$	$\mathbf{d = D i s t a n c e s ~ > 1 1 9 ~ k m ~}$
population of residence county (donor), t_{1}	$0.30 \pm(0.004)$??? (meaning)	$0.24 \pm(0.001)$
population of work county (recipient), t_{2}	$0.64 \pm(0.004)$	$0.14 \pm(0.001)$
ρ distance (km)	$3.05 \pm(0.012)$	$0.29 \pm(0.003)$

What is Statistics? A practical example

Last Example: \% of Assets invested in Equities

What is Statistics? A practical example

What is Statistics? A practical example

Modeling the Spread of the Flu Virus
Simulated spread of influenza by a gravity model based on work movements, for epidemics originating in California or Wyoming.

Statistics Example

- What do you think of when you hear "statistics"?
- Definition: Statistics is the science of acquiring \& understanding data and making decisions in the face of variability and uncertainty.
- To utilize statistics we need to understand:
- how the data was collected
- why it was collected
- how to analyze and interpret the data Appropriately!

Newtonian science vs. chaotic science

- Article by Robert May, Nature, vol. 411, June 21, 2001
- Science we encounter at schools deals with crisp certainties (e.g., prediction of planetary orbits, the periodic table as a descriptor of all elements, equations describing area, volume, velocity, position, momentum, etc.)
- As soon as uncertainty comes in the picture it shakes the foundation of the deterministic sciences, because only probabilistic statements can be made in describing a phenomenon (e.g., roulette wheels, chaotic dynamic weather predictions, Geiger counter, earthquakes, etc.)
- What is then science all about - describing absolutely certain events and laws alone, or describing more general phenomena in terms of their behavior and chance of occurring? Or may be both!

Statistics Example

Example: A plant ecologist measured the growth response of cotton grass (cm) to four different fertilizer treatments in Northern Alaska. For each treatment, five small $4 \mathrm{ft}^{2}$ plots were selected, all within the particular field of interest.

What points seem important from this description?
slide 15

Statistics Example

Example (cont'): The data obtained from this experiment were:

Statistical Jargon

Definition: A population is an entire group of which we want to characterize.

- Definition: A sample is a collection of observations on which we measure one or more characteristics.

Statistical Jargon

Definition: A variable is a characteristic of an observation that can be assigned a number or a category.

- For example the year in college (variable) of a student (observational unit).
There are two types of variables:
1.categorical and
2.quantitative
these types of variables can be split further into two types...

Categorical Variables

- Categorical (qualitative) variables are variables that are classified into groups.
- There are two types of categorical variables:
- Ordinal (arranged in a meaningful order)
- Not ordinal (no meaningful order)
- What type of categorical variable are following: - gender (M/F)?
- size of soda (small, medium, large)?
- political affiliation (democrat, republican, independent, green party, other)?

Notation

- Y is used to denote a random variable
- y is used to denote the observations \square subscripts, such as y_{1}, can be used to denote a particular observation

What is the difference?

Using Statistical Jargon

Identify the following:

- Population
- Sample
- Sample size
- Variable of interest
\square quantitative or qualitative?
- Other variables
\square quantitative or qualitative?
- Observational unit

Describing Data

- There are two ways to describe a data set: Graphs and tables
- Numbers

Both are important for analyzing data

Graphs and Tables

- Definition: A frequency distribution is a display of the number (frequency) of occurrences of each value in a data set.
- Definition: A relative frequency distribution is a display of the percent (frequency $/ \mathrm{n}$) of occurrences of each value in a data set.

Graphs and Tables - frequency histogram

- Example: Stage of disease (cont'):

Graphs and Tables

- Quantitative variables
- need to make classes (meaningful intervals) first - some work needs to be done to get quantitative data into classes. One common rule of thumb is that the number of classes should be close to \sqrt{n}
- important that classes are of equal width for accurate interpretation of data
- Once we have our classes we can create a frequency/relative frequency table or histogram.

Graphs and Tables

Example: People who are concerned about their health may prefer hot dogs that are low in salt and calories. The "Hot dogs" datafile
(http://www.stat.ucla.edu//dinov/courses_students.dir/07/Fall/DataFiles/ http://lib.stat.cmu.edu/DASL/Datafiles/Hotdogs.html) contains data on the sodium and calories contained in each of 54 major hot dog brands. The hot dogs are also classified by type: beef, poultry, and meat (mostly pork and beef, but up to 15% poultry meat). For now we will focus on the calories of these sampled hotdogs.

Graphs and Tables
SOCR HistogramChartDemo:
http://socr.ucla.edu/htmls/SOCR_Charts.html

Graphs and Tables - bin-size effect

- Example: Hotdogs (cont') Histogram using previously defined classes.

Graphs and Tables

- Example: Hotdogs (cont') Make a frequency table. - Overall, the low is 86 calories and the high is 195 calories

```
            \sqrt{}{n}=\sqrt{}{54}=7.35\approx7
```

 Calories Frequency
 \(70-<90\)
 $90-<110$
$110-<130$
$110-<130$
$130-<150$
150-<170
$170-<190$
$190-<210$
190-<21
Total
- Seems slightly arbitrary

Graphs and Tables - Summary

- Advantages:
\square histogram: can handle large data sets
- dot plot: can get a better picture of data values
- stem and leaf: can see actual data values
- Disadvantages:
- histogram:can't tell exact data values; need to set-up classes
- dot plot: can't handle large data sets
- stem and leaf:can't handle large data sets

The BIG Three

- There are three main features of data that should always be addressed in an analysis
- Shape
- Center
- Spread

Shapes of Distributions

- The shape of a distribution can usually be determined by just looking at it as a histogram, dot plot or stem and leaf display.
- Definition: A distribution is unimodal if it has one mode
- Unimodal distributions include:
- Bell (symmetric, Normal)
\square Skewed right
\square Skewed Left
- Other examples of distributions are:
\square Bimodal
Multimodal
- Exponential

Shapes of Distributions

- Classify and draw a sketch each of the following scenarios with respect to mode. Also, if unimodal, classify symmetry (symmetric, skewed right or skewed left).

Data collected on height of randomly sampled college students.

- Data collected on height of randomly sampled female college students.
- The salaries of all persons employed by a large university
- The amount of time spent by students on a difficult exam. - The grade distribution on a difficult exam.

