UCLA STAT 13

Introduction to Statistical Methods for the Life and Health Sciences

> Instructor: Ivo Dinov, Asst. Prof. of Statistics and Neurology

Teaching Assistants: Brandi Shanata & Tiffany Head

University of California, Los Angeles, Fall 2007 http://www.stat.ucla.edu/~dinov/courses_students.html

Administrative • The book for this course -- Statistics for the Life Sciences, by Samuels & Witmer, 3rd edition, 2003. Homework will be primarily assigned from the text You are responsible for keeping up with reading Some chapters will be covered by reading only Life Sciences SAMUELS-WITHER

UCLA STAT 13

to just hear is to forget to see is to remember to do it yourself is to understand ...

(... to listen in class is to ... comprehend ...)

What is Statistics? A practical example

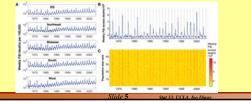
Modeling the Spread of the Flu Virus

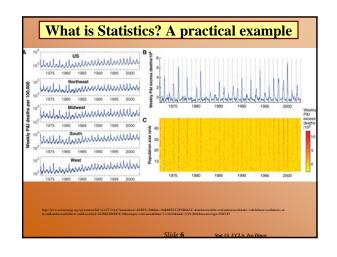
Goals: Quantify long-range dissemination of infectious diseases (e.g., flu virus)

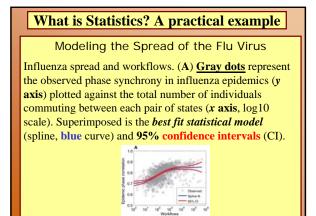
Methods: Use influenza-related mortality data to analyze the between-state progression of inter-pandemic influenza in the United States over the past 30 years.

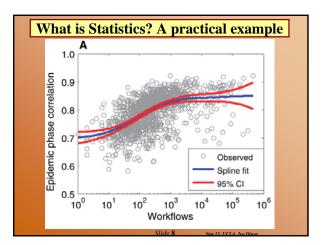
Results: Outbreaks show hierarchical spatial spread evidenced by higher pair-wise synchrony between more populous states. Seasons with higher influenza mortality are associated with higher disease transmission and more rapid spread than are mild level

Slide 4

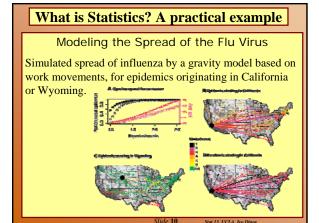

mortality/transmission.

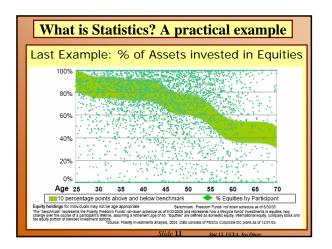

Cécile Viboud, Ottar Bjørnstad, David Smith, Lone Simonsen, Mark Miller, Bryan Grenfell Synchrony, Waves, and Spatial Hierarchies in the Spread of Influenza Science 21 April 2006: Vol. 312. no. 5772, pp. 447 – 451 DOI: 10.1126/science.1125237

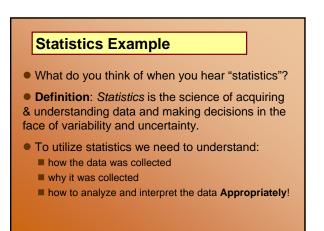

What is Statistics? A practical example

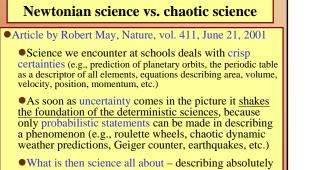

Modeling the Spread of the Flu Virus

Weekly epidemics: (A) Death rates from pneumonia and influenza (P&I) per 100,000 population on a log10 scale. (B & C) Death rates in excess attributed to influenza in the United States (B) and by state as a color intensity plot (C). Vertical RED bands correspond to synchronized epidemics.

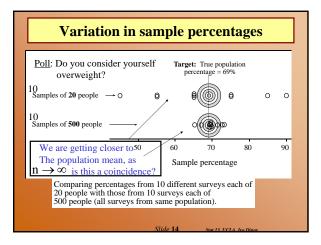


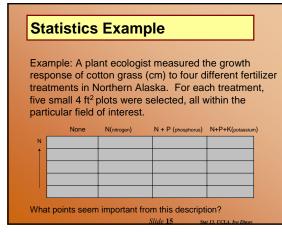


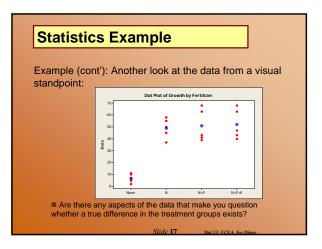


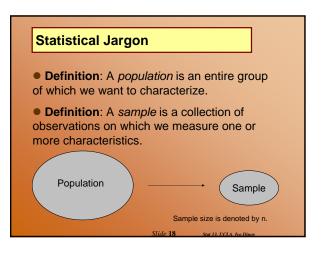


What is Statistics? A practical example							
<u>Parameter estimates</u> for the piecewise gravity model fitted to U.S. workflow data by county. Models are fitted separately for distances above and below 119 km. d is the Euclidian distance between the population centers of two counties; t_p , t_2 , and ρ represent dependence of dispersal workflows on the population size of the donor (resident county) and recipient (work county) and the distance between them, respectively. A total of 3,109 counties in 49 continental U.S. states are used, yielding 161,710 pairs of counties with nonzero flow of workers. Why ?							
Demonster	Point Estimates (Standard Error)						
Parameter	d=Distance < 119 km	d=Distances > 119 km					
population of residence county (donor), t_1	0.30±(0.004) ??? (meaning)	0.24 ± (0.001)					
population of work county (recipient), t ₂	0.64 ± (0.004)	0.14 ± (0.001)					
ho distance (km)	3.05 ± (0.012)	0.29 ± (0.003)					
	Slide 9	Stat 13. UCLA. Ivo Dinov					






• What is then science all about – describing absolutely certain events and laws alone, or describing more general phenomena in terms of their behavior and chance of occurring? Or may be both!



Fertilizer					
Plot Idex	None	Nitrogen	Nitrogen + Phosphorous	Nitrogen + Phosphorous + Potassium	
1	10	58	63	68	
2	6	45	43	47	
3	11	55	68	63	
4	2	50	41	43	
5	5	37	39	40	
ean	6.8	49	50.8	52.2	

Statistics Example

Statistical Jargon

• **Definition**: A variable is a characteristic of an observation that can be assigned a number or a category.

- For example the year in college (variable) of a student (observational unit).
- There are two types of variables:
 - 1.categorical and
 - 2.quantitative

these types of variables can be split further into two types...

Categorical Variables

• Categorical (qualitative) variables are variables that are classified into groups.

- There are two types of categorical variables:
 - Ordinal (arranged in a meaningful order)
 - Not ordinal (no meaningful order)
- What type of categorical variable are following:
 gender (M/F)?
 - size of soda (small, medium, large)?
 - political affiliation (democrat, republican, independent, green party, other)?

Quantitative Variables

• Quantitative variables are variables that have a meaningful numerical value.

- There are two types of quantitative variables:
 Continuous (lies on an interval scale with infinite
 - possible values)
 - Discrete (space between each value, countable)
- What type of quantitative variable are following:
 weight (lbs.)?
 - height (in.)?
 - number of cars in the library parking lot?

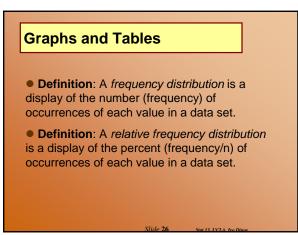
Y is used to denote a random variable y is used to denote the observations subscripts, such as y₁, can be used to denote a particular observation What is the difference? Types of Variables Qualitative (define groups)

Continuous Discrete Categorical (no idea of order)

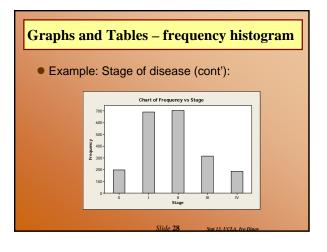
Using Statistical Jargon

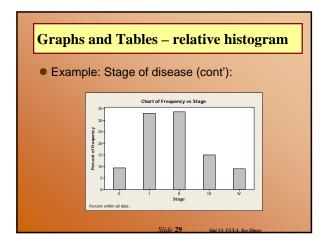
Example: Most breast cancer patients (>80%) are over the age of 50 at diagnosis. A researcher at a particular New York cancer center believes that his patients are even older than the norm, typically older than 65 years at diagnosis. To investigate he reviews the ages of a random sample of 100 of his female patients diagnosed with breast cancer.

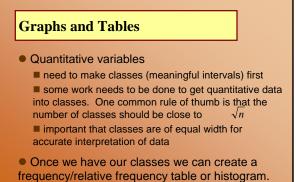
Using Statistical Jargon

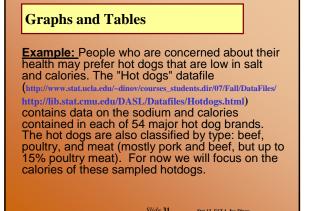

- Identify the following:
 - Population
 - Sample
 - Sample size
 - Variable of interest
 - quantitative or qualitative?
 - Other variables
 - **quantitative or qualitative?**
 - Observational unit

de 24 Stat 13. UCLA. Ivo Dinov

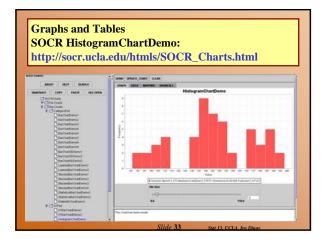

Ordinal (fall in natural or

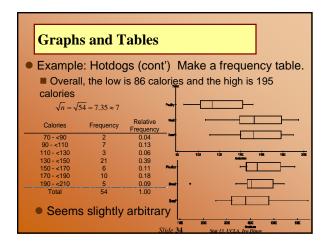

Describing Data

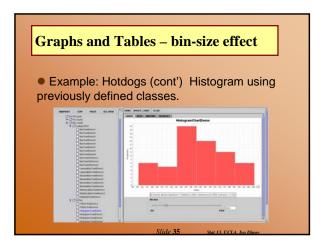

- There are two ways to describe a data set:
 Graphs and tables
 - Numbers
- Both are important for analyzing data

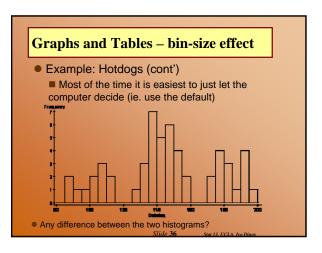


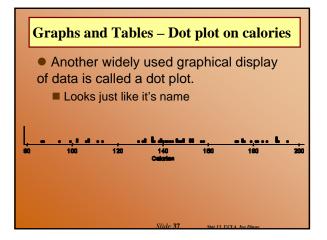
Graphs an	d Tables		
 Categorical Easier to d 	variables eal with than quantita	ative variables	
	age of disease at on adom sample of U	U	st
Stage	Frequency	Relative Frequency	
0	197	0.09	
- I	691	0.33	
II	703	0.34	
III	314	0.15	
IV	187	0.09	
Total	2092 Slide 27	1.00 Stat 13, UCLA, Ivo Dinov	

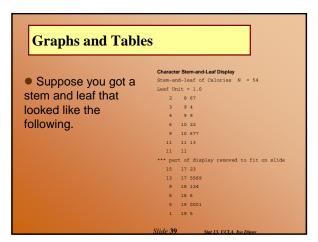


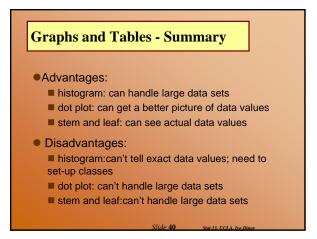







I (÷1	ranho	s and	Tah	les _	Hot-o	lua y	ata	
	upm.	Junu	Iuv	100	1100 0	105 0	uuu	
Туре	Calories	Sodium	Туре	Calories	Sodium	Туре	Calories	Sodium
Beef	186	495	Meat	173	458	Poultry	129	430
Beef	181	477	Meat	191	506	Poultry	132	375
Beef	176	425	Meat	182	473	Poultry	102	396
Beef	149	322	Meat	190	545	Poultry	106	383
Beef	184	482	Meat	172	496	Poultry	94	387
Beef	190	587	Meat	147	360	Poultry	102	542
Beef	158	370	Meat	146	387	Poultry	87	359
Beef	139	322	Meat	139	386	Poultry	99	357
Beef	175	479	Meat	175	507	Poultry	107	528
Beef	148	375	Meat	136	393	Poultry	113	513
Beef	152	330	Meat	179	405	Poultry	135	426
Beef	111	300	Meat	153	372	Poultry	142	513
Beef	141	386	Meat	107	144	Poultry	86	358
Beef	153	401	Meat	195	511	Poultry	143	581
Beef	190	645	Meat	135	405	Poultry	152	588
Beef	157	440	Meat	140	428	Poultry	146	522
Beef	131	317	Meat	138	339	Poultry	144	545
Beef	149	319				and so the second		
Beef	135	298						
Beef	132	253						

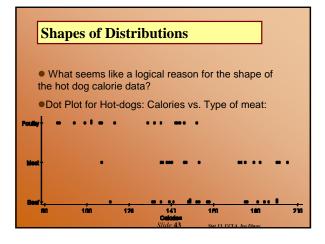


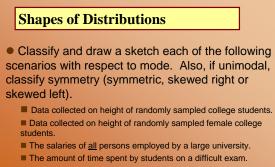


The BIG Three

• There are three main features of data that should *always* be addressed in an analysis

- Shape
- Center
- Spread


Shapes of Distributions


• The shape of a distribution can usually be determined by just looking at it as a histogram, dot plot or stem and leaf display.

• **Definition:** A distribution is *unimodal* if it has one mode

- Unimodal distributions include:
 - Bell (symmetric, Normal)
 - Skewed right
 Skewed Left
- Other examples of distributions are:
- Bimodal
- Multimodal
- Exponential

Slide 42 Stat 13. UCLA. Ivo Dinov

Slide 44

The grade distribution on a difficult exam.

 Shapes of Distributions

 (a) Unimodal
 (b) Bimodal

 (c) Trimodal

 (b) Bimodal

 (c) Trimodal

 (c) Regatively skewed

 (c) Regatively skewed

 (c) Negatively skewed

 (c) Symmetric

 (c) Bimodal with gap

 (c) Exponential shape