UCLA STAT 13

Introduction to Statistical Methods for the Life and Health Sciences

Instructor: Ivo Dinov,

Asst. Prof. of Statistics and Neurology

Teaching Assistants:

Brandi Shanata \& Tiffany Head

University of California, Los Angeles, Fall 2007
http://www.stat.ucla.edu/~dinov/courses_students.html

Measures of Centrality

Recall that center is \#2 of the BIG three.

- Measures of center include:
- the mean
- the median
- the mode (the value with the highest frequency)
- These measures all describe the center of a distribution in a slightly different way

Parameters and Statistics

Variables can be summarized using statistics.
Definition: A statistic is a numerical measure that describes a characteristic of the sample.
Definition: A parameter is a numerical measure that describes a characteristic of the population.

- We use statistics to estimate parameters

Measures of Center

- The Mean
- aka the average
- can be thought of as the balancing point of a distribution

$$
\bar{y}=\frac{\sum_{i=1}^{n} y_{i}}{n}
$$

Measures of Center

- The Median
\square can be thought of as the point that divides a distribution in half $(50 / 50)$
- Steps to find the median:

1. Arrange the data in ascending order (observation $\left.\frac{(n+1)}{2}\right)$

2a. If n is odd, the median is the middle value $2 b$. If n is even, the median is the average of the middle two values

$$
\left(\text { the average of observations } \frac{\mathrm{n}}{2} \text { and }\left(\frac{\mathrm{n}}{2}+1\right)\right)
$$

Resistance

- Definition: A statistic is said to be resistant if the value of the statistic is relatively unchanged by changes in a small portion of the data
- Referencing the formulas for the median and the mean, which statistic seems to be more resistant?
- Example: Long Jump (cont')
- Let's remove the student with the long jump distance of 106 and recalculate the median and mean.

Descriptive Statistics: distance $\begin{array}{lrrrrrrrrrr}\text { Variable } & \text { N } & N^{*} & \text { Mean } & \text { SE Mean } & \text { StDev } & \text { Minimum } & \text { Q1 } & \text { Median } & \text { Q3 } & \text { Maximum } \\ \text { distance } & 7 & 0 & 71.43 & 2.85 & 7.55 & 60.00 & 64.00 & 74.00 & 78.00 & 80.00\end{array}$

Boxplots

The five number summary:

- minimum: the smallest observation
- maximum: the largest observation
- median: splits the data into 50/50
- quartiles: split the data into quarters
\square Q1 is the lower quartile and Q3 is the upper quartile
- A boxplot is a visual representation of the five number summary

Boxplots

Boxplots

- Example (cont'): Using the long jump data a boxplot of distance would be:
- Interquartile range (IQR): Q3-Q1, the spread of the middle 50% of the data
- whiskers
\square extend from Q1 and Q3 to the smallest* and largest* observations within the *fences
- *fences
used to identify extreme observations
\square lower fence (LF): Q1 - 1.5(IQR)
\square upper fence (UF): Q3 + 1.5(IQR)
- outliers
extreme observations that fall outside the fences

Measures of Spread

- The range
- easiest measure of spread to calculate
- not the "best" measure of spread
\square range $=\max -\min$
- Example: Long Jump (cont')
- Calculate the range for the long jump data Descriptive statistics: distance

Variable	N	N^{*}	Mean	SE Mean	StDev	Minimum	Q1	Median	Q3	Maximum
distance	8	0	75.75	4.98	14.08	60.00	65.00	75.00	79.50	106.00

Range $=106-60=46$

Measures of Spread

- The standard deviation
- The logic behind the standard deviation is to measure the difference (ie. deviation) between each observation and the
mean
- A deviation is $y_{i}-\bar{y}$
- What seems like a reasonable way to find an "average" deviation?
Big problem, why?

$$
\sum\left(y_{i}-\bar{y}\right)=0
$$

- How could we solve this problem?

Measures of Spread

-The variance

$$
s^{2}=\frac{\sum\left(y_{i}-\bar{y}\right)^{2}}{n-1}
$$

-The standard deviation (sd)

$$
s=\sqrt{\frac{\sum\left(y_{i}-\bar{y}\right)^{2}}{n-1}}
$$

Why use the sd and not the variance?

The Empirical Rule

- The empirical rule is useful when talking about a distribution, using the standard deviation in terms of it's distance from the mean.
- In general, for symmetric distributions:

$$
\begin{aligned}
& \bar{y} \pm s \approx 68 \% \\
& \bar{y} \pm 2 s \approx 95 \% \\
& \bar{y} \pm 3 s \approx>99 \%
\end{aligned}
$$

- NOTE: If the distribution is not unimodal symmetric the empirical rule may not hold.

The Empirical Rule

- Example (hotdogs cont'): From the hotdog data we have the following output:

```
Descriptive Statistics: Calories
lum
Variable Maximum Range
Calories 195.00 109.00
    \overline{y}}\pms=145.44\pm29.38=(116.06,174.82
    y}\pm2s=145.44\pm2(29.38)=(86.68,204.20)
    \overline{y}\pm3s=145.44\pm3(29.38)=(57.30,233.58)
```

Slide 23

The Goal

Definition: A statistical inference is the process of drawing conclusions about a population based on observations in a sample.

- To make a statistical inference we want the sample to be representative of the population.

How could we ensure this?

More Notation

- Both samples and populations have numeric quantities of interest, such as:
mean (the average)
standard deviation (the spread)
proportion (percent)
- For what type of variable(s) would each of these numeric quantities be appropriate?

Definition: Random means that each subject of the population must have an equal chance of being selected.

- Why does this seem important for statistics?
- How can we ensure random selection?

The Goal

More Notation

- Recall: A characteristic of the population is called a parameter and a characteristic of a sample is called a statistic.

