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UCLA  STAT 13
Introduction to Statistical Methods for the 

Life and Health Sciences

Instructor:   Ivo Dinov, 
Asst. Prof. of Statistics and Neurology

Teaching Assistants:
Brandi Shanata  &  Tiffany Head

University of California, Los Angeles,  Fall  2007
http://www.stat.ucla.edu/~dinov/courses_students.html
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Probability 

Probability is important to statistics because:
study results can be influenced by variation 
it provides theoretical groundwork for statistical 

inference

0 < P(A) < 1
In English please: the probability of event A 

must be between zero and one.
Note: P(A) = Pr(A)
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Random Sampling 

A simple random sample of n items is a 
sample in which:

every member of the population has an equal 
chance of being selected.

the members of the sample are chosen 
independently.
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Random Sampling

Example: Consider our class as the 
population under study.  If we select a sample 
of size 5, each possible sample of size 5 must 
have the same chance of being selected.

When a sample is chosen randomly it is the 
process of selection that is random.

How could we randomly select five members 
from this class randomly?
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Random Sampling

Random Number Table (e.g., Table 1 in text)

Random Number generator on a computer (e.g., 
www.socr.ucla.edu SOCR Modeler Random Number Generation

Which one is the best?

Example (cont’):  Let’s randomly select five 
students from this class using the table and the 
computer.
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Random Sampling

Table Method (p.  670 in book):
1. Randomly assign id's to each member in the population 

(1 - n)
2. Choose a place to start in table (close eyes)
3. Start with the first number (must have the same number 

of digits as n), this is the first member of the sample.
4. Work left, right, up or down, just stay consistent.
5. Choose the next number (must have the same number of 

digits as n), this is the second member of the sample.
6. Repeat step 5 until all members are selected.  If a 

number is repeated or not possible move to the next 
following your algorithm.
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Random Sampling
Computer Method:

1. http://socr.stat.ucla.edu/htmls/SOCR_Modeler.html
2. Data Generation Discrete Uniform Distribution.

3. Histogram plot (left) and Raw Data index Plot (Right)
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Key Issue 

How representative of the population is the sample 
likely to be? 

The sample wont exactly resemble the population, there will 
be some chance variation.  This discrepancy is called "chance 
error due to sampling". 

Definition: Sampling bias is non-randomness that 
refers to some members having a tendency to be 
selected more readily than others. 

When the sample is biased the statistics turn out to be poor 
estimates.
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Key Issue

Example:  Suppose a weight loss clinic is interested 
in studying the effects of a new diet proposed by one 
of it researchers.  It decides to advertise in the LA 
Times for participants to come be part of the study.

Example:  Suppose a lake is to be studied for toxic 
emissions from a nearby power plant.  The samples 
that were obtained came from the portion of the lake 
that was the closest possible location to the plant.
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Let's Make a Deal Paradox –
aka, Monty Hall 3-door problem

This paradox is related to a popular television show 
in the 1970's. In the show, a contestant was given a 
choice of three doors/cards of which one contained a 
prize (diamond). The other two doors contained gag 
gifts like a chicken or a donkey (clubs). 
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Let's Make a Deal Paradox.

After the contestant chose an initial door, the host of 
the show then revealed an empty door among the two 
unchosen doors, and asks the contestant if he or she 
would like to switch to the other unchosen door. The 
question is should the contestant switch. Do the odds 
of winning increase by switching to the remaining 
door? 1.Pick

One
card

2.Show one
Club Card

3. Change 
1st pick?
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Let's Make a Deal Paradox.

The intuition of most people tells them that each of 
the doors, the chosen door and the unchosen door, are 
equally likely to contain the prize so that there is a 
50-50 chance of winning with either selection? This, 
however, is not the case. 

The probability of winning by using the switching 
technique is 2/3, while the odds of winning by not 
switching is 1/3. The easiest way to explain this is as 
follows:
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Let's Make a Deal Paradox.

The probability of picking the wrong door in the initial 
stage of the game is 2/3. 
If the contestant picks the wrong door initially, the host 
must reveal the remaining empty door in the second 
stage of the game. Thus, if the contestant switches after 
picking the wrong door initially, the contestant will win 
the prize. 
The probability of winning by switching then reduces 
to the probability of picking the wrong door in the 
initial stage which is clearly 2/3. 
Demos:
file:///C:/Ivo.dir/UCLA_Classes/Applets.dir/SOCR/Prototype1.1/classes/TestExperiment.html
C:\Ivo.dir\UCLA_Classes\Applets.dir\StatGames.exe
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Figure 4.1.1 Proportion of heads versus number of tosses
for John Kerrich's coin tossing experiment.

From Chance Encounters by C.J. Wild and G.A.F. Seber, © John Wiley & Sons, 2000.

Long run behavior of coin tossing
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Definitions …

The law of averages about the behavior of coin tosses 
– the relative proportion (relative frequency) of heads-to-tails 
in a coin toss experiment becomes more and more stable as 
the number of tosses increases. The law of averages applies to 
relative frequencies not absolute counts of #H and #T.

Two widely held misconceptions about what the law 
of averages about coin tosses:

Differences between the actual numbers of heads & tails 
becomes more and more variable with increase of the 
number of tosses – a seq. of 10 heads doesn’t increase the 
chance of a tail on the next trial.
Coin toss results are fair, but behavior is still unpredictable.
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Coin Toss Models

Is the coin tossing model adequate for describing the 
sex order of children in families? 

This is a rough model which is not exact. In most countries 
rates of B/G is different; form 48% … 52%, usually. Birth 
rates of boys in some places are higher than girls, however, 
female population seems to be about 51%.
Independence, if a second child is born the chance it has 
the same gender (as the first child) is slightly bigger.
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Figure 4.3.1 Average lottery numbers by month.
Replotted from data in Fienberg [1971].

From Chance Encounters by C.J. Wild and G.A.F. Seber, © John Wiley & Sons, 2000.

Data from a “random” draw

366 cylinders (for each day in the year) for the
US Vietnam war draft. The N-th drawn number,

corresp. to one B-day, indicating order of drafting.

So, people born later in
the year tend to have
lower lottery numbers
and a bigger chance of
actually being drafted.

Stat 13, UCLA, Ivo DinovSlide 18

Types of Probability

Probability models have two essential components (sample space, 
the space of all possible outcomes from an experiment; and a list 
of probabilities for each event in the sample space). Where do the 
outcomes and the probabilities come from?

Probabilities from models – say mathematical/physical description 
of the sample space and the chance of each event. Construct a fair die tossing 
game.

Probabilities from data – data observations determine our 
probability distribution. Say we toss a coin 100 times and the 
observed Head/Tail counts are used as probabilities.

Subjective Probabilities – combining data and psychological 
factors to design a reasonable probability table (e.g., gambling, 
stock market).
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Sample Spaces and Probabilities
When the relative frequency of an event in the past is used to 
estimate the probability that it will occur in the future, what 
assumption is being made? 

The underlying process is stable over time;
Our relative frequencies must be taken from large numbers for us to 
have confidence in them as probabilities.

All statisticians agree about how probabilities are to be 
combined and manipulated (in math terms), however, not all 
agree what probabilities should be associated with for a 
particular real-world event.

When a weather forecaster says that there is a 70% chance of 
rain tomorrow, what do you think this statement means? (Based 
on our past knowledge, according to the barometric pressure, temperature, 
etc. of the conditions we expect tomorrow, 70% of the time it did rain 
under such conditions.)
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Sample spaces and events

A sample space, S, for a random experiment is the set 
of all  possible outcomes of the experiment.

An event is a collection of outcomes.

An event occurs if any outcome making up that event 
occurs.
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The complement of an event A, denoted      ,
occurs if  and only if A does not occur.

A

A A

(a) Sample space con-
taining event A

(b) Event A shaded (c)  A shaded

A

Figure 4.4.1 An event  A  in the sample space S.

S

The complement of an event
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“A or B” contains all outcomes in A or B (or both).

“A and B” contains all outcomes which are in both A
and B.

Combining events – all statisticians agree on

A B A B A B A B

(a) Events A and B (b)  “A or B”  shaded (c)  “A and B”  shaded (d) Mutually exclusive
events

Figure 4.4.2 Two events.
From Chance Encounters by C.J. Wild and G.A.F. Seber, © John Wiley & Sons, 2000.

Mutually exclusive events cannot occur at the same time.
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Probability distributions

Probabilities always lie between 0 and 1 and they 
sum up to 1 (across all simple events) .

pr(A) can be obtained by adding up the probabilities 
of all the outcomes in  A.

∑=
A  in   

  E
)()(

event
outcome

EprApr
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Job losses in the US

TABLE 4.4.1  Job Losses in the US (in thousands)
for 1987 to 1991 

Workplace Position Total
moved/closed Slack work abolished

Male 1,703 1,196 548 3,447
Female 1,210 564 363 2,137
Total 2,913 1,760 911 5,584

Reason for Job Loss
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TABLE 4.4.2  Proportions of Job Losses from Table 4.4.1

Workplace Position Row
moved/closed Slack work abolished totals

Male .305 .214 .098 .617

Female .217 .101 .065 .383

Column totals .552 .315 .163 1.000

Reason for Job Loss

Job losses cont.
Workplace Position Total

moved/closed Slack work abolished
Male 1,703 1,196 548 3,447
Female 1,210 564 363 2,137
Total 2,913 1,760 911 5,584
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What is a sample space?  What are the two essential 
criteria that must be satisfied by a possible sample 
space? (completeness – every outcome is represented; and uniqueness –
no outcome is represented more than once.

What is an event? (collection of outcomes)

If  A  is an event, what do we mean by its 
complement,      ?   When does     occur?

If  A and  B are events, when does  A or B occur?  
When does  A and B occur?

A A 

Review
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Properties of probability distributions

A sequence of number {p1, p2, p3, …, pn } is a probability 
distribution for a sample space S = {s1, s2, s3, …, sn}, if  
pr(sk) = pk, for each 1<=k<=n. The two essential 
properties of a probability distribution p1, p2, … , pn? 

How do we get the probability of  an event from the 
probabilities of outcomes that make up that event?
If all outcomes are distinct & equally likely, how do we calculate 
pr(A) ? If A = {a1, a2, a3, …, a9} and pr(a1)=pr(a2)=…=pr(a9 )=p;
then

pr(A) = 9 x pr(a1) = 9p.

1   ;0 =≥ ∑
k kk

pp
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Example of probability distributions

Tossing a coin twice. Sample space S={HH, HT, TH, 
TT}, for a fair coin each outcome is equally likely, so 
the probabilities of the 4 possible outcomes should be 
identical, p. Since, p(HH)=p(HT)=p(TH)=p(TT)=p and

p = ¼ = 0.25.

1  ;0 =≥ ∑
k kk

pp
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Proportion vs. Probability

How do the concepts of a proportion and a 
probability differ? A proportion is a partial description of a real 
population. The probabilities give us the chance of something happening in 
a random experiment. Sometimes, proportions are identical to probabilities
(e.g., in a real population under the experiment choose-a-unit-at-random).

See the two-way table of counts (contingency table) 
on Table 4.4.1, slide 19. E.g., choose-a-person-at-
random from the ones laid off, and compute the 
chance that the person would be a male, laid off due 
to position-closing. We can apply the same rules for 
manipulating probabilities to proportions, in the case 
where these two are identical.
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A BFor mutually exclusive events,
pr(A or B)  =  pr(A) + pr(B)

From Chance Encounters by C.J. Wild and G.A.F. Seber, © John Wiley & Sons, 2000.

Rules for manipulating
Probability Distributions
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B
A

Total

Total pr(B) 1.00

pr(A and B) pr(A)

pr(Wild in and
Seber in) Seber

Wild In
In Out Total

Out
Total 0.6 ? 1.00

?
0.5 0.7?

? ?
pr(B)

Descriptive Table Algebraic Table

pr(Seber in) pr(Wild in)

pr(A)pr(A and B)A
pr(A and B)
pr(A and B)

B

Figure 4.5.1 Putting Wild-Seber information into a two-way table.

.5 ? .7 .5 ? .7 .5 .2 .7 .5 .2 .7
? ? ? ? ? .3 ? ? .3 .1 .2 .3
.6 ? 1.00 .6 .4 1.00 .6 .4 1.00 .6 .4 1.00

TABLE 4.5.1 
Completed Probability Table

Wild In Out Total

In .5 .2 .7

Out .1 .2 .3

Total .6 .4 1.0

 Seber

Availability of the Textbook authors to students
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Unmarried couples

TABLE 4.5.2   Proportions of Unmarried Male-Female Couples 
Sharing Household in the US, 1991

Never Married Total
 Male Married Divorced Widowed to other

Never Married 0.401  .111 .017 .025 .554
Divorced .117 .195 .024 .017 .353
Widowed .006 .008 .016 .001 .031
Married to other .021 .022 .003 .016 .062

Total .545 .336 .060 .059 1.000

Female  

Select an unmarried couple at random – the table proportions give 
us the probabilities of the events defined in the row/column titles.
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If  A and  B are mutually exclusive, what is the 
probability that both occur? (0) What is the probability 
that at least one occurs?  (sum of probabilities)

If we have two or more  mutually exclusive events, 
how do we find the probability that at least one of them 
occurs? (sum of probabilities)

Why is it sometimes easier to compute pr(A) from
pr(A)  =   1 - pr( )? (The complement of the even may be easer to find 

or may have a known probability. E.g., a random number between 1 and 10 is drawn. 
Let A ={a number less than or equal to 9 appears}. Find pr(A) = 1 – pr(    )). 
probability of     is  pr({10 appears}) = 1/10 = 0.1. Also Monty Hall 3 door example!

A 

Review

A 
A 
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Melanoma – type of skin cancer –
an example of laws of conditional probabilities

TABLE 4.6.1:  400 Melanoma Patients by Type and Site

Head and Row
Type Neck Trunk Extremities Totals
Hutchinson's 
melanomic freckle 22 2 10 34
Superficial 16 54 115 185
Nodular 19 33 73 125
Indeterminant 11 17 28 56
Column Totals 68 106 226 400

 S ite

Contingency table based on Melanoma histological type and its location
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The conditional probability of A occurring given that 
B occurs is  given by

pr(A | B) =
pr(A and B)

pr(B)
 

Conditional Probability

Suppose we select one out of the 400 patients in the study and we 
want to find the probability that the cancer is on the extremities
given that it is of type nodular: P = 73/125 = P(C. on Extremities | Nodular)

patientsnodular  #
sextremitieon  cancer    with  patientsnodular  #
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pr(A and B) = pr(A | B)pr(B) =  pr(B | A)pr(A)

Multiplication rule- what’s the percentage of 
Israelis that are poor and Arabic?

0
0.0728

0.14 1.0

 All people in Israel

14%  of these are Arabic

52%  of this  14%  are poor

7.28% of Israelis are both poor and  Arabic
(0.52  .014  =  0.0728)

Figure 4.6.1 Illustration of the multiplication rule.
From Chance Encounters by C.J. Wild and G.A.F. Seber, © John Wiley & Sons, 2000.
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A tree diagram for computing 
conditional probabilities

Suppose we draw 2 balls at random one at a time 
without replacement from an urn containing 4 black
and 3 white balls, otherwise identical. What is the 
probability that the second ball is black? Sample Spc?

P({2-nd ball is black}) = 
P({2-nd is black} &{1-st is black})  + 
P({2-nd is black} &{1-st is white})  = 

4/7 x 3/6  +  4/6 x 3/7  = 4/7.

Mutually
exclusive
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B1

W1

B2

W2

First
Draw

Second
Draw

Path

1

2

B2

W2

3

4

A tree 
diagram
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Poor

Not

Arabic
(A)

Jewish
(J)

Ethnic
Group

Poverty
Level

Poor

Not

pr(Poor and Arabic)

pr(Not and Arabic)

pr(Poor and Jewish)

pr(Not and Jewish)

Product
Equals

Tree diagram for poverty in Israel
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pr(Poor and Jewish) =
pr(Poor|Jewish)   pr(Jewish)

[ = 11% of 86%]Ethnicity

Poverty Poor

Arabic Total

Not poor
Total .14 .86 1.00

? ? ?
.52  .14 ?.11  .86

pr(Arabic) = .14 pr(Jewish) = .86

pr(Poor and Arabic) =
pr(Poor|Arabic)   pr(Arabic)

[ = 52% of 14%]
Jewish

Figure 4.6.4 Proportions by Ethnicity and Poverty.

2-way table for poverty in Israel

P(A & B) = P(A | B) x P(B),     
P(A | B) = P(A & B)  / P(B)

P(A & B) = P(B & A) = P(B | A)  x P(A).
P(A | B) =  [P(B | A) x P(A)] / P(B).
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pr(Poor and Jewish) =
pr(Poor|Jewish)   pr(Jewish)

[ = 11% of 86%]Ethnicity

Poverty Poor

Arabic Total

Not poor
Total .14 .86 1.00

? ? ?
.52  .14 ?.11  .86

pr(Arabic) = .14 pr(Jewish) = .86

pr(Poor and Arabic) =
pr(Poor|Arabic)   pr(Arabic)

[ = 52% of 14%]
Jewish

TABLE 4.6.3   Proportions by Ethnicity
 and Poverty

  

Arabic    Jewish Total
Poverty Poor   .0728 .0946  .1674

Not Poor .0672 .7654 .8326
Total       .14  .86 1.00

Ethnicity

2-way table for poverty in Israel cont.

Stat 13, UCLA, Ivo DinovSlide 42

Conditional probabilities and 2-way tables

Many problems involving conditional probabilities 
can be solved by constructing two-way tables

This includes reversing the order of conditioning

P(A & B) = P(A | B) x P(B) =  P(B | A) x P(A)
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Classes:  healthy(NC), cancer

Evidence: positive mammogram (pos), negative 
mammogram (neg)
If a woman has a positive mammogram result, what is the 
probability that she has breast cancer? 

Classes vs. Evidence Conditioning

( ) 01.0=cancerP
( ) 8.0| =cancerposP
( ) 107.0=positiveP
( ) ?| =poscancerP

( )
)(

)()|(|
evidenceP

classPclassevidencePevidenceclassP ×
=
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Method

Outcome Failed
Steril. IUD Total

Didn’t
Total .38 .03 1.00

? ? ?
0  .38 ?.06  .03

pr(Steril.) = .38 pr(IUD) = .03

pr(Failed and Oral) =
pr(Failed | Oral)  pr(Oral)

[ = 5% of 32%]

Oral

.32
?

.05  .32
Barrier

.24
?

.14  .24
Sperm.

.03
?

.26  .03

pr(Barrier) = .24

pr(Failed and IUD) =
pr(Failed | IUD)  pr(IUD)

[ = 6% of 3%]

Proportional usage of oral contraceptives
and their rates of failure

We need to complete the two-way contingency table of proportions
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Method

Outcome Failed
Steril. IUD Total

Didn’t
Total .38 .03 1.00

? ? ?
0  .38 ?.06  .03

pr(Steril.) = .38 pr(IUD) = .03

pr(Failed and Oral) =
pr(Failed | Oral)  pr(Oral)

[ = 5% of 32%]

Oral

.32
?

.05  .32
Barrier

.24
?

.14  .24
Sperm.

.03
?

.26  .03

pr(Barrier) = .24

pr(Failed and IUD) =
pr(Failed | IUD)  pr(IUD)

[ = 6% of 3%]

Oral contraceptives cont.

TABLE 4.6.4   Table Constructed from the Data in Example 4.6.8

Steril.  Oral Barrier IUD Sperm. Total
Outcome Failed 0 .0160 .0336 .0018 .0078 .0592

Didn't .3800 .3040 .2064 .0282 .0222 .9408

Total .3800 .3200 .2400 .0300 .0300 1.0000

 Method
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In pr(A | B), how should the symbol “ | ” is read 
given that.   

How do we interpret the fact that: The event  A  
always occurs when  B occurs? What can you say 
about  pr(A | B)?

When drawing a probability tree for a particular 
problem, how do you know what events to use for 
the first fan of branches and which events to use for 
the subsequent branching? (at each branching stage condition on 
all the info available up to here. E.g., at first branching use all simple events, no 
prior is available. At 3-rd branching condition of the previous 2 events, etc.).

Remarks …

A B
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TABLE 4.6.5    Number of Individuals
Having a Given Mean Absorbance Ratio 
(MAR) in the ELISA for HIV Antibodies

 MAR Healthy Donor HIV patients 
<2 202 0

2  -  2.99 73 2

3  -  3.99 15 7
4  -  4.99 3 7
5  -  5.99 2 15
6  -11.99 2 36

12+ 0 21
Total 297 88

Adapted from Weiss et al.[1985]

} }275 2

False-
positives

False-
Negatives
(FNE)

Test cut-off

Power of
a test is:
1-P(FNE)=
1-P(Neg|HIV)

~ 0.976
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HIV cont.

Test result

Disease
status

HIV
Positive Negative Total

Not HIV
Total ? ? 1.00

? .93    .99 .99
.98    .01 .01? pr(HIV) = .01

pr(HIV and Positive) =
pr(Positive|HIV)    pr(HIV)

[ = 98% of 1%]

pr(Not HIV and Negative) =
pr(Negative|Not HIV)    pr(Not HIV)

[ = 93% of 99%]

pr(Not HIV) = .99

Figure 4.6.6 Putting HIV information into the table.
From Chance Encounters by C.J. Wild and G.A.F. Seber, © John Wiley & Sons, 2000.
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Test result

Disease
status

HIV
Positive Negative Total

Not HIV
Total ? ? 1.00

? .93    .99 .99
.98    .01 .01? pr(HIV) = .01

pr(HIV and Positive) =
pr(Positive|HIV)    pr(HIV)

[ = 98% of 1%]

pr(Not HIV and Negative) =
pr(Negative|Not HIV)    pr(Not HIV)

[ = 93% of 99%]

pr(Not HIV) = .99

HIV – reconstructing the contingency table

TABLE 4.6.6  Proportions by Disease Status 
and Test Result

Positive Negative Total
Disease HIV .0098 .0002 .01  
Status Not HIV .0693 .9207 .99  

Total .0791 .9209 1.00

Test Result
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Proportions of HIV infections by country

TABLE 4.6.7    Proportions Infected with HIV

No. AIDS  Population 
Country Cases (millions) pr(HIV) pr(HIV | Positive)
United States 218,301 252.7 0.00864 0.109
Canada 6,116 26.7 0.00229 0.031
Australia 3,238 16.8 0.00193 0.026
New Zealand 323 3.4 0.00095 0.013
United Kingdom 5,451 57.3 0.00095 0.013
Ireland 142 3.6 0.00039 0.005

Having | Test
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Events A and B are statistically independent if 
knowing whether B has occurred gives no new 
information about the chances of A occurring,

i.e.  if     pr(A | B) = pr(A)

Similarly, P(B | A) = P(B), since 

P(B|A)=P(B & A)/P(A) = P(A|B)P(B)/P(A) = P(B)

If A and B are statistically independent, then

)pr()pr( = ) and  pr( BABA ×

Statistical independence
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TABLE 4.7.2 Frequencies Assumed by the Prosecution

Yellow car Girl with blond hair

M an with mustache Black man with beard

Girl with ponytail Interracial couple in car1
10

1
1000

1
10

1
10
1
4

1
3

People vs. Collins

The first occasion where a conviction was made in an American court of law, 
largely on statistical evidence, 1964. A woman was mugged  and the offender 
was described as a wearing dark cloths, with blond hair in a pony tail who 
got into a yellow car driven by a black male accomplice with mustache and 
beard. The suspect brought to trial were picked out in a line-up and fit all of 
the descriptions. Using the product rule for probabilities an expert witness 
computed the chance that a random couple meets these characteristics, as 
1:12,000,000.
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pr(S) = 1

pr(    ) = 1 - pr(A)

If A and B are mutually exclusive events, then   
pr(A or B) = pr(A) + pr(B) 

(here “or” is used in the inclusive sense)

If A1, A2, ...,Ak are mutually exclusive events, then

pr(A1 or A2 or … or Ak ) = pr(A1)+pr(A2)+…+pr(Ak)

A

Formula summary cont.
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Conditional probability

Definition:

Multiplication formula:

pr(A and B) = pr(B|A)pr(A) = pr(A|B)pr(B)

pr(A | B) =  
pr(A and B)

pr(B)

Formula summary cont.
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Multiplication Rule under independence:

If A and B are independent events, then

pr(A and B) = pr(A) pr(B)

If A1, A2, … , An are mutually independent, 

pr(A1 and A2 and ... and An) = pr(A1) pr(A2) … pr(An) 

Formula summary cont.
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If {A1, A2, …, An} are a partition of the sample space 
(mutually exclusive and UAi=S) then for any event B

P(B) = P(B|A1)P(A1) + P(B|A2)P(A2) +…+ P(B|An)P(An)

Ex:
P(B) = P(B|A1)P(A1) +

P(B|A2)P(A2)

Law of Total Probability

S

A1

A2

B

B|A1
B|A2
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If {A1, A2, …, An} are a non-trivial partition of the 
sample space (mutually exclusive and UAi=S, P(Ai)>0) 
then for any non-trivial event and B ( P(B)>0 )

P(Ai | B) = P(Ai B) / P(B) = [P(B | Ai) x P(Ai)] / P(B) = 

Bayesian Rule

I

∑ =

×
= n

k kk

ii

APABP
APABP

1
)()|(

)()|(
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Ex: (Laboratory blood test) Assume: Find:
P(positive Test| Disease) = 0.95 P(Disease|positive Test)=?
P(positive Test| no Disease)=0.01 P(D | T) = ?
P(Disease) = 0.005

Bayesian Rule

∑ =

×
= n

k kk

ii
i

APABP

APBAPAP

1
)()|(

)()|()(

0.193
0.02465

00475.0
995.001.0005.095.0

005.095.0
)()|()()|(

)()|(
)(

)()|(

==
×+×

×
=

×+×

×
== cc DPDTPDPDTP

DPDTP
TP

TDPTDP I

D = the test person has the disease. 

T = the test result is positive.
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Classes:  healthy(NC), cancer

Evidence: positive mammogram (pos), negative 
mammogram (neg)
If a woman has a positive mammogram result, what is the 
probability that she has breast cancer? 

Classes vs. Evidence Conditioning

( ) 01.0=cancerP
( ) 8.0| =cancerposP
( ) 1.0| =healthyposP
( ) ?| =poscancerP

( )
∑ ×

×
=

classes
classPclassevidenceP

classPclassevidencePevidenceclassP
)()|(

)()|(|

P(C|P)=P(P|C)xP(C)/[P(P|C)xP(C)+ P(P|H)xP(H)]
P(C|P)=0.8x0.01 / [0.8x0.01 + 0.1x0.99] = ?
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Power of Test = 1 – P(TC | D) = 0.00025/0.005 = 0.95

Sensitivity: TP/(TP+FN) = 0.00475/(0.00475+ 0.00025)= 0.95

Specificity: TN/(TN+FP) = 0.98505/(0.98505+ 0.00995) = 0.99

Bayesian Rule (different data/example!)

( ) ( ) ( )  00995.0995.001.0| =×=×= CCC DPDTPDTP I

Te
st

 R
es

ul
ts

Positive

Negative

No Disease Disease

OK (0.98505)

OK (0.00475)
False Positive I

(0.00995)

False Negative II
(0.00025)

True Disease State

0.005Total

Total

1.00.995

0.0147

0.9853
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Examples – Birthday Paradox
The Birthday Paradox: In a random group of N people, what is the 
change that at least two people have the same birthday?
E.x., if N=23, P>0.5. Main confusion arises from the fact that in 
real life we rarely meet people having the same birthday as us, and 
we meet more than 23 people.
The reason for such high probability is that any of the 23 people 
can compare their birthday with any other one, not just you 
comparing your birthday to anybody else’s.
There are N-Choose-2 = 20*19/2 ways to select a pair or people. 
Assume there are 365 days in a year, P(one-particular-pair-same-
B-day)=1/365, and 
P(one-particular-pair-failure)=1-1/365  ~  0.99726.
For N=20, 20-Choose-2 = 190. E={No 2 people have the same 
birthday is the event all 190 pairs fail (have different birthdays)},
then P(E) = P(failure)190 = 0.99726190 = 0.59.
Hence,  P(at-least-one-success)=1-0.59=0.41, quite high.
Note: for N=42 P>0.9 …
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Sample  n  balls and count  X = # black balls in sample

M  black balls

N – M  white balls

N  balls in an urn, of which there are

The two-color urn model

We will compute the probability distribution of the R.V. X
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  Perform  n  tosses and count  X = # heads

toss 1 toss 2 toss  n
pr(H) = p pr(H) = p pr(H) = p

The biased-coin tossing model

We also want to compute the probability
distribution of this R.V. X!

Are the two-color urn and the biased-coin
models related? How do we present the 

models in mathematical terms?
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The distribution of the number of heads in n
tosses of a biased coin is called the Binomial 
distribution.

The answer is:  Binomial distribution
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x 0 1 2 3 4 5 6
Individual pr(X = x) 0.001 0.010 0.060 0.185 0.324 0.303 0.118
Cumulative pr(X - x) 0.001 0.011 0.070 0.256 0.580 0.882 1.000

Binomial(N, p) – the probability distribution
of the number of Heads in an N-toss coin 
experiment, where the probability for Head 
occurring in each trial is p.

E.g., Binomial(6, 0.7)

For example  P(X=0) = P(all 6 tosses are Tails) =

001.03.0)7.01( 66 ==−
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Binary random process

The biased-coin tossing model is a physical model for 
situations which can be characterized as a series of 
trials where:

each trial has only two outcomes: success or 
failure;
p = P(success) is the same for every trial; and
trials are independent.

The distribution of X = number of successes (heads) 
in N such trials is

Binomial(N, p)
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Sampling from a finite population –
Binomial Approximation

If we take a sample of size n

from a much larger population (of size N)

in which a proportion p have a characteristic of 
interest, then the distribution of X, the number in 
the sample with that characteristic,

is approximately Binomial(n, p).
(Operating Rule: Approximation is adequate if n / N< 0.1.)

Example, polling the US population to see what 
proportion is/has-been married.
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Binomial Probabilities –
the moment we all have been waiting for!

Suppose X ~ Binomial(n, p), then the probability

Where the binomial coefficients are defined by

nxpp
x
n

xXP xnx ≤≤−⎟
⎠

⎞
⎜
⎝

⎛== − 0   ,)1()( )(

nnn
xxn

n
x
n

×−××××=
−

=⎟
⎠

⎞
⎜
⎝

⎛ )1(...321!     ,
!  )!(

!

n-factorial
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Prize ($) x 1 2 3
Probability pr(x) 0.6 0.3 0.1

$ won
Total  prize money  =  Sum; Average prize money  =  Sum/100

 = 1  0.6  +  2  0.3  +  3  0.1
 = 1.5

Sum
Number of games won

What we would "expect" from 100 games add across row
0.6 100 0.3 100 0.1 100

2 0.3 100 3 0.1 1001 0.6 100

Expected values

The game of chance: cost to play:$1.50;  Prices {$1, $2, $3}, 
probabilities of winning each price are {0.6, 0.3, 0.1}, respectively.

Should we play the game? What are our chances of 
winning/loosing?

Theoretically Fair Game: price to play EQ the expected return!
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The expected value:

E(X) =

= Sum of (value times probability of value)

∑
x

xx
 all

)(P

Definition of the expected value, in general.

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
∫=
X

dxxx
 all

)(P 
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Example

X 0 1 2 3

pr(x )
5
8

1
8

1
8

1
8

25.1
8
13

8
12

8
51

8
10

)(P)(E

=

×+×+×+×=

∑=
x

xxX

In the at least one of each or at most 3 children
example, where X ={number of Girls}  we have:

1 2 30

.75

.50

.25
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μX = E(X) is called the mean of the distribution of X.

μX = E(X) is usually called the population mean.

μx is the point where the bar graph of P(X = x) balances.

The expected value and population mean
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The population standard deviation is

sd(X) =  E[(X -  μ)2 ]

Population standard deviation

Note that if X is a RV, then (X-μ) is also a RV, 
and so is (X-μ)2. Hence, the expectation, 

E[(X-μ)2],  makes sense.
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Population mean & standard deviation

Expected value:  

Variance

Standard Deviation

∑ ==
x

xXxPXE )()(

( )∑ =−=
x

xXPxExXVar )()()( 2

( )∑ =−==
x

xXPxExXVarXSD )()()()( 2

Stat 13, UCLA, Ivo DinovSlide 75

)-1( = )sd( pnpX

For the Binomial distribution . . . Mean & SD

E(X) = n p,
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Example – 3.18

3.18. In a certain population of the European 
starling, there are 5,000 nests with young. 
The distribution of brood size (number of 
young in a nest) is given in the table. If a 
young starling is chosen at random and let 
Y’ be the size of its brood. Find:

(a) Pr{Y' = 3} =
1,830 / 22,435 = 0.0816 (8.16%) 

(b) Pr{Y' >= 7} = 
(910 + 208 + 27 + 10) / 22,435 = 
1,155 / 22,435 = 0.0515 (5.15%) 

(c) Choosing a young at random gives a selection of 
broods which is not random, but is biased 
toward larger broods (because a larger brood 
has more chances to be selected).  Therefore 
Pr{Y' >= 7} is larger than Pr{Y >= 7}.

22,4355,000Total

10110

2739

208268

9101307

4,5007506

8,80017605

5,60014004

1,8306103

4602302

90901

Frequency
Size of 
BroodsIndex
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Example – 3.18
Use HistogramChartDemo4: http://socr.ucla.edu/htmls/SOCR_Charts.html

3.18. In a certain population of the European starling, there are 5,000 nests 
with young. The distribution of brood size (number of young in a nest) is 
given in the table. If a young starling is chosen at random and let Y’ be 
the size of its brood.
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The Normal Distribution 

Recall: in chapter 2 we used histograms to 
represent frequency distributions.  

We can think of a histogram as an 
approximation of the true population distribution.

A smooth curve representing a frequency 
distribution is called a density curve.
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Why is that so?

E(aX + b) = a E(X) +b SD(aX +b) = |a| SD(X)

Linear Scaling (affine transformations) aX + b

.1
00

00

0

baE(X)baE(X)

n

x
x) P(Xb

n

x
x)x P(Xa

n

x
x)b  P(X

n

x
x)a x P(X

n

x
x)b)  P(X(a xb)E(aX

+=×+

=∑
=

=+∑
=

=

=∑
=
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=

=

=∑
=

=+=+
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And why do we care?

E(aX + b) = a E(X) +b SD(aX +b) = |a| SD(X)

-E.g., say the rules for the game of chance we saw before change and 
the new pay-off is as follows: {$0, $1.50, $3}, with probabilities of 
{0.6, 0.3, 0.1}, as before. What is the newly expected return of the 
game? Remember the old expectation was equal to the entrance fee of 
$1.50, and the game was fair!

Y = 3(X-1)/2
{$1, $2, $3} {$0, $1.50, $3}, 

E(Y) =  3/2 E(X) –3/2 = 3 / 4 = $0.75

And the game became clearly biased. Note how easy it is to compute E(Y).

Linear Scaling (affine transformations) aX + b
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The Normal Distribution

The normal distribution is described by a 
unimodal, bell shaped, symmetric density curve

Area under density curve between a and b is equal 
to the proportion of Y values between a and b.

The area under the whole curve is equal 1.0 

Y
a b
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Each normal curve is characterized by it's μ and σ

If random variable Y is normal with mean μ and standard deviation σ, 
we write 

Y ~ N( μ , σ 2 ) 

http://www.SOCR.ucla.edu/htmls/SOCR_Distributions.html

μ σμ +
Y

σμ −σμ 2− σμ 3+σμ 3− σμ 2+ σμ 2+
Y

μ
σμ + σμ 3+σμ −

σμ 2−
σμ 3−

The Normal Distribution
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The Normal Distribution

A normal density curve can be summarized with the 
following formula:

Every normal curve uses this formula, what makes them 
different is what gets plugged in for   μ and σ

Each normal curve is centered at μ and the width depends on  σ
( small = tall, large = short/wide).

( )
2

2
1

2
1 ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛ −
−

= σ
μ

πσ

y

eyf
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Areas under the normal curve 

Because each normal curve is the result of a 
single formula the areas under the normal 
curve have been computed and tabulated for 
ease of use. 

The Standard Scale  
Any normal curve can be converted into a 

normal curve with  
μ = 0 and   σ = 1.  This is called the standard 

normal.
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Areas under the normal curve

The process of converting normal data to the 
standard scale is called standardizing.

To convert Y into Z (a z-score) use the following 
formula:

What does a z-score measure?

σ
μ−

=
YZ

Stat 13, UCLA, Ivo DinovSlide 86

Areas under the normal curve

Table 3 (also in front of book) gives areas under the 
standard normal curve

Example: Find the area that corresponds to z < 2.0
Always good to draw a picture!

Example: Find the area that corresponds to z > 2.0

Example: Find the area that corresponds to 1.0 < z < 2.0

Example: Find the area that corresponds to z < 2.56

Tables are antiquated Use tools like SOCR (socr.ucla.edu)
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Recall the Empirical Rule 

How can we use the standard normal distribution to 
verify the properties of the empirical rule?

The area: -1 < z < 1 = 0.8413 - 0.1587 = 0.6826
The area: -2.0 < z < 2.0 = 0.9772 - 0.0228 = 0.9544  
The area: -3.0 < z < 3.0 = 0.9987 - 0.0013 = 0.9974 

Relationship to the Empirical Rule 

%993
%952

%68

≈>±
≈±

≈±

sy
sy

sy
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Relationship to the Empirical Rule

Visually: 

http://socr.stat.ucla.edu/htmls/SOCR_Distributions.html

0 1 2 3-3 -2 -1
Z

~68%

~95%

~99%
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Application to Data 

Example: Suppose that the average systolic blood 
pressure (SBP) for a Los Angeles freeway commuter 
follows a normal distribution with mean 130 mmHg 
and standard deviation 20 mmHg. 

Find the percentage of LA freeway commuters that 
have a SBP less than 100.

First step: Rewrite with notation!
Y ~ N(130, 20)
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Second step: Identify what we are trying to solve!
Find the percentage for: y < 100

Third step: Standardize 

Fourth Step: Use the standard normal table to solve
y < 100 = z < -1.5 = 0.0668

Therefore approximately 6.7% of LA freeway commuters 
have SBP less than 100 mmHg.

Application to Data

5.1
20

130100
−=

−
=

−
=

σ
μYZ
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Application to Data

Visually

z < -1.5 = 0.0668

Z
-1.5 0130

Y

100
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Try these:
What percentage of LA freeway commuters 

have SBP greater than 155 mmHg?
Between 120 and 175?

Can also be interpreted in terms of 
probability.

What is the probability that a randomly selected 
freeway commuter will have a SBP less than 100?

P(Y < 100) = 0.0668

Application to Data
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Normal approximation to Binomial

Suppose Y~Binomial(n, p)
Then Y=Y1+ Y2+ Y3+…+ Yn, where

Yk~Bernoulli(p) , E(Yk)=p  & Var(Yk)=p(1-p) 

E(Y)=np &  Var(Y)=np(1-p), SD(Y)= (np(1-p))1/2

Standardize Y:
Z=(Y-np) / (np(1-p))1/2

By CLT Z ~ N(0, 1). So, Y ~ N [np, (np(1-p))1/2]

Normal Approx to Binomial is reasonable 
when  np >=10   &   n(1-p)>10 (p & (1-p) are 
NOT too small relative to n).
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Normal approximation to Binomial – Example

Roulette wheel investigation:
Compute P(Y>=58),  where Y~Binomial(100, 0.47) –

The proportion of the Binomial(100, 0.47) population having more
than 58 reds (successes) out of 100 roulette spins (trials).

Since np=47>=10   &   n(1-p)=53>10 Normal 
approx is justified.

Z=(Y-np)/Sqrt(np(1-p))   =                                       –
(58-100*0.47)/Sqrt(100*0.47*0.53)=2.2
P(Y>=58)   P(Z>=2.2) = 0.0139
True P(Y>=58) = 0.0177, using SOCR (demo!)
Binomial approx useful when no access to SOCR 
available or when N is large!

Roulette has 38 slots
18red 18black 2 neutral
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Assessing Normality 

How can we tell if our data is normally 
distributed?

Several methods for checking normality 
Mean = Median
Empirical Rule

Check the percent of data that within 1 sd, 2 sd and 3 sd
(should be approximately 68%, 95% and 99.7%). 

Histogram or dotplot
Normal Probability Plot

Why do we care if the data is normally 
distributed?
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Normal Probability Plots 

A normal probability plot is a graph that is used 
to assess normality in a data set.

When we look at a normal plot we want to see 
a straight line.

This means that the distribution is approximately 
normal.

Sometimes easier to see if a line is straight, than if 
a histogram is bell shaped. 
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Normal Probability Plots

This is how the plot 
works:

We take the data and plot it 
against normal scores

To compute normal scores 
we take expected values of 
ordered observations from a 
sample of size n that is normally 
distributed N(0,1).  

When we then compare these 
"normal scores" to the actual y 
values on a graph, if the data 
were normal, we will see our 
straight line.

Nscore

Y

210-1-2

12

11

10

9

8

7

6

5

4

3

Scatterplot of Y vs Nscore
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Normal Probability Plots

Example:  height example from book p.134-135

Suppose we have the height for 11 women.
height (in) Nscore

61.0 -1.59322

62.5 -1.06056

63.0 -0.72791

64.0 -0.46149

64.5 -0.22469

65.0 0.00000

66.5 0.22469

67.0 0.46149

68.0 0.72791

68.5 1.06056

70.5 1.59322

Calculated using 
SOCR, slightly 
different than 
formula from text.
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Normal Probability Plots

Example (cont’): Normal probability plot
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Normal Probability Plots  - Simulation
Example: Random Sampling from Normal (0,5): Raw Sample + QQPlot
http://www.socr.ucla.edu/htmls/SOCR_Modeler.html,  Data Generation
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Normal Probability Plots  - Simulation
Example: Random Sampling from Normal (0,5): 100 Raw Sample + Graphs
http://www.socr.ucla.edu/htmls/SOCR_Charts.html, Index & QQ Plots
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Normal Probability Plots  - Simulation
Example: Random Sampling from Normal (0,5): 100 Raw Sample + Graphs
http://www.socr.ucla.edu/htmls/SOCR_Charts.html, Histogram Plot


