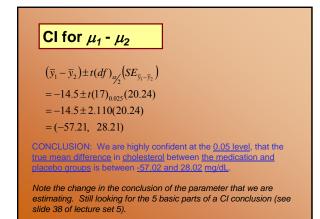

Standard Error of	$\overline{y}_1 - \overline{y}_2$		
Example: A study is conducted to quantify the benefits of a new cholesterol lowering medication. Two groups of subjects are compared, those who took the medication twice a day for 3 years, and those who took a placebo. Assume subjects were randomly assigned to either group and that both groups data are normally distributed. Results from the study are shown below:			
	Medication	Placebo	
\overline{y}	209.8	224.3	
n	10	10	
S	44.3	46.2	
SE	14.0	14.6	
	Slide 7	Stat 13. UCLA. Ivo Dinov	



Cl for
$$\mu_1 - \mu_2$$

Example: Cholesterol medication (cont')
Calculate a 95% confidence interval for $\mu_1 - \mu_2$
We know $\bar{y}_1 - \bar{y}_2$ and $SE_{(\bar{y}_1 - \bar{y}_2)}$ from the previous slides.
Now we need to find the t multiplier
 $df = \frac{(14^2 + 14.6^2)^2}{14^4/(10-1)^+} = \frac{167411.9056}{9317.021} = 17.97 \approx 17$
Round down to
conservative
WOTE: Calculating that df is not really that fun, a quick rule
of thumb for checking your work is:
 $n_1 + n_2 - 2$

Slide 14

CI for $\mu_1 - \mu_2$

• What's so great about this type of confidence interval?

- In the previous example our CI contained zero
 - This interval isn't telling us much because:
 the true mean difference could be more than zero (in which case the mean of group 1 is larger than the mean of group 2)
 or the true mean difference could be less than zero (in which case the mean of group 1 is smaller than the mean of group 2)
 - or the true mean difference could even be zero!
 The ZERO RULE!
 - Suppose the CI came out to be (5.2, 28.1), would this
 - indicate a true mean difference?

Hypothesis Testing: The independent t test

• The idea of a hypothesis test is to formulate a hypothesis that nothing is going on and then to see if collected data is consistent with this hypothesis (or if the data shows something different)

- Like innocent until proven guilty
- There are four main parts to a hypothesis test:
 - hypotheses
 - test statistic
 p-value
 - conclusion

Hypothesis Testing: #1 The Hypotheses

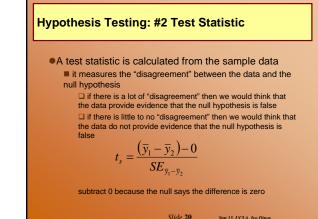
- There are two hypotheses:
 - Null hypothesis (aka the "status quo" hypothesis) denoted by H_o
 - Alternative hypothesis (aka the research hypothesis)
 denoted by H_a

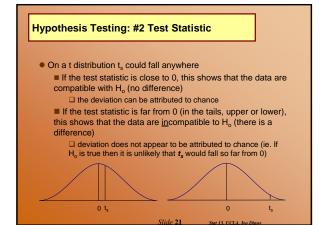
Hypothesis Testing: #1 The Hypotheses

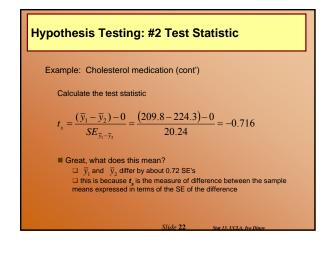
• If we are comparing two group means nothing going on would imply no difference • the means are "the same" $(\mu_1 - \mu_2) = 0$ • For the independent t-test the hypotheses are: H_0 : $(\mu_1 - \mu_2) = 0$ (no statistical difference in the population means) H_a : $(\mu_1 - \mu_2) \neq 0$ (a statistical difference in the population means)

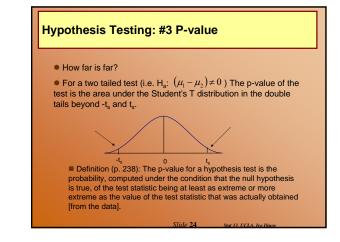
Hypothesis Testing: #1 The Hypotheses

Example: Cholesterol medication (cont') Suppose we want to carry out a hypothesis test to see if the data show that there is enough evidence to support a difference in treatment means.

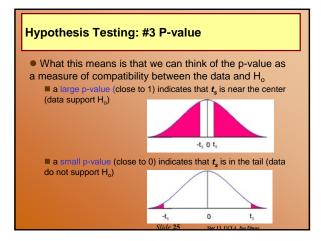

Find the appropriate null and alternative hypotheses.

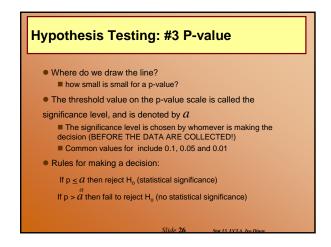

$H_{o}: (\mu_1 - \mu_2) = 0$


(no statistical difference the true means of the medication and placebo groups) $\mathbf{H}_{a}: \quad (\mu_{1} - \mu_{2}) \neq 0$


a statistical difference in the true means of the medication and placebo groups, medication has an effect on cholesterol)

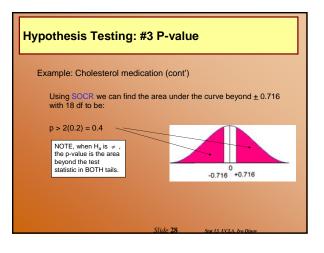
lide 19





Hypothesis Testing: #2 Test Statistic

- How do we use this information to decide if the data support H_o?
 - Perfect agreement between the means would indicate that $t_s = 0$, but logically we expect the means do differ by at least a little bit.
 - The question is how much difference is statistically significant?
 If H_o is true, it is unlikely that t_s would fall in either of the far tails
 - If H_o is false it is unlikely that t_s would fall near 0



Hypothesis Testing: #3 P-value

Example: Cholesterol medication (cont')

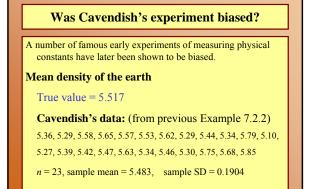
Find the p-value that corresponds to the results of the cholesterol lowering medication experiment We know from the previous slides that t = -0.716(which is close to 0)

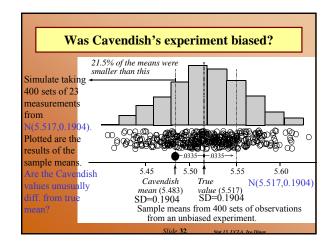
This means that the p-value is the area under the curve beyond \pm 0.716 with 18 df.

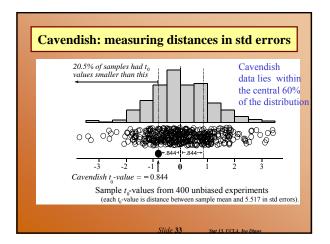
Hypothesis Testing: #4 Conclusion

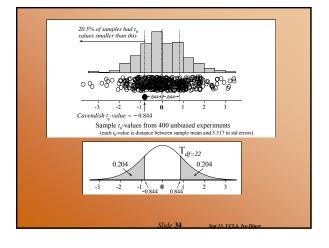
Example: Cholesterol medication (cont')

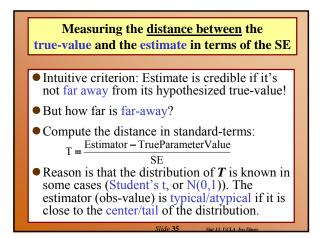
Suppose the researchers had set $\alpha = 0.05$ Our decision would be to fail to reject Ho because p > 0.4 which is > 0.05

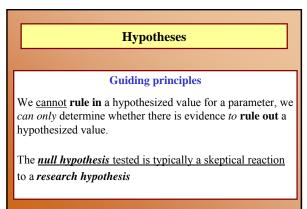

(#4) CONCLUSION: Based on this data there is no statistically significant difference between true mean cholesterol of the medication and placebo groups (p > 0.4).

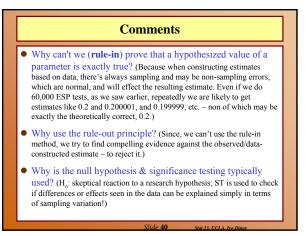

- □ In other words the cholesterol lowering medication does not seem to have a significant effect on cholesterol.
- Keep in mind, we are saying that we couldn't provide sufficient evidence to show that there is a significant difference between the two *population* means.

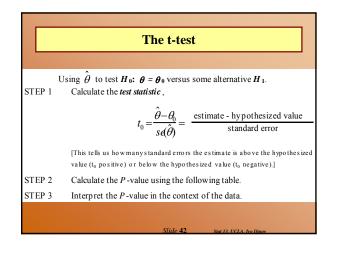

Hypothesis Testing Summary

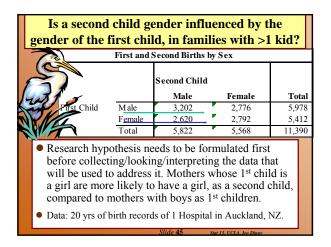

Important parts of Hypothesis test conclusions:


- 1. Decision (significance or no significance)
- 2. Parameter of interest
- 3. Variable of interest
- 4. Population under study
- 5. (optional but preferred) P-value

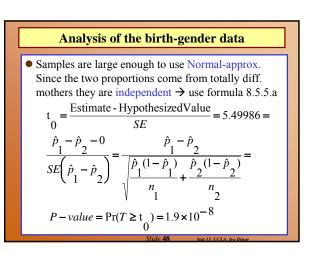


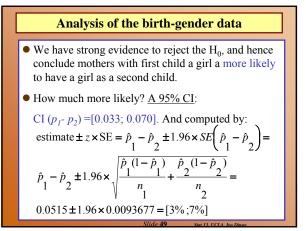


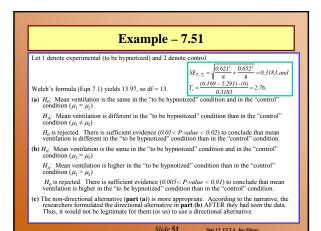

Review
What do t₀-values tell us? (Our estimate is typical/atypical, consistent or inconsistent with our hypothesis.)
What is the essential difference between the information provided by a confidence interval (CI) and by a significance test (ST)? (Both are uncertainty quantifiers. CT's use a fixed level of confidence to determine possible range of values. ST's one possible value is fixed and level of confidence is determined.)

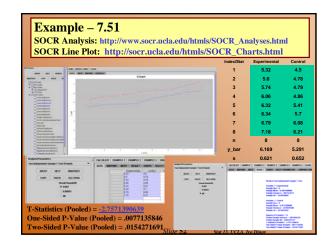

Comments

- How can researchers try to demonstrate that effects or differences seen in their data are real? (Reject the hypothesis that there are no effects)
- How does the alternative hypothesis typically relate to a belief, hunch, or research hypothesis that initiates a study? (H₁=H_a: specifies the type of departure from the nullhypothesis, H₀ (skeptical reaction), which we are expecting (research hypothesis itself).
- In the Cavendish's mean Earth density data, null hypothesis was H₀: µ =5.517. We suspected bias, but not bias in any specific direction, hence H_a:µ!=5.517.


The t-test		
Alternative hypothesis	Evidence against H ₀ : θ > θ ₀ provided by	<i>P</i> -value
$H_1: \theta > \theta_0$	$\hat{\theta}$ too much bigger than θ_0	$P = \operatorname{pr}(T \ge t_0)$
$H_1: \theta < \theta_0$	(i.e., $\hat{\theta} - \theta_0$ too large) $\hat{\theta}$ too much smaller than θ_0 (i.e., $\hat{\theta} - \theta_0$ too negative)	$P = \operatorname{pr}(T \leq t_0)$
$H_1: \theta \neq \theta_0$	$\hat{\boldsymbol{\theta}} \text{ too far from } \boldsymbol{\theta}_0$ (i.e., $ \hat{\boldsymbol{\theta}} - \boldsymbol{\theta}_0 \text{ too large}$)	$P = 2 \operatorname{pr}(1 \ge t_0)$
		where $T \sim \text{Student}(df)$
	Slide 43	Stat 13. UCLA, Ivo Dinov


Interpretation of the p-value			
TABLE 9.3.	TABLE 9.3.2 Interpreting the Size of a P-Value		
Approx	timate size		
of I	'-Value	Translation	
> 0.12	(12%)	No evidence against H_0	
0.10	(10%)	Weak evidence against H_0	
0.05	(5%)	Some evidence against H_0	
0.01	(1%)	Strong evidence against H_0	
0.001	(0.1%)	Very Strong evidence against H_0	
		Slide 44 Stat 13. UCLA. Ivo Dinov	


Analysis of the birth-gender data – data summary			
	Second Child		
Froup	Number of births	Number of girls	
(Previous child was girl)	5412	2792 (approx. 51.6%	
(Previous child was boy)	5978	2776 (approx. 46.4%	
· · · ·	e proportion of girl <u>Parameter of inter</u> ptical reaction). H_a	s in mothers with est is $p_1 - p_2$.	


Hypothesis testing as decision making			
Decision Making			
	Actual situation		
Decision made	H ₀ is true	H ₀ is false	
Accept H ₀ as true	OK Type II error		
Reject H ₀ as false	Type I error	OK	
 Sample sizes: n₁=5412, n₂=5978, Sample proportions (estimates) p̂₁ = 2792/5412 ≈ 0.5159, p̂₂ = 2776/5978 ≈ 0.4644, H₀: p₁-p₂=0 (skeptical reaction). H_a: p₁-p₂>0 			
(research hypothesis)			

Example – 7.51			
 7.51. A study was undertaken to compare the 	Index/Stat	Experimental	Control
respiratory responses of hypnotized and non-	1	5.32	4.5
hypnotized subjects to certain instructions.	2	5.6	4.78
 The <u>16</u> male volunteers were allocated at random to an experimental group to be hypnotized or to a 	3	5.74	4.79
	4	6.06	4.86
control group. Baseline measurements were taken at	5	6.32	5.41
the start of the experiment.	6	6.34	5.7
• In analyzing the data, the researchers noticed that the	7	6.79	6.08
baseline breathing patterns of the two groups were	8	7.18	6.21
different; this was surprising, since all the subjects	n	8	8
had been treated the same up to that time.	y_bar	6.169	5.291
 One explanation proposed for this unexpected difference was that the experimental group were more excited in anticipation of the experience of being hypnotized. 	5	0.621	0.652
 The summary of the baseline measurements of total ventilation is provided (liters of air per minute per square meter of body area). 			
Slide 50 sta	13. UCLA. Ive	Dinov	

