

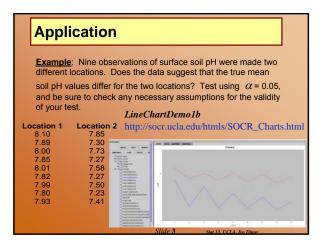
University of California, Los Angeles, Fall 2007 http://www.stat.ucla.edu/~dinov/courses_students.html

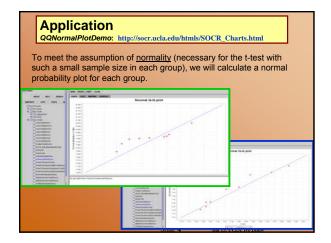
at 12 UCLA

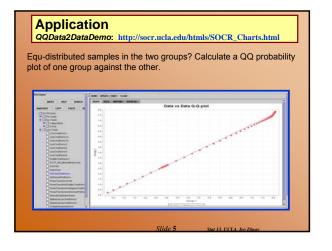
Lecture Set 8

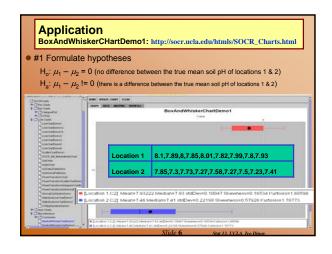
The T Test

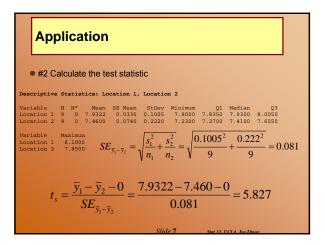
Wilcoxon-Mann-Whitney Test

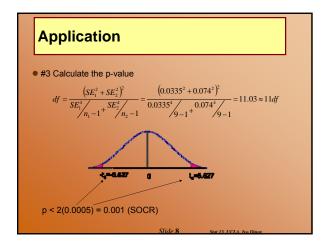










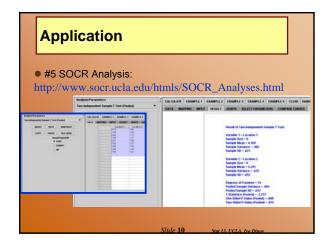


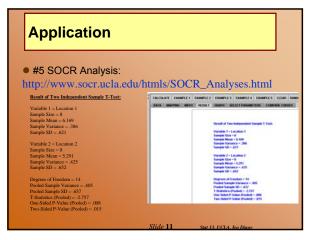
Application

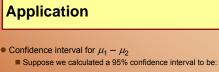
#4 Conclusion

Because p < 0.001 < 0.05, we will reject H_{o} .

CONCLUSION: These data show that there is a statistically significant true mean difference in the <u>pH</u> of <u>Location 1 and</u> <u>Location 2</u> (P < 0.001).

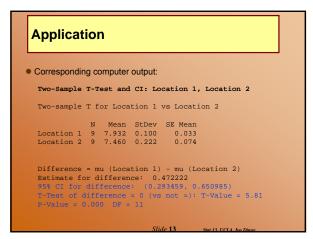


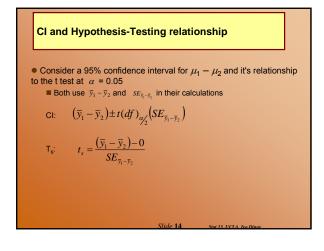


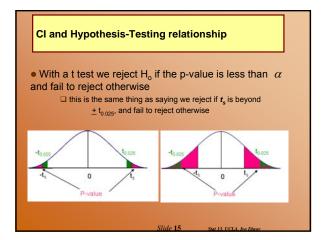


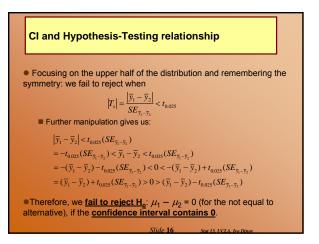
 $\begin{aligned} &\left(\overline{y}_{i} - \overline{y}_{2}\right) \pm t(df)_{0.025} \left(SE_{\overline{y}_{i} - \overline{y}_{2}}\right) = (7.932 - 7.460) \pm t(11)_{0.025} (0.081) \\ &= (0.472) \pm 2.201 (0.081) \\ &= (0.294, 0.650) \end{aligned}$

Does this interval surprise you?









CI and Hypothesis-Testing relationship

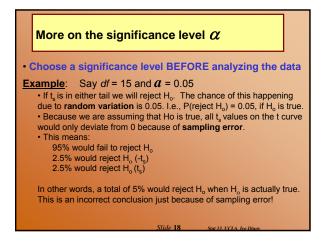
• If a two-tailed t test and a confidence interval give us the same result, why learn both?

There are advantages to each one

Confidence interval:

shows magnitude of difference between μ_1 and μ_2 \Box <u>T test</u>:

has p-value which describes the strength of evidence that $\mu_{\rm 1}$ and $\mu_{\rm 2}$ are really different.



More on the significance level α

 When we are analyzing one data set in real life at the 0.05 level and our conclusion is to reject H_o there are two possible scenarios:

- 1. H_o is in fact false
- 2. H_o is true, but we were unlucky (5%)

Type I and Type II Errors • There are two possible mistakes that can be made when conducting a hypothesis test: A type I error is when we reject H_o and H_o was true \Box P(type I error) = α \Box When we choose α before we conduct our test, we are actually protecting ourselves against a type I error This choice will depend on your experiment A type II error is when we fail to reject H_o and H_o is false \Box P(type II error) = β $\square \beta$ can also be specified before we collect our data will have more to do with the number of observations in our sample

Type I and Type II Errors

• Table (below) is the best way to summarize

		Reality	
		H₀ True	H₀ False
Decision	Fail To	Correct	Type II
	Reject H _o	TN	FN
	Reject H _o	Type I	Correct
		FP	TP

• You cannot make both errors at the same time Once you have reached a conclusion (reject or fail to reject) based on the data from your experiment you've either made a correct decision or you've made an error (type I for a reject conclusion and type II for a failing-to-reject conclusion)

21

Type I and Type II Errors

• Analogy: Think of a car with a car alarm being broken into

- If the alarm goes off for no reason (reject H_o when H_o is true) type I error
- If the car gets broken into and the alarm doesn't go off (fail to reject Ho when Ho is false) - type II error

Also consider the sensitivity of the alarm

■ REMEMBER: Fail To Reject H_o means "nothing is going on" or the data do not show otherwise

Consequences of Type I / II errors are quite different

Type I and Type II Errors

Example: Measuring pollution in a lake. Say the EPA institutes a rule that companies near bodies of water must test their pollution output. If the company doesn't find any statistical significance in their results, they may continue their current practices.

- H_o: No significant pollution
- H_a: Significant pollution

In this case a type II error would be much worse (probability of failing to reject H_o when H_o is false – saying no significant pollution when there really is)

An "ethical" company would want to make sure they tested enough samples to guarantee that β is small

Type I and Type II Errors

Example: Drug Treatments. Say a doctor would like to study a new highly toxic drug treatment for cancer patients. There are many risks and side effects of the new drug, but would be of benefit if the proportion of patients responding is greater than 50%.

 H_0 : No significant response (Proportion responding to TX is ≤ 0.5) H_a : Significant response (Proportion responding to TX is > 0.5) In this case a type I error is much worse (probability of rejecting H_o when H_o is true - like saying that the TX does something when it really doesn't)

An ethical researcher would want to make sure they keep α small before collecting and analyzing the data

Type I and Type II Errors

• Because α is chosen beforehand, we are protected against type I errors. However, type II errors depend on many things, such as sample size (section 7.8)

• β = P(fail to reject H_o) when H_o is false.

■ The chance of rejecting H_o when it is actually false is called the power of our test

Power = 1 - β = P(reject H_o) when H_o is false

measures the ability of the test to detect a difference when a difference really does exist

Power depends on sample size. A larger sample gives more information and also increases power.
 When you plan an analysis you always need to take power into account (ie

plan for n):

analysis of power (7.8)

One Tailed t Tests

• The previous hypothesis test was called a two-tailed (or non-directional) test because H_o was rejected if t_s fell in <u>either</u> tail

- In some analyses it is reasonable that there will be a certain direction of a deviation from H_{o}
- This means that we are looking to see if one group mean is smaller/larger than the other
- The hypotheses for a one-tailed (or directional) test are: H_0 : $\mu_1 - \mu_2 = 0$

 $H_a: \mu_1 - \mu_2 > 0$ OR

Ha: $\mu_1 - \mu_2 < 0$ Note: the null hypothesis doesn't change

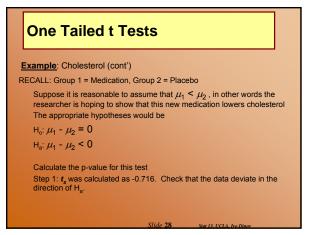
One Tailed t Tests

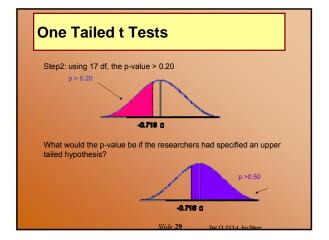
• One-Tailed Test Procedure:

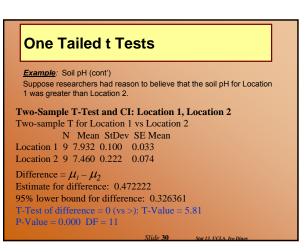
Step 1: Check direction to see if data deviate from H_o in the direction specified by H_a (If $\mu_1 < \mu_2$ then we expect t_s to be negative, if $\mu_1 > \mu_2$ then we expect t_s to be positive.)

a. If no, then p-value > 0.5b. If yes, then proceed to step 2

Step 2: The p-value of the data is the one-tailed area beyond t_s







One Tailed t Tests

- P-values for a directional alternative are 1/2 of a nondirectional
- assuming the direction matched H_a
- It is easier to reject H_o with a one-tailed alternative
 However it is important that we decide on the direction of H_a before the data is collected

• If the data do not match the direction of H_a we conclude that the data do not indicate that the true means differ

However t_s may be statistically significant in the other tail
 In this case we would want to look for methodological errors in the experiment

Slide 31

The Wilcoxon-Mann-Whitney

- Also known as the <u>rank sum test</u>
- http://www.socr.ucla.edu/htmls/SOCR_Analyses.html
- <u>http://socr.stat.ucla.edu/Applets.dir/WilcoxonRankSumTable.html</u>
- This hypothesis test is also used to compare two independent samples
 - This procedure is different from the independent t test because it is valid even if the population distributions are not normal
 In other words, we can use this test as a fair substitute when we cannot not meet the required normality assumption of the t test
- WMW is called distribution-free or non-parametric test
 This test doesn't focus on a parameter like the mean, instead it examines the distributions of the two groups

The Wilcoxon-Mann-Whitney

• Keep in mind that this is another hypothesis test, so there are still four major parts to consider

- #1 The hypotheses:
 - **I** H_0 : The population distributions of Y_1 and Y_2 are the same
 - **H**_a: The population distributions of Y_1 and Y_2 are the different
 - This could also be directional: distribution of Y_1 is less than Y_2 ; OR distribution of Y_1 is greater than Y_2
- #2 The test statistic:
 - denoted by U_s
 - measures the degree of separation between the two samples
 a large value of U_s indicates that the two samples are well separated with little overlap

a small value of U_s indicates that the two samples are not well separated with much overlap
Slide 33 Set 13 UCLA ter biner

The Wilcoxon-Mann-Whitney

• #3 The p-value:

- http://socr.stat.ucla.edu/Applets.dir/WilcoxonRankSumTable.html
- http://www.socr.ucla.edu/htmls/SOCR_Analyses.html
- Critical Values are also in table 6 on p.680
- Method very similar to using the t table
 find the appropriate row and then search for a number closest to the test statistic

don't need to worry about doubling the p-value for a two-tailed test (assuming we go to the right row header)

#4 Conclusion:

Similar to the conclusion of an independent t test, but not linked to any parameter (for example the difference in means)

Slide 34 Stat 13. UCLA. Ivo D

The Wilcoxon-Mann-Whitney

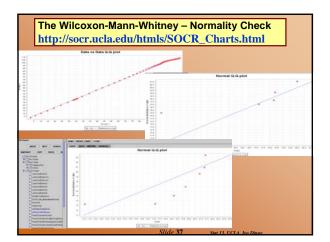
The Method:

- Step 1: Arrange the data in increasing order
- Step 2: Determine K₁ and K₂
 - □ K₁, for each observation in group 1, count the number of observations in the second group that are smaller. Use 1/2 for tied observations. K₁ is the sum of these ranks. □ K₂: for each observation in group 2, count the number of observations in the first group that are smaller. Use 1/2 for tied observations. K₂ is the sum of these ranks. □ CHECK: if you have done the procedure correctly K₁ + K₂ = n₁n₂.
- **Step 3:** If the test is non-directional then U_s is the larger of K_1 and K_2 . If the test is directional then U_s is the K that jives with the direction
- of H_a (if H_a is $Y_1 > Y_2$ then U_s = K₁, if H_a is $Y_1 < Y_2$ then U_s = K₂)

Step 4: Determine the critical value

- **n** = larger of n_1 and n_2 **n** = smaller of n_1 and n_2
- Step 5: Bracket the p-value
 - Step 5. Bracket the p-value

The Wilcoxon-Mann-Whitney **Example**: The urinary fluoride concentration (ppm) was measured both for a sample of livestock grazing in an area previously exposed to fluoride pollution and also for a similar sample of livestock grazing in an unpolluted area. Polluted Unpolluted 21.3 10.1 Uspalls 18.7 18.3 21.4 17 2 Polls 17.1 18.4 11.1 20.0 20.9 19.7 Does the data suggest that the fluoride concentration for livestock grazing in the polluted region is larger that for the unpolluted region? Test using $\alpha = 0.01$.



The Wilcoxon-Mann-Whitney

#1 The hypotheses:

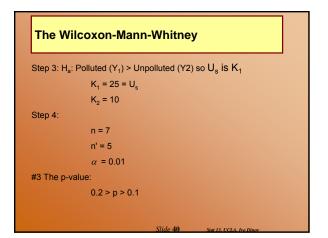
H_o: urinary fluoride values do not differ between the polluted and unpolluted regions.

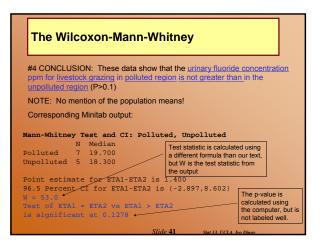
H_a: the polluted region has a higher livestock urinary fluoride than the unpolluted region.

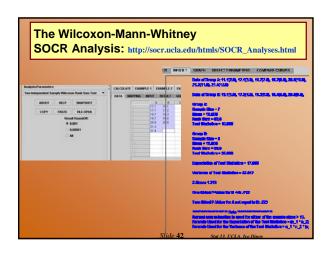
#2 The test statistic:

For this we need to deploy the WMW method shown a few slides earlier.

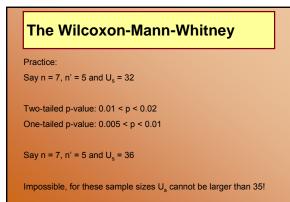
The Wilcoxon-Mann-WhitneyLet Polluted be group 1, and Unpolluted be group 2Step 1: arrange the data in increasing order $\frac{W \text{ populted } M \text{ polluted } M \text{ polluted } Polluted & Polluted M \text{ polluted } Polluted & Pol$







The Wilcoxon-Mann-Whitney SOCR Analysis: http://socr.ucla.edu/htmls/SOCR_Analyses.html Data of Group & 11.10.0), 17.13.0), 18.7(0), 19.7(8.0), 20.9(10.0), 21.3(1.0), 21.4(1.2), Data of Group & 11.10.10, 17.2(3.0), 18.3(5.0), 18.4(6.0), 20.0(9.0), Corray A: Sorray B: Sorray B:



Slide 44

Stat 12 LICEA

The Wilcoxon-Mann-Whitney • Why does this procedure make sense? Suppose $n_1 = 3$ and $n_2 = 2$ $K_1 + K_2 = (3)(2) = 6$ we know that $K_1 + K_2$ should sum to 6 The relative magnitudes of K_1 and K_2 indicate the overlap in Y_1 and Y₂ K₁ = 0 + 1 + 2 = 3 $K_1 = 0 + 0 + 0 = 0$ 1 <u>.</u> . . ••• Y₁ Y₂ Y₂ 1 $K_2 = 3 + 3 = 6$ K₂ = 1 + 2 = 3

The Wilcoxon-Mann-Whitney

Conditions for the WMW:

- Data are from random samples
- Observations are independent
- Samples are independent

 Remember: normality will not matter for this test

Wilcoxon-Mann-Whitney vs. Independent Test

- Both answer the same question, but treat data differently.
 - W-M-W uses rank ordering
 Positive: doesn't depend on normality or population parameters
 Negative: distribution free lacks power because it doesn't use all
 - the info in the data
 T-test uses actual Y values
 - Positive : Incorporates all of the data into calculations
 - Negative : Must meet normality assumption
 - neither is superior
 - If your data are normally distributed use the T-test
 - If your data are not normal use the WMW test

http://www.socr.ucla.edu/htmls/SOCR_Analyses.html

Slide 47 Stat 13. UCLA. Ivo