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UCLA  STAT 13
Introduction to Statistical Methods for the 

Life and Health Sciences

Instructor:   Ivo Dinov, 
Asst. Prof. of Statistics and Neurology

Teaching Assistants:
Brandi Shanata  &  Tiffany Head

University of California, Los Angeles,  Fall  2007
http://www.stat.ucla.edu/~dinov/courses_students.html
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Lecture Set 8 

The T Test 

Wilcoxon-Mann-Whitney Test
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Application

Example:  Nine observations of surface soil pH were made two 
different locations.  Does the data suggest that the true mean 
soil pH values differ for the two locations?  Test using  α = 0.05, 
and be sure to check any necessary assumptions for the validity 
of your test.

Location 1 Location 2 
8.10 7.85 
7.89 7.30 
8.00 7.73 
7.85 7.27 
8.01 7.58 
7.82 7.27 
7.99 7.50 
7.80 7.23 
7.93 7.41 

 

LineChartDemo1b
http://socr.ucla.edu/htmls/SOCR_Charts.html
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Application
QQNormalPlotDemo:  http://socr.ucla.edu/htmls/SOCR_Charts.html

To meet the assumption of normality (necessary for the t-test with 
such a small sample size in each group), we will calculate a normal 
probability plot for each group.
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Application
QQData2DataDemo:  http://socr.ucla.edu/htmls/SOCR_Charts.html

Equ-distributed samples in the two groups? Calculate a QQ probability 
plot of one group against the other.
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Application
BoxAndWhiskerCHartDemo1: http://socr.ucla.edu/htmls/SOCR_Charts.html

#1 Formulate hypotheses
Ho: μ1 – μ2 = 0 (no difference between the true mean soil pH of locations 1 & 2)

Ha: μ1 – μ2 != 0 (there is a difference between the true mean soil pH of locations 1 & 2)

7.85,7.3,7.73,7.27,7.58,7.27,7.5,7.23,7.41Location 2

8.1,7.89,8,7.85,8.01,7.82,7.99,7.8,7.93Location 1
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Application

#2 Calculate the test statistic

Descriptive Statistics: Location 1, Location 2 

Variable    N  N*    Mean  SE Mean   StDev Minimum      Q1  Median      Q3
Location 1  9   0  7.9322   0.0335  0.1005   7.8000  7.8350  7.9300  8.0050
Location 2  9   0  7.4600   0.0740  0.2220   7.2300  7.2700  7.4100  7.6550

Variable    Maximum
Location 1   8.1000
Location 2   7.8500
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Application

#3 Calculate the p-value
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p < 2(0.0005) = 0.001 (SOCR)
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Application

#4 Conclusion

Because p < 0.001 < 0.05, we will reject Ho.

CONCLUSION:  These data show that there is a statistically 
significant true mean difference in the pH of Location 1 and 
Location 2 (P < 0.001).
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Application

#5 SOCR Analysis: 
http://www.socr.ucla.edu/htmls/SOCR_Analyses.html
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Application

#5 SOCR Analysis: 
http://www.socr.ucla.edu/htmls/SOCR_Analyses.html

Result of Two Independent Sample T-Test:

Variable 1 = Location 1
Sample Size = 8
Sample Mean = 6.169
Sample Variance = .386
Sample SD = .621

Variable 2 = Location 2
Sample Size = 8
Sample Mean = 5.291
Sample Variance = .425
Sample SD = .652

Degrees of Freedom = 14
Pooled Sample Variance = .405
Pooled Sample SD = .637
T-Statistics (Pooled) = -2.757
One-Sided P-Value (Pooled) = .008
Two-Sided P-Value (Pooled) = .015
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Application

Confidence interval for μ1 – μ2
Suppose we calculated a 95% confidence interval to be: 

Does this interval surprise you?
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Application

Corresponding computer output:

Two-Sample T-Test and CI: Location 1, Location 2 

Two-sample T for Location 1 vs Location 2

N   Mean  StDev SE Mean
Location 1  9  7.932  0.100    0.033
Location 2  9  7.460  0.222    0.074

Difference = mu (Location 1) - mu (Location 2)
Estimate for difference:  0.472222
95% CI for difference:  (0.293459, 0.650985)
T-Test of difference = 0 (vs not =): T-Value = 5.81  
P-Value = 0.000  DF = 11
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CI and Hypothesis-Testing relationship

Consider a 95% confidence interval for μ1 – μ2 and it's relationship 
to the t test at  α = 0.05

Both use             and              in their calculations

CI:  
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CI and Hypothesis-Testing relationship

With a t test we reject Ho if the p-value is less than  α
and fail to reject otherwise

this is the same thing as saying we reject if ts is beyond
+ t0.025, and fail to reject otherwise
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CI and Hypothesis-Testing relationship

Focusing on the upper half of the distribution and remembering the 
symmetry: we fail to reject when

Further manipulation gives us:

Therefore, we fail to reject Ho: μ1 – μ2 = 0 (for the not equal to 
alternative), if the confidence interval contains 0.
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CI and Hypothesis-Testing relationship

If a two-tailed t test and a confidence interval give us the 
same result, why learn both?

There are advantages to each one

Confidence interval: 
shows magnitude of difference between μ1 and μ2

T test: 
has p-value which describes the strength of evidence that μ1

and μ2 are really different.
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More on the significance level α

• Choose a significance level BEFORE analyzing the data
Example:    Say df = 15 and a = 0.05

• If ts is in either tail we will reject Ho.  The chance of this happening 
due to random variation is 0.05. I.e., P(reject Ho) = 0.05, if Ho is true.
• Because we are assuming that Ho is true, all ts values on the t curve 
would only deviate from 0 because of sampling error.
• This means:

95% would fail to reject Ho
2.5% would reject Ho (-ts)
2.5% would reject Ho (ts)

In other words, a total of 5% would reject Ho when Ho is actually true.  
This is an incorrect conclusion just because of sampling error!
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More on the significance level α

• When we are analyzing one data set in real life at the 
0.05 level and our conclusion is to reject Ho there are two 
possible scenarios:

1. Ho is in fact false
2. Ho is true, but we were unlucky (5%)
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There are two possible mistakes that can be made when 
conducting a hypothesis test:

A type I error is when we reject Ho and Ho was true

P(type I error) =  α
When we choose α before we conduct our test, we are actually 

protecting ourselves against a type I error
This choice will depend on your experiment

A type II error is when we fail to reject Ho and Ho is false

P(type II error) = β
β can also be specified before we collect our data
will have more to do with the number of observations in our sample

Type I and Type II Errors
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Type I and Type II Errors

Table (below) is the best way to summarize

You cannot make both errors at the same time
Once you have reached a conclusion (reject or fail to reject) 

based on the data from your experiment you’ve either made a 
correct decision or you’ve made an error (type I for a reject 
conclusion and type II for a failing-to-reject conclusion)

Reality  
Ho True Ho False 

Fail To 
Reject Ho 

Correct 
TN 

Type II 
FN Decision Reject Ho Type I 

FP 
Correct 

TP 
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Type I and Type II Errors

Analogy: Think of a car with a car alarm being broken 
into

If the alarm goes off for no reason (reject Ho when Ho is true) -
type I error

If the car gets broken into and the alarm doesn't go off (fail to 
reject Ho when Ho is false) - type II error

Also consider the sensitivity of the alarm
REMEMBER:  Fail To Reject Ho means “nothing is going on” or 

the data do not show otherwise

Consequences of Type I / II errors are quite different
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Type I and Type II Errors

Example: Measuring pollution in a lake. Say the EPA 
institutes a rule that companies near bodies of water must 
test their pollution output. If the company doesn’t find any 
statistical significance in their results, they may continue 
their current practices.

Ho: No significant pollution
Ha: Significant pollution
In this case a type II error would be much worse (probability of
failing to reject Ho when Ho is false – saying no significant pollution 
when there really is)
An “ethical” company would want to make sure they tested enough 
samples to guarantee that  β is small
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Type I and Type II Errors

Example: Drug Treatments. Say a doctor would like to study 
a new highly toxic drug treatment for cancer patients. There 
are many risks and side effects of the new drug, but would be 
of benefit if the proportion of patients responding is greater 
than 50%. 

Ho: No significant response (Proportion responding to TX is < 0.5)
Ha: Significant response (Proportion responding to TX is > 0.5)
In this case a type I error is much worse (probability of rejecting Ho
when Ho is true – like saying that the TX does something when it 
really doesn’t)

An ethical researcher would want to make sure they keep  α small 
before collecting and analyzing the data
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Type I and Type II Errors

Because α is chosen beforehand, we are protected against type I 
errors.  However, type II errors depend on many things, such as sample 
size (section 7.8)

β = P(fail to reject Ho) when Ho is false.
The chance of rejecting Ho when it is actually false is called the power of 

our test

Power = 1 - β = P(reject Ho) when Ho is false
measures the ability of the test to detect a difference when a difference really 

does exist
Power depends on sample size.  A larger sample gives more information and 

also increases power.
When you plan an analysis you always need to take power into account (ie

plan for n):
decide desired SE and calculate n
analysis of power (7.8)
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One Tailed t Tests

The previous hypothesis test was called a two-tailed (or 
non-directional) test because Ho was rejected if ts fell in 
either tail

In some analyses it is reasonable that there will be a 
certain direction of a deviation from Ho

This means that we are looking to see if one group mean is 
smaller/larger than the other

The hypotheses for a one-tailed (or directional) test are:
Ho: μ1 - μ2 = 0
Ha: μ1 - μ2 > 0
OR
Ha: μ1 - μ2 <  0

Note: the null hypothesis doesn’t change
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One Tailed t Tests

One-Tailed Test Procedure:
Step 1:  Check direction to see if data deviate 

from Ho in the direction specified by Ha

(If μ1 < μ2 then we expect ts to be negative, if μ1 > 
μ2 then we expect ts to be positive.)

a. If no, then p-value > 0.5
b. If yes, then proceed to step 2

Step 2:  The p-value of the data is the one-tailed 
area beyond ts
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One Tailed t Tests

Example: Cholesterol (cont’)
RECALL: Group 1 = Medication, Group 2 = Placebo

Suppose it is reasonable to assume that μ1 < μ2 , in other words the 
researcher is hoping to show that this new medication lowers cholesterol
The appropriate hypotheses would be

Ho: μ1 - μ2 = 0
Ha: μ1 - μ2 < 0

Calculate the p-value for this test
Step 1: ts was calculated as -0.716.  Check that the data deviate in the 
direction of Ha.

Stat 13, UCLA, Ivo DinovSlide 29

Step2: using 17 df, the p-value > 0.20

What would the p-value be if the researchers had specified an upper 
tailed hypothesis?

One Tailed t Tests

p > 0.20

p >0.50
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One Tailed t Tests

Example: Soil pH (cont’)
Suppose researchers had reason to believe that the soil pH for Location 
1 was greater than Location 2.

Two-Sample T-Test and CI: Location 1, Location 2 
Two-sample T for Location 1 vs Location 2

N   Mean  StDev SE Mean
Location 1  9  7.932  0.100    0.033
Location 2  9  7.460  0.222    0.074
Difference = μ1 – μ2
Estimate for difference:  0.472222
95% lower bound for difference:  0.326361
T-Test of difference = 0 (vs >): T-Value = 5.81  
P-Value = 0.000  DF = 11
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One Tailed t Tests

P-values for a directional alternative are 1/2 of a non-
directional

assuming the direction matched Ha

It is easier to reject Ho with a one-tailed alternative
However it is important that we decide on the direction of Ha

before the data is collected

If the data do not match the direction of Ha we conclude 
that the data do not indicate that the true means differ

However ts may be statistically significant in the other tail
In this case we would want to look for methodological errors in the 

experiment 
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The Wilcoxon-Mann-Whitney

Also known as the rank sum test
http://www.socr.ucla.edu/htmls/SOCR_Analyses.html
http://socr.stat.ucla.edu/Applets.dir/WilcoxonRankSumTable.html

This hypothesis test is also used to compare two 
independent samples

This procedure is different from the independent t test because it 
is valid even if the population distributions are not normal

In other words, we can use this test as a fair substitute when we 
cannot not meet the required normality assumption of the t test 

WMW is called distribution-free or non-parametric test 
This test doesn't focus on a parameter like the mean, instead it 

examines the distributions of the two groups

Stat 13, UCLA, Ivo DinovSlide 33

The Wilcoxon-Mann-Whitney

Keep in mind that this is another hypothesis test, so there are still 
four major parts to consider

#1 The hypotheses:
Ho:  The population distributions of Y1 and Y2 are the same
Ha: The population distributions of Y1 and Y2 are the different

This could also be directional: distribution of Y1 is less than Y2; OR 
distribution of Y1 is greater than Y2

#2 The test statistic:
denoted by Us

measures the degree of separation between the two samples
a large value of Us indicates that the two samples are well separated with 

little overlap
a small value of Us indicates that the two samples are not well separated 

with much overlap
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The Wilcoxon-Mann-Whitney

#3 The p-value:
http://socr.stat.ucla.edu/Applets.dir/WilcoxonRankSumTable.html
http://www.socr.ucla.edu/htmls/SOCR_Analyses.html
Critical Values are also in table 6 on p.680
Method very similar to using the t table

find the appropriate row and then search for a number closest to 
the test statistic

don’t need to worry about doubling the p-value for a two-tailed 
test (assuming we go to the right row header)

#4 Conclusion:
Similar to the conclusion of an independent t test, but not linked 

to any parameter (for example the difference in means)
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The Wilcoxon-Mann-Whitney
The Method:

Step 1:  Arrange the data in increasing order
Step 2:  Determine K1 and K2

K1: for each observation in group 1, count the number of observations in the second 
group that are smaller.  Use 1/2 for tied observations. K1 is the sum of these ranks.

K2: for each observation in group 2, count the number of observations in the first 
group that are smaller.  Use 1/2 for tied observations. K2 is the sum of these ranks.

CHECK:  if you have done the procedure correctly K1 + K2 = n1n2

Step 3:  If the test is non-directional then Us is the larger of K1 and 
K2.  If the test is directional then Us is the K that jives with the direction 

of Ha (if Ha is Y1>Y2 then Us = K1, if Ha is Y1<Y2 then Us = K2)
Step 4:  Determine the critical value

n = larger of n1 and n2
n' = smaller of n1 and n2

Step 5:  Bracket the p-value
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The Wilcoxon-Mann-Whitney

Example: The urinary fluoride concentration (ppm) was measured 
both for a sample of livestock grazing in an area previously exposed to 
fluoride pollution and also for a similar sample of livestock grazing in 
an unpolluted area.

Does the data suggest that the fluoride concentration for livestock 
grazing in the polluted region is larger that for the unpolluted region?  
Test using  α = 0.01. 

Polluted Unpolluted 
21.3 10.1 
18.7 18.3 
21.4 17.2 
17.1 18.4 
11.1 20.0 
20.9  
19.7  
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The Wilcoxon-Mann-Whitney – Normality Check
http://socr.ucla.edu/htmls/SOCR_Charts.html
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The Wilcoxon-Mann-Whitney

#1 The hypotheses:

Ho: urinary fluoride values do not differ between the 
polluted and unpolluted regions.

Ha: the polluted region has a higher livestock urinary 
fluoride than the unpolluted region.

#2 The test statistic:

For this we need to deploy the WMW method shown a few 
slides earlier.
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The Wilcoxon-Mann-Whitney

Let Polluted be group 1, and Unpolluted be group 2

Step 1: arrange the data in increasing order

Step 2:  Determine K1 and K2

CHECK: 25 + 10 = 35 = (7)(5)

# Unpolluted 
Below 

Polluted 
N1=7 

Unpolluted 
N2=5 

# Polluted 
Below 

1 11.1 10.1 0 
1 17.1 17.2 2 
4 18.7 18.3 2 
4 19.7 18.4 2 
5 20.9 20.0 4 
5 21.3   
5 21.4   

K1 = 25   K2 = 10 
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The Wilcoxon-Mann-Whitney

Step 3: Ha: Polluted (Y1) > Unpolluted (Y2) so Us is K1

K1 = 25 = Us

K2 = 10

Step 4:

n = 7

n' = 5

α = 0.01

#3 The p-value:

0.2 > p > 0.1 
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The Wilcoxon-Mann-Whitney

#4 CONCLUSION:  These data show that the urinary fluoride concentration
ppm for livestock grazing in polluted region is not greater than in the 
unpolluted region (P>0.1)

NOTE:  No mention of the population means!

Corresponding Minitab output:

Mann-Whitney Test and CI: Polluted, Unpolluted 
N  Median

Polluted    7  19.700
Unpolluted  5  18.300

Point estimate for ETA1-ETA2 is 1.400
96.5 Percent CI for ETA1-ETA2 is (-2.897,8.602)
W = 53.0
Test of ETA1 = ETA2 vs ETA1 > ETA2 
is significant at 0.1278

Test statistic is calculated using 
a different formula than our text, 
but W is the test statistic from 
the output

The p-value is 
calculated using 
the computer, but is 
not labeled well.
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The Wilcoxon-Mann-Whitney
SOCR Analysis: http://socr.ucla.edu/htmls/SOCR_Analyses.html
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The Wilcoxon-Mann-Whitney
SOCR Analysis: http://socr.ucla.edu/htmls/SOCR_Analyses.html

Data of Group A: 11.1(2.0), 17.1(3.0), 18.7(7.0), 19.7(8.0), 20.9(10.0), 21.3(11.0), 21.4(12.0)
Data of Group B: 10.1(1.0), 17.2(4.0), 18.3(5.0), 18.4(6.0), 20.0(9.0), 

Group A:
Sample Size = 7
Mean = 18.600
Rank Sum = 53.0
Test Statistics = 10.000

Group B:
Sample Size = 5
Mean = 16.800
Rank Sum = 25.0
Test Statistics = 25.000

Expectation of Test Statistics = 17.500
Variance of Test Statistics = 37.917
Z-Score 1.218
One-Sided P-Value for B < A: 0.112
Two-Sided P-Value for A not equal to B: .223

*********************** Note ***********************
Normal approximation is used for either of the sample sizes > 10.
Formula Used for the Expectation of the Test Statistics = (n_1 * n_2)/ 2
Formula Used for the Variance of the Test Statistics = n_1 * n_2 * (n_1 + n_2 + 1) / 12
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The Wilcoxon-Mann-Whitney

Practice:

Say n = 7, n’ = 5 and Us = 32

Two-tailed p-value: 0.01 < p < 0.02 

One-tailed p-value: 0.005 < p < 0.01 

Say n = 7, n’ = 5 and Us = 36

Impossible, for these sample sizes Us cannot be larger than 35!
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The Wilcoxon-Mann-Whitney

Why does this procedure make sense?

Suppose n1 = 3 and n2 = 2

K1 + K2 = (3)(2) = 6

we know that K1 + K2 should sum to 6

The relative magnitudes of K1 and K2 indicate the overlap in Y1 and Y2

Y1

Y2

● ● ●

● ●

K1 = 0 + 1 + 2 = 3

K2 = 1 + 2 = 3

Y1

Y2

● ● ●

● ●

K1 = 0 + 0 + 0 = 0

K2 = 3 + 3 = 6
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The Wilcoxon-Mann-Whitney

Conditions for the WMW:
Data are from random samples
Observations are independent
Samples are independent

Remember: normality will not matter for 
this test
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Wilcoxon-Mann-Whitney vs. Independent Test

Both answer the same question, but treat data differently.
W-M-W uses rank ordering 

Positive: doesn’t depend on normality or population parameters
Negative: distribution free lacks power because it doesn't use all 

the info in the data
T-test uses actual Y values

Positive : Incorporates all of the data into calculations
Negative : Must meet normality assumption 

neither is superior 
If your data are normally distributed use the T-test
If your data are not normal use the WMW test

http://www.socr.ucla.edu/htmls/SOCR_Analyses.html


