UCLA STAT 13

Introduction to Statistical Methods for the Life and Health Sciences

Instructor: Ivo Dinov,

Asst. Prof. of Statistics and Neurology

Teaching Assistants:

Brandi Shanata \& Tiffany Head

University of California, Los Angeles, Fall 2007
http://www.stat.ucla.edu/~dinov/courses_students.html

Two Way ANOVA

There are many types of designs for Analysis of Variance

- Two way ANOVA incorporates analyses
when there are two factors of interest
- Your book includes information on:
- randomized block designs
- factorial ANOVA

Chapter 12
Randomized Block ANOVA \& Intro to Regression

Randomized Block Design

- Recall that in statistics, blocking is the idea of grouping relatively similar units together into matched sets called blocks
- The idea is that the inherent variability of the units will be reduced with the blocking
- In certain circumstances rather than use a completely randomized design, we can use a block design to control for extraneous variability
similar idea to pairing, but doesn't necessarily
have to be just two observations per block

Randomized Block Design

In a randomized block design:

```
SS(total) = SS(within) + SS(treatments) +
``` SS(blocks)

This means that we are adding a new row to our ANOVA table

\section*{Randomized Block Design}

Example: A study was conducted to investigate whether plants can reduce stress in humans. Two weeks prior to final exams, 10 randomly selected students at a local university took part in an experiment to determine what effect the presence of a live plant, a photo of a plant, or absence of a plant has on the student's ability to relax while isolated in a dimly lit room. Each student participated in 3 sessions - one with a live plant, one with a photo, and one with no plant. During each session finger temperature was measure as an indication of relaxation (higher temperature \(=\) more relaxed).

\section*{Randomized Block Design}

Does the data suggest that there is a difference in mean finger temperature (ie. relaxation) among the three treatment groups? Test using \(\alpha=0.05\).

Two-way ANOVA: Temp versus Plant, Student
\begin{tabular}{lrrrrr}
Source & DF & SS & MS & F & P \\
Plant & 2 & 2.942 & 1.47100 & 6.69 & 0.007
\end{tabular}
\begin{tabular}{lrrrrr}
Student & 9 & 15.232 & 1.69244 & 7.70 & 0.000
\end{tabular}
\(\begin{array}{llll}\text { Error } & 18 & 3.958 & 0.21989\end{array}\)
Total \(29 \quad 22.132\)
\(S=0.4689 \quad R-S q=82.12 \% \quad R-S q(a d j)=71.19 \%\)
Next slide for Individual CI's

\section*{Randomized Block Design}
\(\mathrm{H}_{0}: \mu_{1}=\mu_{2}=\mu_{3}\)
\(H_{a}\) : at least two of the \(\mu_{k}\) 's are different
where \(1=\) live plant, \(2=\) photo, \(3=\) no plant
\(F=6.69, p=0.0007\)
Reject \(\mathrm{H}_{\mathrm{o}}\)
Conclusion: These data provide evidence to suggest that at least 2 of the true mean finger temperatures are different among the three groups (live plant, photo, and no plant), even after blocking by student to control for extraneous variability.

\section*{Randomized Block Design}

\section*{Linear Relationships}

Analyze the relationship, if any, between variables \(x\) and \(y\) by fitting a straight line to the data
- If a relationship exists we can use our analysis to make predictions

Data for regression consists of (\(x, y\)) pairs for each observation
- For example: the height and weight of individuals

\section*{Linear Relationships}

Example: The data below are airfares (\$) and distance (miles) to various US cities from Baltimore, Maryland.

\section*{Linear Relationships}
- Until now we have described data using statistics such as the sample mean

\section*{The Fitted Regression Line}
- Suppose we have n pairs (\(\mathrm{x}, \mathrm{y}\))
- If a scatterplot of the data suggests a general linear trend, it would be reasonable to fit a line to the data
- The question is which is the best line?

Example Airfare (cont')
- We can see from the scatterplot that greater distance is associated with higher airfare
- In other words airports that tend to be further from Baltimore than tend to be more expensive airfare
- To decide on the best fitting line, we use the leastsquares method to fit the least squares (regression) line

Slide 21

Equation of the Regression Line
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{6}{|l|}{- Example: Airfare (cont')} \\
\hline \multicolumn{6}{|l|}{Regression Analysis: Airfare versus Distance} \\
\hline \multicolumn{6}{|l|}{The regression equation is} \\
\hline \multicolumn{6}{|l|}{Airfare \(=83.3+0.117\) Distance} \\
\hline Predictor & Coef & SE Coef & T & P & \\
\hline Constant 8 & 83.27 & 22.95 & 3.63 & 0.005 & \\
\hline Distance 0.1 & 0.11738 & 0.02832 & 4.14 & 0.002 & \\
\hline \(S=37.8270\) & R-Sq & = 63.2\% & R-Sq & \((\mathrm{adj})=\) & 59.5\% \\
\hline \multicolumn{6}{|l|}{Analysis of Variance} \\
\hline Source & DF & SS & MS & F & P \\
\hline Regression & 1 & 24574 & 24574 & 17.17 & 0.002 \\
\hline Residual Error & ror 10 & 14309 & 1431 & & \\
\hline Total & 11 & 38883 & & & \\
\hline & & Slide 23 & & Weo Dinov & \\
\hline
\end{tabular}

\section*{Linear Relationships}
- Two Contexts for regression:
1. \(Y\) is an observed variable and \(X\) is specified by the researcher
\(\square\) Ex. Y is hair growth after 2 months, for individuals at certain dose levels of hair growth cream
2. \(X\) and \(Y y\) are observed variables
- Ex. Height and weight for 20 randomly selected individuals

\section*{Equation of the Regression Line}

RECALL: \(y=m x+b\)
- In statistics we call this \(Y=b_{0}+b_{1} X\)
where \(Y\) is the dependent variable \(X\) is the independent variable
\(\mathrm{b}_{0}\) is the y -intercept \(\bar{y}-b_{1} \bar{x}\) \(\mathrm{b}_{1}\) is the slope of the line \(\frac{\sum\left(x_{i}-\bar{x}\right)\left(y_{i}-\bar{y}\right)}{\sum\left(x_{i}-\bar{x}\right)^{2}}\)

\section*{Equation of the Regression Line}
- When we write the least squares regression equation we use the following notation:
\[
\hat{y}=83.27+0.117 x
\]
\(-b_{1}\) expresses the rate of change of \(y\) with respect to \(x\)
For every one mile increase in distance, airfare will go up by an additional 0.117 dollars.
\(\square\) We could actually describe this as for a 100 mile increase in distance airfare rises by \(\$ 11.70\)
\(\square b_{0}\) expresses where the regression line will hit the \(y\) axis \(\square\) It may or may not be interpretable, depends on the context In this case does an airfare of \(\$ 83.27\) when distance traveled is 0 miles make sense?

\section*{Equation of the Regression Line}

It is important to only make predictions for values that are within our sampled range of \(x\) data

Extrapolation beyond the scope of our sampled data is dangerous because we do not know what happens to the relationship between \(x\) (distance) and \(y\) (airfare) outside this range
- In other words, this line may not continue on with the same slope forever

Equation of the Regression Line

Equation of the Regression Line

Predict the airfare for a city that is 576 miles away. If you look at the original data set (first page), Atlanta's distance was 576 miles and the airfare was \$178
\[
\begin{aligned}
& \hat{y}=b_{0}+b_{1} x \\
= & 83.27+0.11738(576) \\
= & \$ 150.88 \text { (watch units!) }
\end{aligned}
\]
- Calculate the corresponding residual
- HOLD that thought Residual \(=178-150.88=\$ 27.12\)

\section*{Equation of the Regression Line}

Predict the airfare for a city that is 2842 miles away from Baltimore. Does this seem like a legitimate prediction? Explain.
\[
=83.27+0.11738(2842)=\$ 416.86
\]
- This does not seem like a legitimate prediction because our sample range of data goes from 189 to 1502 miles
No making predictions outside our sampled range of data!
- This city (San Francisco) falls outside of this range
- NOTE: The actual airfare for this city was \(\$ 198\)

\section*{Residuals}

For each observed \(x\) value \(\left(x_{i}\right)\) there is a predicted \(y\) value \((\hat{y})\) based on the regression equation
\[
\hat{y}=b_{0}+b_{1} x
\]
- Also associated with each \(\left(\mathrm{x}_{\mathrm{i}}, \mathrm{y}_{\mathrm{i}}\right)\) there is a residual
- the vertical distance between each predicted \(\mathrm{y}(\hat{y})\) and observed y
- Residual \(=y_{i}-\hat{y}_{i}\)
- When we add up all the residuals they sum to 0

\section*{Residuals}
- Which city has the largest predicted value (\(\hat{y}\))? Quantify this value.
- HINT: look at the scatter plot. How can you tell? Denver because it is the observation with the largest distance and therefore predicted value
\[
\hat{y}=83.27+0.11738(1502)=\$ 259.57
\]

NOTE: If the slope was negative the largest predicted value would be the observation with the smallest x .

\section*{Residuals}
- Which city has the largest (in absolute value) residual? Quantify this value.
- HINT: look at the scatter plot. How can you tell? St. Louis because it lies the furthest (vertically) from the regression line
\[
\begin{gathered}
\hat{y}=83.27+0.11738(737)=\$ 169.78 \\
\text { Residual }=98-169.78=-\$ 71.78
\end{gathered}
\]

\section*{Residuals}

Regression Analysis: Airfare versus Distance

\section*{The Residual Sums of Squares}

Example: Airfare (cont') observed \(y_{i}\) is to it's predicted value (\(\hat{y}\)) based on the regression equation
- A summary measure of all the residual distances is called the residual sum of squares
\[
\mathrm{ss}(\text { resid })=\sum\left(y_{i}-\hat{y}\right)^{2}
\]

Will be small if the observed values lie close to the regression line

Regression Analysis: Airfare versus Distance
The regression equation is
Airfare \(=83.3+0.117\) Distanc
\begin{tabular}{lrrrrr}
Predictor & Coef & SE Coef & T & \multicolumn{1}{c}{ P } & \\
Constant & 83.27 & 22.95 & 3.63 & 0.005 & \\
Distance & 0.11738 & 0.02832 & 4.14 & 0.002 & \\
S \(=37.8270\) & R-Sq & \(=63.2 \%\) & R-Sq(adj) & \(=59.5 \%\) \\
& & & & & \\
Analysis of & Variance & & & & \\
Source & DF & SS & MS & F & P \\
Regression & 1 & 24574 & 24574 & 17.17 & 0.002 \\
Residual Error & 10 & 14309 & 1431 & & \\
Total & 11 & 38883 & & &
\end{tabular}

\section*{Residual Standard Deviation}
- The 'best" straight line is the one that minimizes the residual sums of squares
- The residual standard deviation can be used as our description of the closeness of the data points to the regression line
\[
s_{Y \mid X}=\sqrt{\frac{S S(\text { resid })}{n-2}}=\sqrt{\frac{\sum\left(y_{i}-\hat{y}\right)^{2}}{n-2}}
\]
- how far off predictions tend to be that are made using the regression model
- Similar idea to s (measures variability around \(\bar{y}\))
\[
\mathrm{s}_{\mathrm{Y} \mid \mathrm{X}} \text { (measures variability about the regression line) }
\]

\section*{Residual Standard Deviation}
- Similar interpretation to ch 2.
\(68 \%\) of our data falls within \(\pm 1 \mathrm{~s}_{Y \mid X}\) from the line \(95 \%\) of our data falls within \(\pm 2 \mathrm{~s}_{Y \mid X}\) from the line
- We expect most of our data to fall within \(2 s_{Y \mid X}\) from the regression line
Example: Airfare (cont') \(s_{Y \mid X}=\sqrt{\frac{S S(\text { resid })}{n-2}}=37.83\)
- Predictions tend to be off by \(\$ 37.83\)
- Most of our observed values will fall within \(\pm\) 2(37.83)
\(=\$ 75.66\) from their predicted values.

\section*{Residual Standard Deviation}

Example: Airfare (cont')
Regression Analysis: Airfare versus Distance
The regression equation is
Airfare \(=83.3+0.117\) Distance
\(\begin{array}{lrrrr}\text { Predictor } & \text { Coef } & \text { SE Coef } & \text { T } & \text { P } \\ \text { Constant } & 83.27 & 22.95 & 3.63 & 0.005\end{array}\)
\(\begin{array}{lllll}\text { Distance } & 0.11738 & 0.02832 & 4.14 & 0.002\end{array}\)
Analysis of Variance
\begin{tabular}{lrrrrr}
Source & DF & SS & MS & F & P \\
Regression & 1 & 24574 & 24574 & 17.17 & 0.002 \\
Residual Error & 10 & 14309 & 1431 & & \\
Total & 11 & 38883 & & &
\end{tabular}

\section*{The Linear Model}
- When we conduct linear regression think of \(Y\) as having a distribution that depends on \(X\)
- The conditional population of \(Y\) is associated with a fixed \(X\)
\(\mu_{Y \mid X}\) is the population mean Y for a fixed X .
\(\sigma_{Y \mid X}\) is the population standard deviation of \(Y\) for a fixed \(X\). - In the airfare example: these are the mean and standard deviation of airfare in the subpopulation whose distance is \(X\) miles
- There is a different subpopulation for each \(X\)
- Using this we will learn how to infer from the data to make generalizations about the population

\section*{The Linear Model}
- For linear regression to be valid we must meet two conditions:
1. Linearity:
\[
Y \text { is the average at some } X+\text { error }
\]
\[
Y=\mu_{Y \mid X}+\varepsilon=\beta_{o}+\beta_{1} X+\varepsilon
\]
2. Consistency of standard deviations:
\(\sigma_{Y \mid X}\) does not depend on x
\(\sigma_{Y \mid X}\) for each x is the same.
See figure 12.9, page 543 in text

\section*{The Linear Model}

Random subsampling model: for each \((x, y)\) pair, we regard the value of \(Y\) as having been sampled at random from the conditional population of \(Y\) values associated with a fixed X
- The quantities we have estimated so far are:
\(b_{0}\) is an estimate of
\(\mathrm{b}_{1}\) is an estimate of \(\beta_{1}\)
\(\mathrm{S}_{Y \mid X}\) is an estimate of \(\sigma_{Y \mid X}\)
\(b_{0}+b_{1} x_{i}\) is an estimate of \(\mu_{Y \mid X}\)

\section*{The Linear Model}

Example: Airfare (cont')
83.27 is an estimate of 0.117 is an estimate of 37.83 is an estimate of \(\sigma_{Y \mid X}\)
\(83.27+0.117 \mathrm{x}_{\mathrm{i}}\) is an estimate of \(\mu_{Y \mid X}\)
Suppose we wanted to estimate the average airfare for a city that is 250 miles from Baltimore \(\hat{y}=83.27+0.117(250)=\$ 112.52\)
Suppose we wanted to estimate the standard deviation for a city that is 250 miles from Baltimore
\[
s_{Y \mid X}=\$ 37.82
\]```

