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Chapter 12 

Randomized Block ANOVA  
& Intro to Regression
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Two Way ANOVA

There are many types of designs for 
Analysis of Variance

Two way ANOVA incorporates analyses 
when there are two factors of interest

Your book includes information on:
randomized block designs
factorial ANOVA
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Randomized Block Design

Recall that in statistics, blocking is the idea 
of grouping relatively similar units together into 
matched sets called blocks

The idea is that the inherent variability of the 
units will be reduced with the blocking

In certain circumstances rather than use a 
completely randomized design, we can use a 
block design to control for extraneous 
variability

similar idea to pairing, but doesn’t necessarily 
have to be just two observations per block
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The idea in randomized block designs is to split the 
total variability into three parts:

variability between, same as before
variability within
variability between the blocks

Note: the old variability within is subdivided into 
blocks and within

Typically we are not interested in a formal 
hypothesis test for the blocks, we just use this 
describe the blocking effect on the response variable

Randomized Block Design
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SS(total)

df = n* - 1

SS(between)

df = I - 1

SS(within)

df = n* - I

SS(treatments)

df = I - 1

SS(blocks)

df = B - 1

SS(within)

df = n* - B – I +1

Completely 
Randomized

Randomized 
Blocks

Randomized Block Design
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In a randomized block design:

SS(total) = SS(within) + SS(treatments) + 
SS(blocks)

This means that we are adding a new row to 
our ANOVA table

Randomized Block Design
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Example:  A study was conducted to investigate whether 
plants can reduce stress in humans.  Two weeks prior to 
final exams, 10 randomly selected students at a local 
university took part in an experiment to determine what 
effect the presence of a live plant, a photo of a plant, or 
absence of a plant has on the student’s ability to relax 
while isolated in a dimly lit room.  Each student 
participated in 3 sessions – one with a live plant, one 
with a photo, and one with no plant.  During each session 
finger temperature was measure as an indication of 
relaxation (higher temperature = more relaxed). 

Randomized Block Design
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Does the data suggest that there is a difference in 
mean finger temperature (ie. relaxation) among the 
three treatment groups?  Test using  α = 0.05.

Next slide for Individual CI’s

Two-way ANOVA: Temp versus Plant, Student 
Source   DF      SS       MS     F      P
Plant     2   2.942  1.47100  6.69  0.007
Student   9  15.232  1.69244  7.70  0.000
Error    18   3.958  0.21989
Total    29  22.132

S = 0.4689   R-Sq = 82.12%   R-Sq(adj)= 71.19%

Randomized Block Design
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Individual 95% CIs For Mean Based on  Pooled StDev
Plant   Mean   --+---------+---------+---------+-------
Live   95.85                         (--------*-------)
None   95.09   (--------*--------)
Photo  95.38           (--------*--------)

--+---------+---------+---------+-------
94.85     95.20     95.55     95.90

Individual 95% CIs For Mean Based on Pooled StDev
Student     Mean  ----+---------+---------+---------+-----
1       94.1667  (-----*----)
2       96.2333                       (----*-----)
3       96.0000                    (-----*-----)
4       96.4000                        (-----*-----)
5       95.4000              (-----*-----)
6       95.5333                (----*-----)
7       94.3667    (-----*----)
8       95.2000            (-----*-----)
9       95.1333            (----*-----)
10       95.9667                    (-----*----)

----+---------+---------+---------+-----
94.0      95.0      96.0      97.0

Randomized Block Design
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Ho: μ1= μ2= μ3

Ha: at least two of the μk‘s are different
where 1=live plant, 2 = photo, 3 = no plant

F = 6.69, p = 0.0007

Reject Ho

Conclusion: These data provide evidence to suggest 
that at least 2 of the true mean finger temperatures are 
different among the three groups (live plant, photo, and 
no plant), even after blocking by student to control for 
extraneous variability.

Randomized Block Design
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One-way ANOVA: Temp versus Plant

Source  DF      SS     MS     F      P
Plant    2   2.942  1.471  2.07  0.146
Error   27  19.190  0.711
Total   29  22.132

S = 0.8431   R-Sq = 13.29%   R-Sq(adj) = 6.87%
Individual 95% CIs For Mean Based on Pooled StDev

Level   N    Mean  StDev ---------+---------+---------+---------+
Live   10  95.850  1.042                 (----------*----------)
None   10  95.090  0.734  (----------*----------)
Photo  10  95.380  0.713        (----------*----------)

---------+---------+---------+---------+
95.00     95.50     96.00     96.50

Pooled StDev = 0.843

Randomized Block Design
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Linear Relationships

Analyze the relationship, if any, between 
variables x and y by fitting a straight line to the 
data

If a relationship exists we can use our analysis to 
make predictions

Data for regression consists of (x,y) pairs for 
each observation

For example: the height and weight of individuals
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Example:  The data below are airfares 
($) and distance (miles) to various US 
cities from Baltimore, Maryland.

Destination Distance Airfare Destination Distance Airfare
Atlanta 576 178 Miami 946 198 
Boston 370 138 New Orleans 998 188 

Chicago 612 94 New York 189 98 
Dallas 1216 278 Orlando 787 179 
Detroit 409 158 Pittsburgh 210 138 
Denver 1502 258 St. Louis 737 98 

 

Linear Relationships

Stat 13, UCLA, Ivo DinovSlide 15

Linear Relationships

98737St. Louis
138210Pittsburgh
179787Orlando
98189New York

188998New Orleans
198946Miami
2581502Denver
158409Detroit
2781216Dallas
94612Chicago
138370Boston
178576Atlanta

AirfareDistanceDestination
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Until now we have described data using 
statistics such as the sample mean

What seems to be

missing from this

one sample view

of the data?

Descriptive Statistics: Distance, Airfare

Variable   N  N*   Mean  SE Mean  StDev Minimum     Q1  Median     Q3  Maximum
Distance  12   0    713      116    403      189    380     675 985     1502
Airfare   12   0  166.9     17.2   59.5     94.0  108.0   168.0 195.5    278.0

Linear Relationships
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This scatterplot gives us a 
view of how the dependent 
variable airfare (y) changes 
with the independent variable 
distance (x) 

From this data there 
appears to be a linear trend, 
but the data do not fall in an 
exact straight line

Still may be reasonable to 
fit a line to this data Distance
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Scatterplot of Airfare vs Distance

Linear Relationships
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Linear Relationships
SOCR SLR: socr.ucla.edu/htmls/SOCR_Analyses.html

Sample Size = 12 
Dependent Variable = X 
Independent Variable = Y 
Simple Linear Regression Results:
Mean of Y = 166.917
Mean of X = 712.667
Regression Line:
X = -186.090 + 5.384464042692271   Y
Correlation(Y, X) = .795
R-Square = .632
Intercept: 

Parameter Estimate: -186.090
Standard Error:     229.137
T-Statistics:        -.812
P-Value:            .436

Slope: 
Parameter Estimate: 5.384
Standard Error:     1.299
T-Statistics:        4.144
P-Value:            .002
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Linear Relationships
SOCR SLR: socr.ucla.edu/htmls/SOCR_Analyses.html
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Two Contexts for regression:

1. Y is an observed variable and X is specified 
by the researcher

Ex.  Y is hair growth after 2 months, for individuals at 
certain dose levels of hair growth cream

2. X and Yy are observed variables
Ex.  Height and weight for 20 randomly selected 

individuals

Linear Relationships

Stat 13, UCLA, Ivo DinovSlide 21

Suppose we have n pairs (x,y)

If a scatterplot of the data suggests a general linear 
trend, it would be reasonable to fit a line to the data

The question is which is the best line?

Example Airfare (cont’)
We can see from the scatterplot that greater distance is 

associated with higher airfare
In other words airports that tend to be further from Baltimore

than tend to be more expensive airfare

To decide on the best fitting line, we use the least-
squares method to fit the least squares (regression) line

The Fitted Regression Line
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RECALL:  y = mx + b

In statistics we call this Y = b0 + b1X
where Y is the dependent variable

X is the independent variable

b0 is the y-intercept

b1 is the slope of the line

Equation of the Regression Line

( )( )
( )∑

∑
−

−−
2xx

yyxx
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ii

xby 1−
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Example: Airfare (cont’)
Regression Analysis: Airfare versus Distance 

The regression equation is
Airfare = 83.3 + 0.117 Distance
Predictor     Coef SE Coef T      P
Constant     83.27    22.95  3.63  0.005
Distance   0.11738 0.02832  4.14  0.002
S = 37.8270   R-Sq = 63.2%   R-Sq(adj) = 59.5%

Analysis of Variance
Source          DF     SS     MS      F      P
Regression       1  24574  24574 17.17  0.002
Residual Error  10  14309   1431
Total           11  38883

Equation of the Regression Line
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When we write the least squares regression 
equation we use the following notation:

b1 expresses the rate of change of y with respect to x
For every one mile increase in distance, airfare will go up by

an additional 0.117 dollars.  
We could actually describe this as for a 100 mile increase in 

distance airfare rises by $11.70

b0 expresses where the regression line will hit the y axis
It may or may not be interpretable, depends on the context
In this case does an airfare of $83.27 when distance traveled is 

0 miles make sense?

xy 117.027.83ˆ +=

Equation of the Regression Line
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NOTE:  The least squares line  passes through ),( yx

Distance
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S 37.8270
R-Sq 63.2%
R-Sq(adj) 59.5%

Fitted Line Plot
Airfare =  83.27 + 0.1174 Distance

Equation of the Regression Line
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Predict the airfare for a city that is 576 miles away.  If 
you look at the original data set (first page), Atlanta's 
distance was 576 miles and the airfare was $178  

= 83.27 + 0.11738(576) 
= $150.88 (watch units!)

Calculate the corresponding residual
HOLD that thought
Residual = 178 – 150.88 = $27.12

xbby 10ˆ +=

Equation of the Regression Line
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It is important to only make predictions for 
values that are within our sampled range of x 
data

Extrapolation beyond the scope of our 
sampled data is dangerous because we do not 
know what happens to the relationship 
between x (distance) and y (airfare) outside 
this range

In other words, this line may not continue on  
with the same slope forever

Equation of the Regression Line
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Predict the airfare for a city that is 2842 miles away 
from Baltimore.  Does this seem like a legitimate 
prediction?  Explain. 

= 83.27 + 0.11738(2842) = $416.86 
This does not seem like a legitimate prediction 

because our sample range of data goes from 189 to 
1502 miles

No making predictions outside our sampled range of 
data!

This city (San Francisco) falls outside of this range
NOTE:  The actual airfare for this city was $198

Equation of the Regression Line
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We can predict Y for X that 
are “reasonable” (within the 
range of modeled X values)
Once we have fit the data 
with a regression line, if we 
have done a good job it is 
natural to use the line to 
make predictions about Y at 
certain values of X
We should not predict Y for 
X values that are “not 
reasonable” (outside the 
range of modeled X values)

Equation of the Regression Line
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Residuals

For each observed x value (xi) there is a predicted y 
value (    ) based on the regression equation

Also associated with each (xi, yi) there is a residual
the vertical distance between each predicted y (   ) and 

observed y
Residual =

When we add up all the residuals they sum to 0

ŷ

xbby 10ˆ +=

ŷ

ii yy ˆ−
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S 37.8270
R-Sq 63.2%
R-Sq(adj) 59.5%

Fitted Line Plot
Airfare =  83.27 + 0.1174 Distance

residual

Residuals
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Which city has the largest (in absolute value) 
residual? Quantify this value. 

HINT:  look at the scatter plot. How can you tell?  
St. Louis because it lies the furthest (vertically) 

from the regression line

= 83.27 + 0.11738(737) = $169.78 
Residual = 98 – 169.78 = -$71.78

ŷ

Residuals
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Which city has the largest predicted value (   )? 
Quantify this value. 

HINT:  look at the scatter plot. How can you tell? 
Denver because it is the observation with the largest 
distance and therefore predicted value

= 83.27 + 0.11738(1502) = $259.57 
NOTE:  If the slope was negative the largest 

predicted value would be the observation with the 
smallest x.

ŷ

ŷ

Residuals
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Regression Analysis: Airfare versus Distance

…Portion of output omitted…

Obs Distance  Airfare    Fit  SE Fit  Residual  St Resid
1       576    178.0  150.9    11.6      27.1      0.75
2       370    138.0  126.7    14.6      11.3      0.32
3       612     94.0  155.1    11.3     -61.1     -1.69
4      1216    278.0  226.0    18.0      52.0      1.56
5       409    158.0  131.3    13.9      26.7      0.76
6   1502    258.0  259.6 24.9      -1.6     -0.05
7       946    198.0  194.3    12.8       3.7      0.10
8       998    188.0  200.4    13.6     -12.4     -0.35
9       189     98.0  105.5    18.4      -7.5     -0.23
10       787    179.0  175.6    11.1       3.4      0.09
11       210    138.0  107.9    17.9      30.1      0.90
12 737     98.0  169.8    10.9     -71.8 -1.98

Residuals
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What we want to measure is how close each 
observed yi is to it’s predicted value (   ) based 
on the regression equation  

A summary measure of all the residual 
distances is called the residual sum of squares

SS(resid) =

Will be small if the observed values lie close to the 
regression line

The Residual Sums of Squares

ŷ

2)ˆ(∑ − yyi
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Example: Airfare (cont’) 
Regression Analysis: Airfare versus Distance 

The regression equation is
Airfare = 83.3 + 0.117 Distanc
Predictor     Coef SE Coef T      P
Constant     83.27    22.95  3.63  0.005
Distance   0.11738  0.02832  4.14  0.002
S = 37.8270   R-Sq = 63.2%   R-Sq(adj) = 59.5%

Analysis of Variance
Source          DF     SS     MS      F      P
Regression       1  24574  24574 17.17  0.002
Residual Error 10  14309 1431
Total           11  38883

The Residual Sums of Squares
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The ‘best” straight line is the one that minimizes the 
residual sums of squares

The residual standard deviation can be used as our 
description of the closeness of the data points to the 
regression line

how far off predictions tend to be that are made using the 
regression model

Similar idea to s (measures variability around    ) 
sY|X (measures variability about the regression line)

Residual Standard Deviation

2
)ˆ(

2
)( 2

| −

−
=

−
= ∑

n
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n
residSSs i

XY

y
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Similar interpretation to ch 2.
68% of our data falls within + 1 sY|X from the line
95% of our data falls within + 2 sY|X from the line

We expect most of our data to fall within 2sY|X
from the regression line

Example: Airfare (cont’)
Predictions tend to be off by $37.83
Most of our observed values will fall within + 2(37.83) 

= $75.66 from their predicted values.

83.37
2

)(
| =

−
=

n
residSSs XY

Residual Standard Deviation
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Example: Airfare (cont’) 
Regression Analysis: Airfare versus Distance 

The regression equation is
Airfare = 83.3 + 0.117 Distance
Predictor     Coef SE Coef T      P
Constant     83.27    22.95  3.63  0.005
Distance   0.11738  0.02832  4.14  0.002
S = 37.8270 R-Sq = 63.2%   R-Sq(adj) = 59.5%

Analysis of Variance

Source          DF     SS     MS      F      P
Regression       1  24574  24574 17.17  0.002
Residual Error  10  14309   1431
Total           11  38883

Residual Standard Deviation
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When we conduct linear regression think of Y as 
having a distribution that depends on X

The conditional population of Y is associated with a 
fixed X

is the population mean Y for a fixed X.
is the population standard deviation of Y for a fixed X.

In the airfare example: these are the mean and standard 
deviation of airfare in the subpopulation whose distance is X 
miles

There is a different subpopulation for each X

Using this we will learn how to infer from the data to 
make generalizations about the population

The Linear Model

XY |μ
XY |σ
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For linear regression to be valid we must meet two 
conditions:

1.  Linearity:
Y is the average at some X + error

2.  Consistency of standard deviations:
does not depend on x
for each x is the same.

See figure 12.9, page 543 in text

εββεμ ++=+= XY oXY 1|

XY |σ
XY |σ

The Linear Model
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Random subsampling model:  for each (x,y) 
pair, we regard the value of Y as having been 
sampled at random from the conditional 
population of Y values associated with a fixed 
X

The quantities we have estimated so far are:
b0 is an estimate of 
b1 is an estimate of 
sY|X is an estimate of 
b0 + b1xi is an estimate of

0β

1β
XY |σ

XY |μ

The Linear Model
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Example: Airfare (cont’)
83.27 is an estimate of 
0.117 is an estimate of 
37.83 is an estimate of 
83.27 + 0.117xi is an estimate of
Suppose we wanted to estimate the average airfare for 
a city that is 250 miles from Baltimore

Suppose we wanted to estimate the standard deviation 
for a city that is 250 miles from Baltimore

sY|X = $37.82

0β

1β
XY |σ

XY |μ

52.112$)250(117.027.83ˆ =+=y

The Linear Model


