UCLA STAT 13

Introduction to Statistical Methods for the Life and Health Sciences

> Instructor: Ivo Dinov, Asst. Prof. of Statistics and Neurology

Teaching Assistants: Brandi Shanata & Tiffany Head

University of California, Los Angeles, Fall 2007 http://www.stat.ucla.edu/~dinov/courses_students.html Chapter 12

Randomized Block ANOVA & Intro to Regression

Two Way ANOVA

• There are many types of designs for Analysis of Variance

 Two way ANOVA incorporates analyses when there are two factors of interest

Your book includes information on:
 randomized block designs
 factorial ANOVA

Randomized Block Design

• Recall that in statistics, blocking is the idea of grouping relatively similar units together into matched sets called blocks

The idea is that the inherent variability of the units will be reduced with the blocking

 In certain circumstances rather than use a completely randomized design, we can use a block design to control for extraneous variability

similar idea to pairing, but doesn't necessarily have to be just two observations per block

Randomized Block Design

• The idea in randomized block designs is to split the total variability into three parts:

- variability between, same as before
- variability within
- variability between the blocks

• Note: the old variability within is subdivided into blocks and within

• Typically we are not interested in a formal hypothesis test for the blocks, we just use this describe the blocking effect on the response variable

Randomized Block Design

In a randomized block design:

SS(total) = SS(within) + SS(treatments) + SS(blocks)

This means that we are adding a new row to our ANOVA table

Randomized Block Design

Example: A study was conducted to investigate whether plants can reduce stress in humans. Two weeks prior to final exams, 10 randomly selected students at a local university took part in an experiment to determine what effect the presence of a live plant, a photo of a plant, or absence of a plant has on the student's ability to relax while isolated in a dimly lit room. Each student participated in 3 sessions – one with a live plant, one with a photo, and one with no plant. During each session finger temperature was measure as an indication of relaxation (higher temperature = more relaxed).

Randomized	Block	Design
------------	-------	--------

Does the data suggest that there is a difference in mean finger temperature (ie. relaxation) among the three treatment groups? Test using $\alpha = 0.05$.

Two-way	ANOV	A: Temp	versus P	lant, S	tudent	
Source	DF	SS	MS	F	P	
Plant	2	2.942	1.47100	6.69	0.007	
Student	9	15.232	1.69244	7.70	0.000	
Error	18	3.958	0.21989			
Total	29	22.132				
S = 0.46	589	R-Sq =	82.12%	R-Sq(a	dj)= 71	.19
Next slid	e for	Individua	l Cl's			
			Slide 9	Stat 13, UCL	A. Ivo Dinov	

Randomized Block Design
Individual 95% CIs For Mean Based on Pooled StDev Plant ++ Live 95.85 None 95.09 Photo 95.38
94.85 95.20 95.55 95.90 Individual 95% CIs For Mean Based on Pooled StDev
Student Mean++++++
1 94.1667 (*)
2 96.2333 (*)
3 96.0000 (*)
4 96.4000 (*)
5 95.4000 (*)
6 95.5333 (*)
7 94.3667 (*)
8 95.2000 (*)
9 95.1333 (*)
10 95.9667 (*)
+++++
94.0 95.0 96.0 97.0
Slide 10 Stat 13. UCLA. Ivo Dinov

Randomized Block Design

 $H_0: \mu_1 = \mu_2 = \mu_3$

H_a: at least two of the μ_k 's are different where 1=live plant, 2 = photo, 3 = no plant

F = 6.69, p = 0.0007

Reject H_o

Conclusion: These data provide evidence to suggest that at least 2 of the true mean finger temperatures are different among the three groups (live plant, photo, and no plant), even after blocking by student to control for extraneous variability.

)ne-way	y AN	OVA: Tem	ıp versu	s Plant	E			
Source	DF	SS 2 042	MS	F	P			
rror	27	2.942	0.711	2.07	0.140			
otal	29	22.132						
live None Photo	10 10 10	95.850 95.090 95.380	1.042 0.734 0.713	(*-	() *	*)
					95.00	95.50	96.00	+ 96.50
ooled	StD	ev = 0.8	43					

Linear Relationships

• Analyze the relationship, if any, between variables x and y by fitting a straight line to the data

- If a relationship exists we can use our analysis to make predictions
- Data for regression consists of (x,y) pairs for each observation
 - For example: the height and weight of individuals

(4)	uistance	e (mile	s) to van	ous 05	
cities fro	m Balti	more,	Marylanc	1.	
Destination	Distance	Airfare	Destination	Distance	Airfare
Atlanta	576	178	Miami	946	198
Boston	370	138	New Orleans	998	188
Chicago	612	94	New York	189	98
Dallas	1216	278	Orlando	787	179
Detroit	409	158	Pittsburgh	210	138
Donvor	1502	258	St. Louis	737	98
Deriver					

Linear Relationships

Linear Relationships								
Destination	Distance	Airfare						
Atlanta	576	178						
Boston	370	138						
Chicago	612	94						
Dallas	1216	278						
Detroit	409	158						
Denver	1502	258						
Miami	946	198						
New Orleans	998	188						
New York	189	98						
Orlando	787	179						
Pittsburgh	210	138						
St. Louis	737	98						

The Fitted Regression Line

Suppose we have n pairs (x,y)

• If a scatterplot of the data suggests a general linear trend, it would be reasonable to fit a line to the data

• The question is which is the best line?

Example Airfare (cont')

- We can see from the scatterplot that greater distance is associated with higher airfare
- In other words airports that tend to be further from Baltimore than tend to be more expensive airfare
- To decide on the best fitting line, we use the least-
- squares method to fit the least squares (regression) line

21

Equation of th	e Re	egression	Line		
• <u>Example</u> : Airfare (or Regression Analysi	cont') s: Ai	irfare ver	sus Dist	ance	
The regression	equa	tion is	ance		
Predictor C	oef	SE Coef	Т	P	
Constant 83	.27	22.95	3.63	0.005	
Distance 0.11	738	0.02832	4.14	0.002	
S = 37.8270 R	-Sq	= 63.2%	R-Sq	(adj) =	59.5%
Analysis of Var	ianc	e			
Source	DF	SS	MS	F	P
Regression	1	24574	24574	17.17	0.002
Residual Error	10	14309	1431		
		20000			

Equation of the Regression Line

• It is important to only make predictions for values that are within our sampled range of x data

• Extrapolation beyond the scope of our sampled data is dangerous because we do not know what happens to the relationship between x (distance) and y (airfare) outside this range

 In other words, this line may not continue on with the same slope forever

Equation of the Regression Line

Predict the airfare for a city that is 2842 miles away from Baltimore. Does this seem like a legitimate prediction? Explain.

- **= 83.27 + 0.11738(2842) = \$416.86**
- This does not seem like a legitimate prediction because our sample range of data goes from 189 to
- 1502 miles
 No making predictions outside our sampled range of
- No making predictions outside our sampled range of data!
- This city (San Francisco) falls outside of this range
- NOTE: The actual airfare for this city was \$198

with a regression line, if we have done a good job it is natural to use the line to make predictions about Y at certain values of X We should not predict Y for

X values that are "not reasonable" (outside the range of modeled X values)

Residuals

• For each observed x value (x_i) there is a predicted y value (\hat{y}) based on the regression equation

$$\hat{y} = b_0 + b_1 x$$

- Also associated with each (x_i, y_i) there is a residual
 ■ the vertical distance between each predicted y (ŷ) and observed y
 ■ Residual = y_i ŷ_i
- When we add up all the residuals they sum to 0

Residuals

• Which city has the largest predicted value (\hat{y})? Quantify this value.

HINT: look at the scatter plot. How can you tell? Denver because it is the observation with the largest distance and therefore predicted value

 $\hat{\mathcal{Y}}$ = 83.27 + 0.11738(1502) = \$259.57 NOTE: If the slope was negative the largest predicted value would be the observation with the smallest x.

Slide 33

Re	esiduals					
legr	ession Ana	lysis: Ai	rfare v	ersus Di	stance	
Po	rtion of output	omitted				
Obs	Distance	Airfare	Fit	SE Fit	Residual	St Resid
1	576	178.0	150.9	11.6	27.1	0.75
2	370	138.0	126.7	14.6	11.3	0.32
3	612	94.0	155.1	11.3	-61.1	-1.69
4	1216	278.0	226.0	18.0	52.0	1.56
5	409	158.0	131.3	13.9	26.7	0.76
6	1502	258.0	259.6	24.9	-1.6	-0.05
7	946	198.0	194.3	12.8	3.7	0.10
8	998	188.0	200.4	13.6	-12.4	-0.35
9	189	98.0	105.5	18.4	-7.5	-0.23
10	787	179.0	175.6	11.1	3.4	0.09
11	210	138.0	107.9	17.9	30.1	0.90
	727	98 0	169.8	10.9	-71 8	-1 98

The Residual Sums of Squares

• What we want to measure is how close each observed y_i is to it's predicted value (\hat{y}) based on the regression equation

• A summary measure of all the residual distances is called the residual sum of squares

$$SS(resid) = \sum (y_i - \hat{y})^2$$

Will be small if the observed values lie close to the regression line

The Residual Sums of Squares

Total

Example: Airfare (cont') Regression Analysis: Airfare versus Distance The regression equation is Airfare = 83.3 + 0.117 Distanc Predictor Coef SE Coef T P Constant 83.27 22.95 3.63 0.005 Distance 0.11738 0.02832 4.14 0.002 S = 37.8270 R-Sq = 63.2% R-Sq(adj) = 59.5% Analysis of Variance Source DF SS MS F P Regression 1 24574 24574 17.17 0.002 Residual Error 10 14309 1431

11 38883

Residual Standard Deviation

 S_{Y}

• The 'best' straight line is the one that minimizes the residual sums of squares

• The residual standard deviation can be used as our description of the closeness of the data points to the regression line

$$x = \sqrt{\frac{SS(resid)}{n-2}} = \sqrt{\frac{\sum (y_i - \hat{y})^2}{n-2}}$$

how far off predictions tend to be that are made using the regression model

Similar idea to s (measures variability around y
) s_{Y|X} (measures variability about the regression line)

Residual	Star	ndard	Devia	tion		
Example: A	irfa	ire (co	nt')			
Regression Ana	equa	tion is	re versu	15 Dist	ance	
Airfare = 83.3	+ 0.	117 Dis	tance			
Predictor	Coef	SE Coe	f T	P		
Constant 8	3.27	22.9	5 3.63	0.005		
Distance 0.1	1738	0.0283	2 4.14	0.002		
S = 37.8270	R-Sq	= 63.2%	R-Sq	(adj) =	59.5%	
Analysis of Va	rianc	e				
Source	DF	SS	MS	F	P	
Regression	1	24574	24574	17.17	0.002	
Residual Error	10	14309	1431			
Total	11	38883				
			Slide 39		Stat 13. UCLA. Iv	o Dinov

The Linear Model

• When we conduct linear regression think of Y as having a distribution that depends on X

• The conditional population of Y is associated with a fixed X

 $\begin{array}{l} \mu_{\mathbf{Y}|\mathbf{X}} \text{ is the population mean Y for a fixed X.} \\ \sigma_{\mathbf{Y}|\mathbf{X}} \text{ is the population standard deviation of Y for a fixed X.} \\ \hline \\ \textbf{In the airfare example: these are the mean and standard deviation of airfare in the subpopulation whose distance is X miles \\ \end{array}$

There is a different subpopulation for each X

• Using this we will learn how to infer from the data to make generalizations about the population

The Linear Model

• For linear regression to be valid we must meet two conditions:

- 1. Linearity:
 - Y is the average at some X + error

$$Y = \mu_{Y|X} + \varepsilon = \beta_o + \beta_1 X + \varepsilon$$

2. Consistency of standard deviations: $\sigma_{Y|X}$ does not depend on x $\sigma_{Y|X}$ for each x is the same.

See figure 12.9, page 543 in text

The Linear Model

 Random subsampling model: for each (x,y) pair, we regard the value of Y as having been sampled at random from the conditional population of Y values associated with a fixed X

• The quantities we have estimated so far are:

 b_0 is an estimate of β_0

 b_1 is an estimate of β_1

 ${\sf s}_{{\sf Y}|{\sf X}}$ is an estimate of $\sigma_{{\scriptscriptstyle Y}|{\sf X}}$

 $b_0 + b_1 x_i$ is an estimate of $\mu_{Y|X}$

