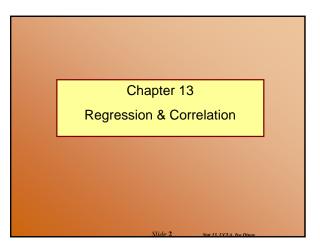
UCLA STAT 13

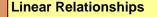
Introduction to Statistical Methods for the Life and Health Sciences

> Instructor: Ivo Dinov, Asst. Prof. of Statistics and Neurology

Teaching Assistants: Brandi Shanata & Tiffany Head

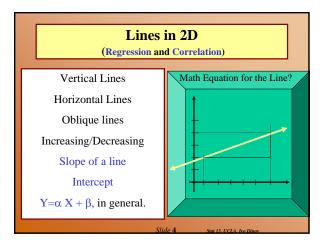
University of California, Los Angeles, Fall 2007 http://www.stat.ucla.edu/~dinov/courses_students.html

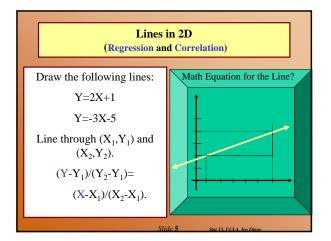


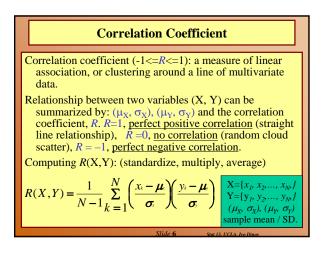


• Analyze the relationship, if any, between variables x and y by fitting a straight line to the data

- If a relationship exists we can use our analysis to make predictions
- Data for regression consists of (x,y) pairs for each observation
 - For example: the height and weight of individuals

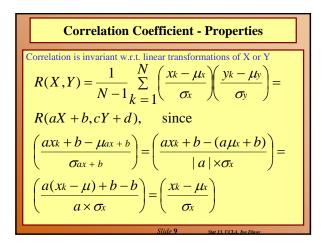


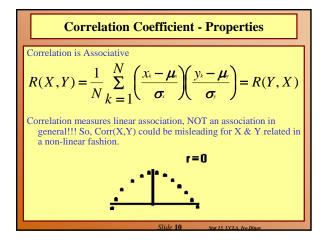


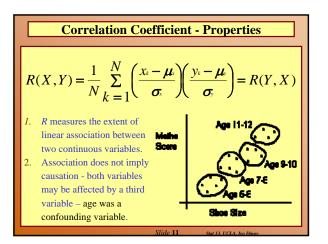


[Co	rrela	ation (Coeff	icient		
Е	xample Student	e: R() Height '	X,Y) Weight Yi	=	1 / 2 / -1 k n-y		$\frac{\sigma_{x}-\mu_{x}}{\sigma_{x}}\left(\frac{y_{x}}{y_{x}-y^{2}}\right)$	<u>-μ</u>) σ ₅) (4 - 13(3 - 13)	
	1	167	60	6	4.67	36	21.6089	28.02	-
	2 3	170 160	64 57	9 -1	8.67 1.67	81 1	75.1689 2.7889	78.03 -1.67	
	4	152	- 5¥ - 46	-1	-9.33	ei	87.0489	63.97	
	5	157	55	- 4 -	0.33	16	0.1089	1.32	
	6	160	50	-4	-6.33	1	28.4089	5.33	
	Total	966	332	0	¤ 0	216	215.3334	195.0	
					Slide	e 7	Stat 13. UCLA. Ivo	Dinor	

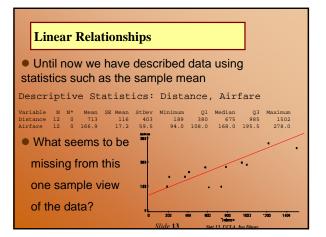
Correlation Coefficient
Example: $R(X,Y) = \frac{1}{N-1} \sum_{k=1}^{N} \left(\frac{x_{k} - \mu_{k}}{\sigma_{k}} \right) \left(\frac{y_{k} - \mu_{k}}{\sigma_{k}} \right)$
$\mu_x = \frac{966}{6} = 161 \mathrm{cm}, \mu_y = \frac{332}{6} = 55 \mathrm{kg},$
$\sigma_x = \sqrt{\frac{216}{5}} = 6.573, \sigma_y = \sqrt{\frac{215.3}{5}} = 6.563,$
Corr(X,Y) = R(X,Y) = 0.904

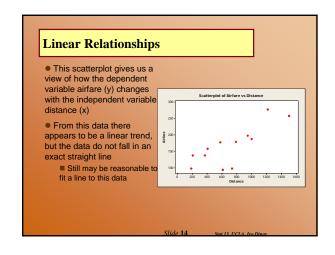


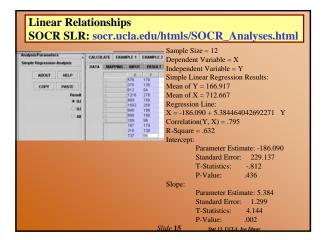


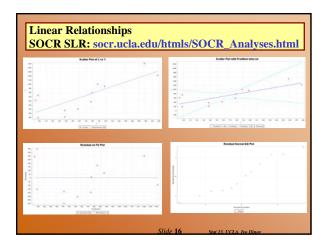


inear Relationship	S	
Destination	Distance	Airfare
Atlanta	576	178
Boston	370	138
Chicago	612	94
Dallas	1216	278
Detroit	409	158
Denver	1502	258
Miami	946	198
New Orleans	998	188
New York	189	98
Orlando	787	179
Pittsburgh	210	138
St. Louis	737	98
	Slide 12	Stat 13. UCLA. Ivo Dino









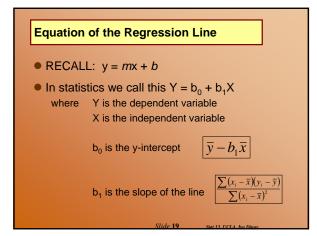
Linear Relationships

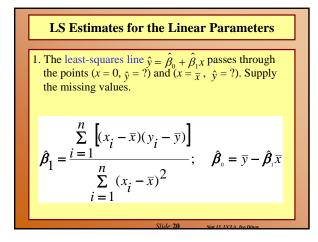
- Two Contexts for regression:
- 1. Y is an observed variable and X is specified by the researcher
 - Ex. Y is hair growth after 2 months, for individuals at certain dose levels of hair growth cream (X)
- 2. X and Y are observed variables
 - Ex. Height (Y) and weight (X) for 20 randomly selected individuals

The Fitted Regression Line

- Suppose we have n pairs (x,y)
- If a scatterplot of the data suggests a general linear trend, it would be reasonable to fit a line to the data
- The question is which is the best line?
- Example Airfare (cont')
 - We can see from the scatterplot that greater distance is associated with higher airfare
 In other words airports that tend to be further from Baltimore
 - than tend to be more expensive airfare
- To decide on the best fitting line, we use the leastequares method to fit the least squares (regression) line

Slide 18 Stat 13. UCLA. Ivo Dinov

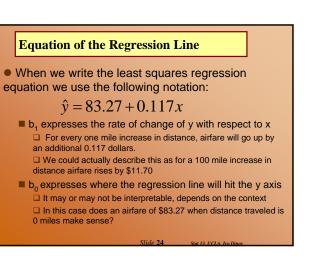


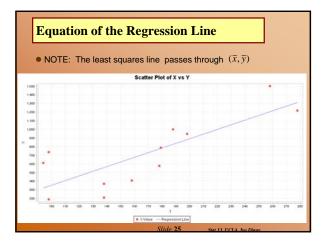


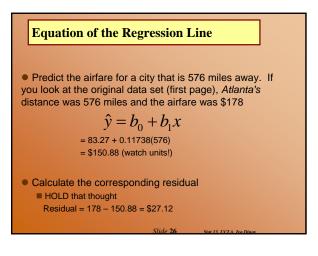
		H	Iands	s – on	work	sheet	:			
$1. X = \{-1, 2, 3, 4\}, Y = \{0, -1, 1, 2\},$										
	Х	Y	$x - \overline{x}$	$y - \overline{y}$	$(x-\overline{x})^2$	$(y - \overline{y})^2$	$(x - \overline{x}) \times (y - \overline{y})$			
	-1	0								
	2	-1								
	3	1				-				
	4	2			$\hat{\boldsymbol{\beta}}_1 = \frac{\hat{\boldsymbol{\Sigma}}}{1}$	$(x_i - \overline{x})(y_i)$	$(-\overline{y})$	$\hat{\boldsymbol{\beta}}_{o} = \overline{y} - \hat{\boldsymbol{\beta}}_{o}$	Ŧ	
					i lide 21	$\sum_{i=1}^{\infty} (x_i - x_i)$				

		ł	Iands	s – on	work	sheet	: !		
1.	X={-1	, 2, 3,	4}, Y	={0, -	1, 1, 2	$, \bar{x} =$	2, j	$\bar{v} = 0.5$	
	х	Y	$x - \overline{x}$	$y - \overline{y}$	$(x-\overline{x})^2$	$(y - \overline{y})^2$	$\begin{array}{c} (x-\overline{x}) \times \\ (y-\overline{y}) \end{array}$		
	-1	0	-3	-0.5	9	0.25	1.5		
	2	-1	0	-1.5	0	2.25	0		
	3	1	1	0.5	1	0.25	0.5		
	4	2	2	1.5	4	2.25	3	$\beta_1 = 5/14$ $\beta_0 = y^{-}\beta 1 * x'$	
	2	0.5			14	5	5	$\beta_0 = 0.5$ -10/1	4
				S	lide 22	Stat 1	3. UCLA. Ivo.	Dinov	

Equation of th		gression	ı Line		
Regression Analysi	s: Ai	irfare ver	sus Dist	ance	
The regression	equa	tion is			
Airfare = 83.3	+ 0.	117 Dist	tance		
Predictor C	oef	SE Coet	E T	P	
Constant 83	.27	22.95	5 3.63	0.005	
Distance 0.11	738	0.02832	2 4.14	0.002	
S = 37.8270 R	-Sq	= 63.2%	R-Sq	(adj) =	59.5%
Analysis of Var					
Source	DF			F	P
Regression				17.17	0.002
Residual Error	10	14309	1431		
Total	11	38883			
		Slide 23	Stat 13.	UCLA. Ivo Dinov	







Residual Standard Deviation

• The best straight line is the one that minimizes the residual sums of squares

• The residual standard deviation can be used as our description of the closeness of the data points to the regression line

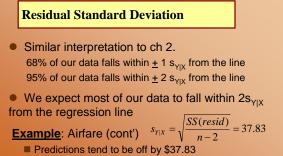
$$y_{|X|} = \sqrt{\frac{SS(resid)}{n-2}} = \sqrt{\frac{\sum(y_i - \hat{y})}{n-2}}$$

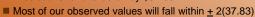
how far off predictions tend to be that are made using the regression model

Similar idea to s (measures variability around \overline{y})

sylx (measures variability about the regression line)

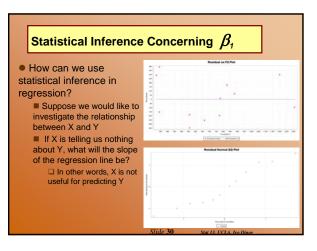
le 27

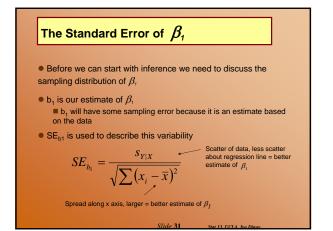


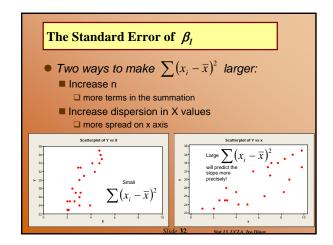


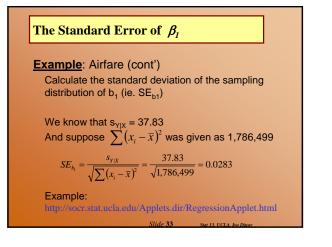
- = \$75.66 from their predicted values.

Residual Standard Deviation Example: Airfare (cont') Regression Analysis: Airfare versus Distance The regression equation is Airfare = 83.3 + 0.117 Distance Predictor Coef SE Coef T P Constant 83.27 22.95 3.63 0.005 Distance 0.11738 0.02832 4.14 0.002 S = 37.8270 R-Sq = 63.2% R-Sq(adj) = 59.5% Analysis of Variance Source DF SS MS F P Regression 1 24574 24574 17.17 0.002 Residual Error 10 14309 1431 101 101 Total 11 38883 101 101 101 101









The Standa	ard	Error	of β_1		
Example: A	irfa	re (co	nt')		
Regression Anal				us Dist	ance
The regression	equa	tion is			
Airfare = 83.3	-				
Predictor C	oef	SE Coe	f T	P	
Constant 83	.27	22.9	5 3.63	0.005	
Distance 0.11	738	0.0283	2 4.14	0.002	
S = 37.8270 R	-Sq	= 63.2%	R-Sq	(adj) =	59.5%
Anglunia of Mon					
Analysis of Var	Tanc	e			
Source	DF	SS	MS	F	P
Regression	1	24574	24574	17.17	0.002
Residual Error					
Total	11	38883			
			al: 1 . 24		

The Standard Error of β_1

• In many studies β_l is a clinically meaningful value (the rate of change for Y with respect to X)

• Before we define the formula for a Cl for β_l let's remember the formula for a Cl for μ

RECALL:
$$\overline{y} \pm t(df)_{\alpha/2} \left(\frac{s}{\sqrt{n}}\right)$$

Where $100(1 - \alpha)$ is the desired confidence

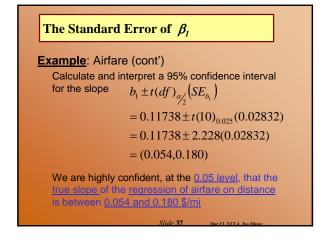
 If we pick this apart we are really saying that a CI for μ is: the estimate of μ± (an appropriate multiplier)x(SE)

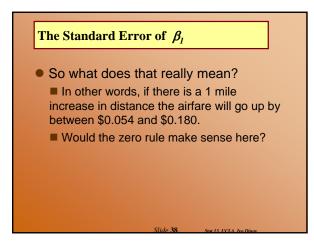
The Standard Error of β_1

• Using similar logic:

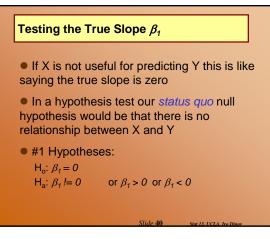
$$b_1 \pm t(df)_{\alpha/2} \left(SE_{b_1} \right)$$

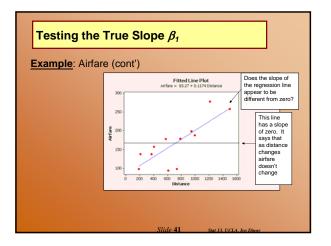
Where $100(1 - \alpha)$ is the desired confidence With df = n - 2

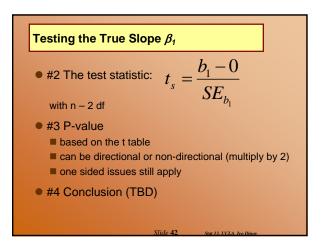




The Standar	ul	urror o	ρ_1		
Regression Anal	ysi	s: Airfar	e vers	us Dista	ance
The regression	-				
Airfare = 83.3	+ 0	.117 Dist	ance		
Predictor C	oef	SE Coef	Т	P	
Constant 83	.27	22.95	3.63	0.005	
Distance 0.11	738	0.02832	4.14	0.002	
S = 37.8270 R	-Sq	= 63.2%	R-Sq	(adj) =	59.5%
Analysis of Var	ian	ce			
Source	DF	SS	MS	F	P
Regression	1	24574	24574	17.17	0.002
Residual Error	10	14309	1431		
Total	11	38883			







Testing the True Slope β_1

Example: Airfare (cont')

Imagine the population of *all* cities you could fly to from Baltimore

Is the relationship we found in this sample of 12 cities strong enough to convince you that there really is a relationship for the entire population?

Testing the True Slope β_1

Test to see if distance is useful for predicting airfare in a linear model, using $\alpha = 0.05$

1
$$H_0: \beta_1 = 0$$

 $H_a: \beta_1 != 0$

$$t_s = \frac{b_1 - 0}{SE} = \frac{0.11738 - 0}{0.02832} = 4.145$$

#3 df = 10; 2(0.0005) Reject H_o

Testing the True Slope β_1

#4 CONCLUSION: These data provide evidence to suggest that there is a <u>significant LINEAR relationship</u> between <u>distance and airfare</u> to <u>US cities from</u> <u>Baltimore, MD</u> (0.001 < p < 0.01)

NOTE: We're not asking if the relationship is linearWe are already assuming that the linear relationship

holds

■ Why n – 2 df?

It takes two points to determine a straight line
 Also n – 2 is the denominator of s_{Y|X}

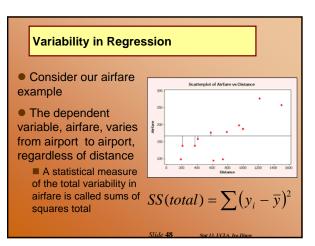
Testing the True	Slope	β ₁			
Regression Analysis:	Airfa	re vers	us Dista	ance	
The regression equat Airfare = 83.3 + 0.1 Predictor Coef Constant 83.27 Distance 0.11738 S = 37.8270 R-Sq =	17 Dis SE Coe 22.9 0.0283	tance f T 5 3.63 2 4.14	0.005 <mark>0.002</mark>	va tw te:	e careful, p- lue is for a o sided st!
Analysis of Variance Source DF Regression 1 Residual Error 10 Total 11	SS 24574 14309	24574	F 17.17		

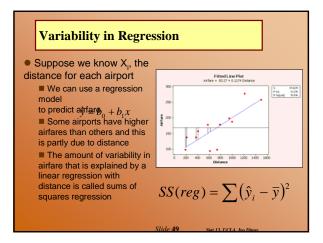
Testing the True Slope β_1

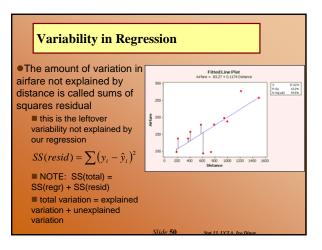
Suppose we wanted to test to see if the mean airfare increases with increasing distance, using $\alpha = 0.05$

What would change in our hypothesis test from before?

This means we are expecting a positive slope $H_a: \beta_1 > 0$ Does t_s jive with H_a ? $t_s = 4.14$ 0.0005

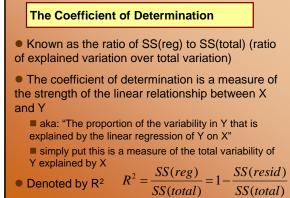






Variability	in R	legress	ion		
Regression Ana	lysis	: Airfa	re vers	us Dist	ance
The regression	equa	tion is			
Airfare = 83.3	+ 0.	117 Dis	tance		
Predictor	Coef	SE Coe	f I	P	
Constant 8	3.27	22.9	5 3.63	0.005	
Distance 0.1	1738	0.0283	2 4.14	0.002	
5 = 37.8270	₹-Sq	= 63.2%	R-Sq	(adj) =	59.5%
Analysis of Va	rianc	e			
Source	DF	SS	MS	F	P
Regression	1	24574	24574	17.17	0.002
Residual Error	10	14309	1431		
	1.1	38883			

Variability	in Regr	ession	
in the ANOVA	table e of the ta	ble is the sam	pear on minitab e as we learned
Source	df	SS	MS
Regression	1	$\sum (\hat{y}_i - \overline{y})^2$	$\frac{SS(reg)}{df(reg)}$
Residual	n [*] –2	$\sum (y_i - \hat{y}_i)^2$	$\frac{SS(resid)}{df(resid)}$
Total	n [*] - 1	$\sum (y_i - \overline{y})^2$	
		Slide 52 sta	nt 13. UCLA. Ivo Dinov



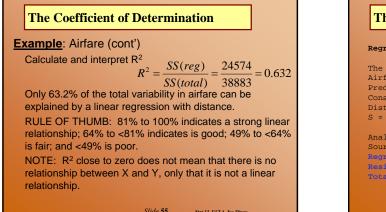
Denoted by R²

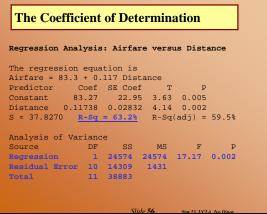
The Coefficient of Determination

- R² will always be:
 - $0 \leq R^2 \leq 1$

If there is no linear relationship between X and Y then R² will be close to 0

If there is a strong linear relationship between X and Y then R² will be close to 1





The Coefficient of Correlation

The correlation coefficient is also a measure of the linear relationship between X and Y

- $r = \left(\sqrt{r^2}\right) \times (sign \text{ of slope}) \quad \text{OR} \quad r = \frac{\sum (x_i \bar{x})(y_i \bar{y})}{\sqrt{\sum (x_i \bar{x})^2 \sum (y_i \bar{y})^2}}$

If there is no linear relationship between X and Y then r will be close to 0

If there is a strong positive linear relationship between X and Y then r will be close to +1

- If there is a strong negative linear relationship between

Slide 57

X and Y then r will be close to -1

The Coefficient of Correlation

Example: Airfare (cont') Calculate and interpret r

$$r = (\sqrt{0.632}) \times (+1) = 0.795$$

This indicates that distance and airfare have a fair positive linear relationship Correlation describes the tightness of the linear relationship between X and Y RULE OF THUMB: 0.9 to 1.0 strong linear relationship; 0.8 to <0.9 good; 0.7 to <0.8 fair; <0.7 poor

Slide 58

The Coefficient of Correlation

Computer output for correlation (e.g., SOCR)

Correlations: Airfare, Distance

Pearson corr. of Airfare and Distance = 0.795 P-Value = 0.002

The Coefficient of Correlation

If X and Y are switched the coefficient of correlation will remain unchanged.

- There is statistical inference we can make about r
 - **The population correlation coefficient is** ρ (rho)
 - Inference about requires a bivariate random sample each (x, y) as having been sampled at random from a population of all (x, y) pairs
 - NOTE: Won't work when X is specified by researcher (doses)
 - It turns out that H_0 : $\rho = 0$ is equivalent to H_0 : $\beta_1 = 0$

Guidelines for Regression and Correlation

 Need to be careful interpreting correlation
 Similar to Ch 8, an observed association between variables does not necessarily indicate causation

Because two variables are highly correlated does not mean that one causes the other.

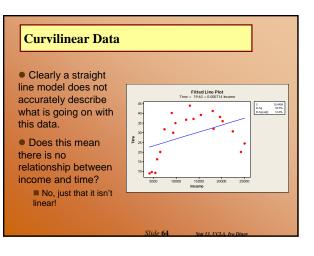
Curvilinear Data

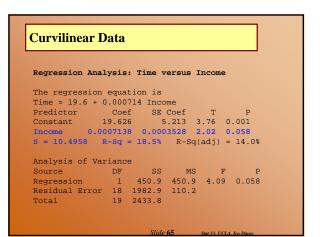
- Curvilinear data can distort regression results by:
 - a fitted line that doesn't represent the data
 - the correlation is misleadingly small
 - s_{Y|X} is inflated

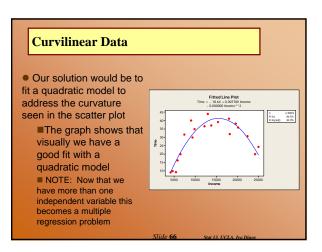
Curvilinear Data

Example: For married couples with one or more offspring, a demographic study was conducted to determine the effect of the families annual income (at marriage) on time (months) between marriage and the birth of the first child.

		Income	Time	Income	Time
Time		5775	16.20	4608	9.70
		9800	35.00	24210	20.00
a -		13795	37.20	19625	38.20
-		4120	9.00	18000	41.25
-		25015	24.40	13000	44.00
		12200	36.75	5400	9.20
90		7400	31.75	6440	20.00
-	+1000 200 0	9340	30.00	9000	40.20
	TURLI 2000	20170	36.00	18180	32.00
		22400	30.80	15385	39.20
		SI: 4. 62			







Regression Anal	ysis	: Time v	ersus In	come, I	ncomeSQ
The regression	equa	tion is			
Time = - 18.6 +	- 0.0	0770 Inc	ome - 0.	000000	IncomeSQ
Predictor	C	oef	SE Coef	т	P
Constant	-18.	639	4.679	-3.98	0.001
Income 0.	0077	004 0.	0007699	10.00	0.000
IncomeSO -0.0	0000	025 0.0	0000003	-9.25	0.000
S = 4.39819 F	l-Sq	= 86.5%	R-Sq(a	.dj) = 8	84.9%
Analysis of Var	ianc	e			
Source			MS	F	Р
Regression					
Residual Error					
		2433.8			

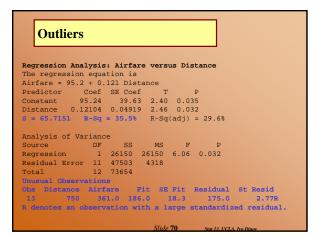
Outliers

• We know outliers as observations that are unusually large when compared to the rest of the data

 In regression analysis an outlier is a data points that is unusually far from the linear trend formed by the data

- Outliers can distort regression results by:
 - inflating s_{Y|X} and reducing r
 - influencing the regression line



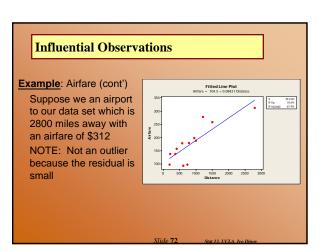


Influential Observations

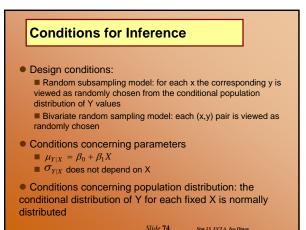
 Influential observations also affect regression results, usually in an artificially positive way

• Influential observations can distort regression results by:

- changing fitted line
- influences correlation



Influential Observations						
Regression Analysis: Airfare ver	sus Distance					
The regression equation is Airfare = 105 + 0.0842 Distance						
Predictor Coef SE Coef	T P					
Constant 104.54 18.01 5.8	0 0.000					
Distance 0.08421 0.01638 5.1						
S = 39.4741 R-Sq = 70.6% R-S	q(adj) = 67.9%					
Analysis of Variance						
Source DF SS MS	F P					
Regression 1 41173 41173						
Residual Error 11 17140 1558						
Total 12 58313						
Unusual Observations						
Obs Distance Airfare Fit S	E Fit Residual St Resid					
13 2800 312.0 340.3	33.4 -28.3 -1.35 X					
X denotes an observation whose X	value gives it large influence.					
	Slide 73 Stat 13. UCLA. Iva Dinav					



Conditions for Inference

- SUMMARY:
 - Same SD, for all levels of X
 - Independent observations
 - Normal distribution of Y for each fixed X
 - Random sample

Multiple Regression

- Regression can be quite complicated
- Multiple regression is an extension of simple linear regression
 - Does distance completely determine airfare?Are there other factors that might influence airfare?

• There are multiple regression models that can accommodate more than one independent variable

These topics are covered in other statistics classes.

Slide 76 Stat 13. UCLA. Ivo Dinov