UCLA Stat 130D
Statistical Computing and Visualization in C++

Instructor: VO DINOV, asst. Prof.in
Statistics / Neurology

University of California, Los Angeles, Winter 2007
http://lwww.stat.ucla.edu/~dinov/courses_students.html

Inheritance in C++

®ntroduction
®nheritance: Base Classes and Derived Classes
®protected Members
-Casting Base-Class Pointers to Derived-Class Pointers
Using Member Functions
.Overriding Base-Class Members in a Derived Class
®pyplic, Protected and Private Inheritance
®Direct Base Classes and Indirect Base Classes
.Using Constructors and Destructors in Derived Classes
-Implicit Derived-Class Object to Base-Class Object
Conversion
" Software Engineering with Inheritance
Composition vs. Inheritance
®.yses A” and “Knows A” Relationships
B case Study: Point, Circle, Cylinder

Introduction

e Inheritance
= New classes created from existing classes
m Absorb attributes and behaviors.

e Polymorphism
m Write programs in a general fashion

m Handle a wide variety of existing (and unspecified)
related classes

e Derived class

m Class that inherits data members and member
functions from a previously defined base class

Introduction

e Inheritance
m Single Inheritance
— Class inherits from one base class

m Multiple Inheritance
— Class inherits from multiple base classes
m Three types of inheritance:
— public: Derived objects are accessible by the base
class objects (focus of this chapter)
— private; Derived objects are inaccessible by the base
class
— protected; Derived classes and friends can access
protected members of the base class

Base and Derived Classes

e Often an object from a derived class (subclass) “is an” object of
a base class (superclass)

Base class Derived classes
Student GraduateStudent
UndergraduateStudent
Shape Circle
Triangle
Rectangle
Loan CarLoan
Home ImprovementLoan
MortgagelLoan
Employee FacultyMember
StaffMember
Account CheckingAccount
SavingsAccount 5

Base and Derived Classes

e Implementation of public inheritance

class CommissionWorker : public Employee {

}:

Class CommissionWorker inherits from class Employee

= friend functions not inherited

m private members of base class not accessible from derived
class

protected members

e protected inheritance
m Intermediate level of protection between public
and private inheritance
m Derived-class members can refer to public and
protected members of the base class simply by
using the member names
m Note that protected data “breaks” encapsulation

Casting Base Class Pointers to Derived
Class Pointers

e Object of a derived class
m Can be treated as an object of the base class
m Reverse not true - base class objects not a
derived-class object
e Downcasting a pointer

m Use an explicit cast to convert a base-class
pointer to a derived-class pointer

m Be sure that the type of the pointer matches the
type of object to which the pointer points

derivedPtr = static_cast< DerivedClass * > basePtr;

Casting Base-Class Pointers to Derived-
Class Pointers

e Example
mCircle class derived from the Point
base class

m We use pointer of type Point to
reference a Circle object, and vice-
versa

T 77 point.h
2 // Definition of class Point
3 #ifndef POINT H
4 #define POINT H

6 #include <iostream>

8 using std::ostream;

™ s R g 1. Point class definition

friend ostream &operator<<(ostream &, const Point &);

12 public:

13 Point(int = 0, int = 0); /7 default constructor

14 void setPoint(int, int);]

15 int getX() const { return x; }

16 int getY() const { retu

17 protected: /7 ac
int x, v;

1. Load header

25 #include “point.h"
26

Constructor for class Point
int(int a, int b) { setPoint(a, b);

¥
s i 1.1 Function definitions

void Point::setPoint(int a, int b) -

5 using std:
6 using s
7 using std::setprecision;

// Output Point (with overloaded stream insertion operator)
ostrean &operator<<(ostream &output, const Point &p)

output << "[* << p.x << ", " << p.y << "]";
return output; // enable calls
! F 19.4: c
o/ erin <= 1.1 Function definitions

6 #ifndef CIRCLE_H
7 #define CIRCLE_H

D
using std::ostream;
1. Circle class definition

include <iomanip>

os;

osflags;

#include “point.h"

61 class Circle : public Point { // Circle inherits from Point
6: friend ostream &operator<<(ostream &, const Circle &);
63 public: o

jefault conctructor

79 // Constructor for Circ

0 protected:

Circle(double r = 0.0, int X = 0, Nt y = 0);

void setRadius(double); // set radius
double getRadius() const; // return radius
double area() const; // calculate area

1. Circle definition

double radius;
i
endi f
// circlecpp e
6 // Vel function definitions for class Circle

1. Load header

for Point

#include “circle.h™

calls constructol

// with a member initializer then initializes radiu

Circle::Circle(double r, int a, inrl.)l Function Definitions

: Point(a, b) // call base-class constructor

83 { setRadius(r); }

:setRadius(double r)
{radius = (r>=0?r:0);} 12

T Circle
:getRadius() const { return radius; }

9 /7 Get radi
) double Circl

/7 ca rea of Circle
double Circle::area() const
{ return 3.14159 * radius * radius: }

1. 1 Function Definitions

<< setiosflags(ios::fixed | i >
<< setprecision(2) << c.radius;
return output: // enables calls Driver
ig. 19.4: figl9_04.cpp
asting base-clas: pointer to derived-class inters

clude <iostream>

1. Load headers

1.1 Initialize objects

Circle *circlePtr = 0, c(2.7, 120, 89);

cout << "Point p: " << p << "\nCircle c: " << ¢ << "\n";

// Treat a Circle as a Point (see only the base

11 In

gn address of

s part) .
ialize objects

pointPtr = &; // ass

cout << “\nCircle ¢ (via *pointPtr): *
<< *pointPtr << “\n";

Vi
1/ cas
circlePtr = static_cast< Circle * >(pointPtr);

"Assign objects

Pointer

" << *circlePtr

cout << "\nCircle c (via *circlePtr):
<< "\nArea of c (via circlePtr):

vt sereny - ane 2. Function calls

// DANGEROUS: Treat a Point as

pointPtr = &; // as s of Point to pointPtr
141 // cast base
42 circlePtr = static_cast< Circle * >(pointPtr);

43 cout << "\nPoint p (via *circlePtr):\n" << *circlePtr

hointer to de Ss pointer

144 << "\nArea of object circlePtr points to: "

45 << circlePtr->area() << endl;

146 return 03 14
147}

13
Program Output
Point p: [30, 50]
Circle c: Center = [120, 89]; Radius = 2.70
Circle c (via *pointPtr): [120, 89]
Circle c (via *circlePtr):
Center = [120, 89]; Radius = 2.70
Area of c (via circlePtr): 22.90
Point p (via *circlePtr):
Center = [30, 50]; Radius = 0.00
Area of object circlePtr points to: 0.00
15

Using Member Functions

e Derived class
m Cannot directly access private members of its base
class
= Hiding private members is a huge help in testing,
debugging and correctly modifying systems

16

Overriding Base-Class Members in a
Derived Class

e To override a base-class member function
m In derived class, supply new version of that
function
— Same function name, different definition
m The scope-resolution operator may be used
to access the base class version from the
derived class

17

77 employ -t

2 /7 Definition of class Employee
ndef EMPLOY H

define EMPLOY H

1. Employee class definition

class Employee {

public:

8 Emplovee(const char *, const char *); // constructor

9 void print() const; // output first and last name

(~Employee(); // destructor

11 private:

12 char *firstName; ed string
char *lastName;

Ao - ;’ 1.Load header

17 // employ.cpp
8 // r function definitions for class Employe

[v siostrean- 1.1 Function definitions

using std::cout;

clude <cstring>

clude <cassert>
#include “employ.h*

// Col

tructor dynamicz locates space for the
28 // fi and last name and uses strcpy to copy
// the first and last names into the object
Employee: :Enployee(const char *first, const char *last)
a1 ¢ 18

32 firsthame = new charl strien first) + 1 15

assert(firsthame '= 0); // terminate if not all
strepy(firstNane, first);

lasthame = new char[strlen(last) + 11

sereiasnane 10 3: /o0 1 Funetion definitions

strepy(lasthane, last);

name
42 void Employee::print() const
43 { cout << firstName << * * << lastName; } ============—==——————

45 // Destructo
46 Employee: :~Employee()

iynamical ly

48 delete [] firstName; /1‘
49 delete [] lastName; /.

58 class HourlyWorker : public Employee {

59 public:
60 HourlyWorker(const char*, const char*, double, double);
61 double getPay() const; // ca >
62 void print() const; /7 ove 19
63 private:
98 void HourlyWorker::print() const a o __gnQ
B4 1.1 Function Definitions
100 cout << "HourlyWorker::print() is executing\n\n";
101 Employee::printQ); // call rint functior
cout << " is an hourly worker with pay of $=
) << setiosflags(io: ixed | ios::showpoint)

105 << setprecision(2) << getPay() << endi: Load header

/ derived class .y . .

et “hourty 1.1 Initialize object
111
112int mainQ)
113 1

d) 2. Function call
114 HourlyWorker h("Bob™, "Smith™, 40.0, 10.00);
1 h.printQ;
116 return 0;
17}
HourlyWorker: :print() is executing o

Bob Smith _is an_hourly worker with pay of $400.00

Direct and Indirect Base Classes

e Direct base class
m Explicitly listed derived class’ header with the colon (:)
notation when that derived class is declared.
m class HourlyWorker : public Employee
— Employee is a direct base class of Hour lyWorker
e Indirect base class
= [nherited from two or more levels up the class hierarchy
m class MinuteWorker : public HourlyWorker
— Employee is an indirect base class of MinuteWorker

23

64 double wage: 77 wade per hour

65 double hours: /7 hours worked for week
66 }:

68 #endif

69 // hourly.cpp

70 // Member function defi 5 for class Hourlylorker

#include <iostream> 1 Load header

using std::cout;
using std:zendl;

'“td" 1.1 Function definitions
I R
using std::

include “hourly.h*

4 // Constructor for
HourlyWorker: :Hour lyWorker(const char *first,
const char *last,
double initHours, double
- Employee(first, last) //

{
90 hours initHours; // =
91 wage = initiage; 1/ s
92 }
93
94 // Get the HourlyWorker"s pay 20
Sodouble HourlbviorkerogetPav() conat L return wage * hours. 3
public, private, and protected
Base N 'ggpe of
class n Itance
member
specifier
public protected private
PUD i i cerved cess. | PFOTECTEd inceiived | Private in derived
public anynon-static (Can be accessed directly by | Can be accessed directy by,
‘member functions, all non-Static member | allnon-static
Friend functionsand | functonsana Friiend | member funcions and
protected inderived| PFOtECted ndeiives | private in gerved
protected
private e o o
el i =

Using Constructors and Destructors in
Derived Classes

e Base class initializer
m Uses member-initializer syntax
m Can be provided in the derived class constructor to call
the base-class constructor explicitly
— Otherwise base class’ default constructor called implicitly
m Base-class constructors and base-class assignment
operators are not inherited by derived classes

— However, derived-class constructors and assignment
operators can call still them

24

Using Constructors and Destructors in
Derived Classes

e Derived-class constructor
m Calls the constructor for its base class first to initialize
its base-class members
m If the derived-class constructor is omitted, its default
constructor calls the base-class’ default constructor
e Destructors are called in the reverse order of
constructor calls.

m Derived-class destructor is called before its base-class
destructor

25

41 1/

45 #include “point2.h”

47 class Circle :

8 public:

34 // structor for clas: oint
35 Point::-Point()
6 {

cout << “Point destructor:

<y <11PFunction definitions

<< [T << x << ™

39 }
0 // circle2.t

finition of class Circle
ndef CIRCLE2_H
#define CIRCLE2_H

1. Load header
public Point {

1.1 Circle Definition

Circle(double r = 0.0, int x = 0, inty =0);

// default constructor

~CircleQ;

53 private:

double radius;
¥

27
#endif

Te-cp)
onstrate when base-cl d derived-cla
// constructors and destructors are called
#include <iostream>

1. Load headers

using std::cout;

38 using std:zendl;

iclude “point2.h"

1.1 Initialize objects

tinclude “circle2.h™

3 int mainQ)

© e i o 2..Objects.enter and leave scope
¢ Point p(11, 22);

cout << endl;

Circle circlel(4.5, 72, 29);
cout << endl;

Circle circle2(10, 5, 5);
cout << endl;

return 0; 29

77 point2.t
> // Definition of clas:
def POINT2_H
define POINT2_H

6 class Point {

nclude <iostream>

) using std
20 using std

nclude “point2.h*

public:
Point(int = 0, int = 0); // default c

9 ~Point(); // destructor

0 protected: /7 accessible by derived cl

1 int x, y; // x an rdinates of

g

14 #endif

5 // point2.cp

6 1/ r function definitions for 1 P

1. Point definition

onstructor

1. Load header

int

1.1 Function definitions

// Constructor for class int
Point::Point(int a, int b)
{
%= ey
y = b;
cout << "Point constructor: "
<< [T << x << ", " <<y << "]" << endl; 25
hS
ircle r
r function definitions for class Circle
nclude <iostream>
61
62 using std::cout;
63 using sta:zena: 1. Load header
6
include “circle2.h”
17 conserueror tor cirere cans coneederd FURCtion Definitions
rcle::Circle(double r, int a, int b)
: Point(a, b) // call base-class constructor
0 {
1 radius = r; // shoulc alidate
3 cout << "Circle constructor: radi is "
<< radius << " [<< x << ", " <<y << "]" << endl;
743
la: ircl
8
cout << "Circle destructor: radius is "
<< radius << " [" << x << ", " <<y << "]" << endl; 28
1}
Program Output
Point constructor: [11, 22]
Point destructor: [11, 22]
Point constructor: [72, 29]
Circle constructor: radius is 4.5 [72, 29]
Point constructor: [5, 5]
Circle constructor: radius is 10 [5, 5]
Circle destructor: radius is 10 [5, 5]
Point destructor: [5, 5]
Circle destructor: vradius is 4.5 [72, 29]
Point destructor: [72, 29]
30

Implicit Derived-Class Object to Base-
Class Object Conversion

e baseClassObject = derivedClassObject;
= This will work

— Remember, the derived class object has more members
than the base class object

m Extra data is not given to the base class

derivedClassObject = baseClassObject;
= May not work properly

— Unless an assignment operator is overloaded in the
derived class, data members exclusive to the derived
class will be unassigned

m Base class has less data members than the derived class
— Some data members missing in the derived class object
31

Implicit Derived-Class Object to Base-
Class Object Conversion

e Four ways to mix base and derived class pointers and
objects

m Referring to a base-class object with a base-class pointer
— Allowed

m Referring to a derived-class object with a derived-class

pointer

— Allowed

m Referring to a derived-class object with a base-class pointer.
— Possible syntax error
— Code can only refer to base-class members, or syntax error

m Referring to a base-class object with a derived-class pointer
— Syntax error
— The derived-class pointer must first be cast to a base-class

pointer
32

Software Engineering With Inheritance

e Classes are often closely related
m “Factor out” common attributes and
behaviors and place these in a base class
m Use inheritance to form derived classes
e Modifications to a base class
m Derived classes do not change as long as
the public and protected interfaces are
the same
m Derived classes may need to be

recompiled
33

Composition vs. Inheritance

e "is a" relationship
= |nheritance
e "has a" relationship
m Composition - class has an object from another class as a
data member
Employee “is a" BirthDate; //Wrong!
Employee “has a’Birthdate;//Composition

34

“Uses A” And “Knows A” Relationships

e “uses a” relationship

m One object issues a function call to a member
function of another object

e “knows a” relationship

m One object is aware of another
— Contains a pointer or handle to another object
m Also called an association

35

Case Study: Point, Circle, Cylinder

e Define class Point
m Derive Circle
— Derive Cylinder

36

3
4 #define POINT2_H
6

1. Point definition

#include <iostream>

& using std::ostream;

10 class Point {

11 friend ostrean soperator<<(ostrean’k, Lorfepgyction definitions

12 publ

13 Point(int = 0, int /7 default constructor
14 void setPoint(int, // set coo
15 int getX() const { return x; } // get x cc

dinate

16 int getY() const { returny; } // gety
17 protected: /. derived c
18 it x, y; // coordinates of the point

ber functions for class Point
include “point2.h"

/ Point::Point(int a, int b) { setPoint(a, b); }

37

1.1 Function definitions

y = b;
X
// Output the Point
37 ostream &operator<<(ostream &oUtput, const P
38 {

39 output << T[T << p.x << ", " << p.y << "]7;

41 return output; 1/ enal cascading

a2 3}

H
N
S|

7/ De n of c
ifndef CIRCLE2 H
#define CIRCLE2 H

#include <iostrean> 1. Circle definition

usina std::ostream:

nawN

©o~o

0

#include “point2.h™

class Circle : public Point { 1.1 Function definitions
e &)7
publ
// default constructor
Circle(double r 0.0. int x = 0
\ setRadius(double): 1/ <
double getRadius() const; // return radius
double area() const:
protected: s
double radius: // radi

intv=0):

29 using std:
g std: :se
using std: :setpreci

30 ut

39

Zinclude "circle2 h™

\dr2-h

inition of class
#ifndef CYLINDRZ_H

4 #define CYLINDR2_H

5

6 #include <iostream>

& using std::ostream; 1. Cy"nder deﬁnition

10 #include “circle2.h"

class Cylinder : public Circle {
13 friend ostream &operator<<(ostrean &, const Cylinder &):

Stor
17 Cylinder(double h = 0.0, double r = 0.0,
18 int x =0, inty=0);

20 void setHeight(double); // set height
21 double getHeight() const; // return height
2 double area() const; /7 calculate and
23 double volume() const; // calculate and

urn area

urn volume

protected:
26 double height; // height of the

inder

28 41

29 #endif

38
constructor for Point
42 void Circle: :setRadius(double r)
43 { ra (r>=02r:0)}
44
:getRadius() const { return radius; }
e
48 ea of Cir e
49 double :area() const
{ return 3.14159 * radius * radius; }
51
/7 output a circle in the form:
53 // Center = [x, yl; Re 5 = #.:
54 ostream &operator<<(ostream &output, const Circle &)
5 {
output << “Center = * << static_cast< Point > (¢)
<< “; Radius = "
58 << setiosflags(ios::fixed | ios::showpoint)
59 << setprecision(2) << c.radius;
60
61 return output; // enables cascaded calls 40
623
30 ndr2.cpp
31 and friend function definitions
34
35 istructor calls Circle constructor
3 Cylinder(double h, double rlil x umt 1 d it
3 : circle(r, x, y) : o 1<F fuc gtlon ef|n|t|0ns
28 { setHeight(h): ¥
40 // set height of inder
41 void Cylinder: :setHeight(double h)
42 { height = (h>=072h:0);}
te
48 double Cylinder::area() const
49 {
return 2 * Circle::area() +
2 * 3.14159 * radius * height;
calculate volure ¢
55 double Cylinder::volume() const
6 { return Circle::area() * height; }
58 // Output Cylinder di s
ostream &operator<<(ostream &output, const Cylinder &) 42

GUTpUT << static_cast< Circle >(¢)

62 << "; Height = " << c.height;

63

64 return output; // enables cascaded calls nitions
65 }

66 // Example.cpp e

67 // Driver for class Cylinder

68 #include <iostream> .

69

70 using std::cout; Dnver

71 using std::endl;

o 1. Load headers

73 #include “point2.h

74 #include cle2. N H H
e e 1.1 Initialize object
76

L 2. Function calls

79 // create Cylinder object q

o ommer i, 25, 12,280 2.1 Change attributes
81

82 // use get functions to display the Cylinder

83 cout << "X coordinate is " << cyl.getx() 3 Output

84 << "\nY coort ate is " << cyl.getY()

85 << "\nRadius " << cyl.getRadiusQ

86 << "\nHeight " << cyl.getHeight() << "\nm\n";

87

88 // use set functions to change the Cylinder"s attributes

89 cyl.setHeight(10);

90 cyl.setRadius(4.25); 43
91 ol i 2.2).

Cout << The new focation, radius, and height of cyl are:\n"
<< eyl << \n";

cout << "The area of cyl i
<< cyl.areaQ) << "\n":

"

7/ display the Cylinder as a Point
Point &pRef = cyl; // pRef “thinks" it is a Poi
cout << “\nCylinder printed as a Point is: **

<< pRef << "\n\n"

7/ display the Cylinder as a Circle

circle &circleRef = cyl; // circleRef thinks it is a Circle

cout << “Cylinder printed as a Circle is:\n" << circleRef
<< "\nArea: " << circleRef.area() << endl;

return 0;

3. Output

tput

