
1

UCLA PIC 10 B
Problem Solving using C++ Programming

Instructor: Ivo Dinov, Asst. Prof. in

Mathematics, Neurology, Statistics

Teaching Assistant: , Suzanne Nezzar, Mathematics

University of California, Los Angeles, Summer 2001

http://www.math.ucla.edu/~dinov/10b.1.011/

2

UCLA PIC 10 B
Problem Soving using C++ Programming

Course Description,
Class homepage,

online supplements, VOH’s etc.
http://www.math.ucla.edu/~dinov/10b.1.011/

3

Review PIC 10 A, Problem Solving using C++
Spring 2001, UCLA, Mathematics Department

- Chapter 1
- Computer Systems (hardware and Software

components, memory types)
– PC, Workstation, Mainframe, Network, input/output
– memory – primary, secondary, fixed, removable
– CPU
– Why 8Bits/9Bits = 1Byte?
- Programming and Problem Solving using Computers
- Introduction to C++
- Program Editing, Compiling, Testing, Debugging,

Re-designing, and program/algorithm analysis
4

Review PIC 10 A, Problem Solving using C++
Spring 2001, UCLA, Mathematics Department

- Chapter 2
- Variables, names, memory addresses, assignments

Address
Value1

2

3

4

5

6

7

8

9

10

0

1

0

1

1

1

0

0

0

0

1 Byte

5

Review PIC 10 A, Problem Solving using C++
Spring 2001, UCLA, Mathematics Department

- Chapter 2
- Variables, names, memory addresses, assignments

- Standard I/O (input/output)
- Data types, expressions, arithmetic operators
- Simple flow of control (conditional statements,
loops)
- Programming style, comments, indenting,
headers, naming conventions
- American Standard Code for Information
Interchange (ASCII Character set)

6

Review PIC 10 A, Problem Solving using C++
Spring 2001, UCLA, Mathematics Department

- Chapter 3
- Source Code HTML Documentation Generation
- Top-down Algorithm and implementation design
- Predefined Functions, header files
- Procedural Abstraction
- Local and Global Variables, scope of definition
- Function, Constructor and Operator Overloading
- Makefiles. Compile large packages without a builder.
- Sorter example: This example illustrates the

Top-Down design from scratch.

7

Review PIC 10 A, Problem Solving using C++
Spring 2001, UCLA, Mathematics Department

- Chapter 4
- Void type functions
- Formal parameters, function prototype and

function header definitions
- Precondition and postcondition
- Function Call-by-value & Call-by-reference
- Driver (test) programs & Stubs (fake

subroutines)

8

Review, Monday, June 25, 2001
PIC 10 B

- Course Description
- Online support
- Homework assignments
- Textbook and coverage
- Reviewed Chapters 01-04, PIC 10A

9

Review PIC 10 A, Problem Solving using C++
Spring 2001, UCLA, Mathematics Department

- Chapter 5
- Basic File Input/Output, I/O Streams

- External file names and local stream names
#include <fstream>
ifstream in_stream;
in_stream.open (“infile.dat”);
if (in_stream.fail()) { … exit(1); }
else { in_stream >> next; while (next!=eof) { … } }
in_stream.close():

- Character I/O; char c=cin.get(); cout.put(c);
endl vs. “\n” vs. ‘\n’
the boolean functions isalpha(char_expr), isdigit(char_expr), etc.

10

Review PIC 10 A, Problem Solving using C++
Spring 2001, UCLA, Mathematics Department

- Chapter 5

- Basic Classes and Objects, Inheritance

10

NUMBER class

string toString(); // Every number should

// be printable as string

Integer class
int min=-2147483647;
int max=2147483647;
bool compareTo(int);
int increment(int);

Double class

string toString();
int getPrecision(); //15 digits

Super
Class

Inherit from Number

11

Review PIC 10 A, Problem Solving using C++
Spring 2001, UCLA, Mathematics Department

- Chapter 5

- Basic Classes and Objects, Inheritance

11

ostream class
cout object

No close() function

ofstream class
outf_stream object

close() function
But also ostream functionality

void say_hello(ostream& o_stream)

{ o_stream << “Hello!” << endl; }

Function call with diff streams:
say_hello(cout);
say_hello(outFile_stream);

Possible since, ofstream objects
ARE also ostream objects.

12

Review PIC 10 A, Problem Solving using C++
Spring 2001, UCLA, Mathematics Department

- Chapter 6

- Structures
struct CDAccount // structure tag
{ double balance; // Public Member names

Money cash; // Hierarchical Structures
double interest_rate;
int computeOneYearInterest(); // Public Method

private:
int term; // months until maturity

};

- Classes, objects, members (variables and functions)
- Differences between classes and structures
- Inheritance
- String Encoding, Transmission, Decoding Example.

12

13

Review PIC 10 A, Problem Solving using C++
Spring 2001, UCLA, Mathematics Department

- Chapter 7

- Extended Flow Control (if-else, which-case-break)
- Truth Tables (&& || !), boolean arithmetic/expressions
- Enumeration type

enum MonthLength { JAN_LEN = 31, FEB_LEN = 28,
MAR_LEN = 31, APR_LEN = 30,
. . ., NOV_LEN = 30, DEC_LEN};

- All kinds of loops (for, do-while, while)
- Debugging nested loops (separate loops and print-test each)
- Loop termination criteria (List Headed by fixed-size; Ask before
iterating; List ended by sentinel value; Running out of input (End of
file).)

- Most common problems with loops (off-by-one error,
infinite loops)

13 14

Review PIC 10 A, Problem Solving using C++
Spring 2001, UCLA, Mathematics Department

- Chapter 9 & 8

- Declaring and Referencing Arrays
- Why use arrays? Why sort arrays?
- Arrays in Memory
adr(a[k]) = adr(a[0]) + k*ElementByteSize

- Initializing Arrays
- Entire arrays (or elements-of-arrays)

in Function calls
- The const Parameter Modifier
- Array descriptors: name, size, type, scope
- Operator overloading for ADT’s
- Arrays of Classes (arrays of objects)
- Classes of arrays (classes having arrays as members)

14

15

Review PIC 10 A, Problem Solving using C++
Spring 2001, UCLA, Mathematics Department

- Chapter 9 & 8

- Friend Functions
Are ordinary functions and NOT members function. You do not use
the dot operator to call a friend function, and you do not use a type
qualifier (::) in the definition of a friend function

- Overloading (Unary & Binary) Operations
- Overloading +, ==, >> and <<
Money total, cost, tax; …
if (cost == tax) total = cost + tax;

E.g.,

15

Money operator+(const Money & lhs, const Money & rhs)
{ Money temp;

temp.all_cents = lhs.all_cents + rhs.all_cents;
return temp;

} 16

Review PIC 10 A, Problem Solving using C++
Spring 2001, UCLA, Mathematics Department

- What’s Next?

- PIC 10 B (Intermediate Programming, C++)
Dynamic data structures, including linked lists, stacks, queues, trees,
and hash tables;
applications;
object-oriented programming and software reuse;
recursion; algorithms for sorting and searching.

- PIC 10 C (Advanced Programming, C++)
More advanced algorithms and data structuring techniques;
additional emphasis on algorithmic efficiency;
advanced features of C++, such as inheritance and virtual functions;
graph algorithms.

17

Chapter 10
Strings and Multidimensional Arrays

18

Strings and Multidimensional Arrays

String Basics
cstring Valules, cstring Variables, and ANSI C++ string class
Predefined cstring Functions
Defining cstring Funcitons
cstring input and output
cstring-to-Number Conversions and Robust Input

Multidimensional Arrays
Multidimensional Array Basics
Arrays of cstrings

The C++ Standard string class
Interface for the Standard string class
Arrays of string revisited
Namespaces Revisited

10

19

Strings and Multidimensional Arrays

We will refer to strings we have dealt with so far as cstrings

(character arrays). ANSI C++ Library provides a string class

which is introduced in this chapter. We refer to these as simply

strings.

In this chapter we study the ANSI C++ string class and arrays

with more than one index.

Arrays with more than one index called multidimensional arrays

(e.g., 3D arrays, 4D arrays, etc.)

10

20

10.1 String Basics
cstring Values and cstring Variables (1 of 5)

ANSI C++ Library provides a string class which is introduced in this

chapter. We refer to these as strings.

We will refer to strings we have dealt with so far as cstrings.

Members of the C++ Standard Library’s a class string are declared in

the header <string>.

Technically, cstrings are null terminated char arrays.

In the example,

char x[] = “Enter the input.”;

“Enter the input:” is a cstring literal. The variable x is a cstring.

21

cstring Values and cstring Variables (2 of 5)

A cstring variable is a partially filled array having base type char

Any array uses positions having index values 0 through one less than
the number used.

The cstring variable signals the last used position by placing the
special character, called the null character ‘\0’ in the array one position
beyond the last character of the cstring.

If we declare and initialize a cstring variable s:

char s[11] ;

If s contains “Hi, Mom” then the array elements are:

s[0] s[1] s[2] s[3] s[4] s[5] s[6] s[7] s[8] s[9] s[10]

H i , M o m ! \0 ? ?

The character ‘\0’ is the sentinel marking the end of the cstring.
22

cstring Values and cstring Variables (3 of 5)

It is possible to initialize a cstring variable at declaration:

char my_message[20] = “Hi there.”;

Notice that cstring variables need not fill the entire array.

The compiler will count the characters in the initializing string and

add one for the null character:

char short_string[] = “abc”; // 4-element char array

This is equivalent to

char short_string[4] = “abc”;

or

char short_string[4] = {‘a’, ‘b’, ‘c’, ‘\0’};

You must leave space for the null character when you specify size.

23

Review, Tuesday, June 26, 2001
PIC 10 B

- Reviewed Chapters 05-09, PIC 10A
(most importantly Ch. 05, Classes and basic
inheritance, Ch. 8, operator overloading, friend
functions).

- cstrings:
char my_message[20] = “Hi there.”;

char short_string[] = “abc”; // 4-element char array

char short_string[4] = “abc”;

char short_string[4] = {‘a’, ‘b’, ‘c’, ‘\0’};

24

cstring Values and cstring Variables (4 of 5)

Do not confuse these situations:

char a_string[] = “abc”; // Inserts terminator ‘\0’
char not_a_string[4] = {‘a’, ‘b’, ‘c’}; // Does not insert ‘\0’

These are NOT equivalent.

The first one of these initializations places the required null

terminating character ‘\0’ after the ‘a’, ‘b’, and ‘c’. The result is a

cstring.

The second leaves space for the ‘\0’ null character, but it does not
insert the null character. The result is NOT a cstring.

25

608_01

26

27

cstring Values and cstring Variables (5 of 5)

A cstring is an ordinary array with base type char, and may be
processed one element at a time:

This loop will change the cstring, our_string, into a cstring having the
same length but with characters all ‘X’:

intintintint index = 0;index = 0;index = 0;index = 0;
while (while (while (while (our_stringour_stringour_stringour_string[index] != ‘[index] != ‘[index] != ‘[index] != ‘\\\\0’)0’)0’)0’)
{{{{
our_stringour_stringour_stringour_string[index] = ‘X’;[index] = ‘X’;[index] = ‘X’;[index] = ‘X’;
index++;index++;index++;index++;

}}}}

In processing cstrings take great care not to overwrite the null
character. An array that was a cstring that has its terminating character
overwritten is NO LONGER a cstring.

In the loop above, if our_string has no null terminator, the loop will
run off into memory, happily writing on every byte in memory beyond
the end of our_string until a byte is found with zero value. 28

PITFALL:
Using = and == with cstrings (1 of 5)

Values and variables of type cstring when used with =

(assignment) and == (comparison for equality) do not behave

like built-in (primitive) data types.

Assigning a value to a cstring in the obvious way is illegal:

char a_string[10];

a_string = “hello”; // ILLEGAL

Initializing at declaration is straight forward:

char a_string[10] = “DoBeDo”;

The = does not mean assignment, in spite of the appearance.

In Chapter 11 we will see that in C++, assignment and

initialization can have very different behavior.

29

PITFALL:
Using = and == with cstrings (2 of 5)

Assignment can be done barehanded, an element at a time:

char a_string[10] = "Hello";char a_string[10] = "Hello";char a_string[10] = "Hello";char a_string[10] = "Hello";

char b_string[10]; char b_string[10]; char b_string[10]; char b_string[10];

intintintint i = 0;i = 0;i = 0;i = 0;

while(a_string[i] != ‘while(a_string[i] != ‘while(a_string[i] != ‘while(a_string[i] != ‘\\\\0’)0’)0’)0’)

{ b_string[i] = a_string[i];{ b_string[i] = a_string[i];{ b_string[i] = a_string[i];{ b_string[i] = a_string[i];

i++;i++;i++;i++;

}}}}

b_string[i] = ‘b_string[i] = ‘b_string[i] = ‘b_string[i] = ‘\\\\0’;0’;0’;0’;

There is a predefined function, strcpy, to assign cstrings:

char a_string[10] = "Hello";char a_string[10] = "Hello";char a_string[10] = "Hello";char a_string[10] = "Hello";

char b_string[10];char b_string[10];char b_string[10];char b_string[10]; 30

PITFALL:
Using = and == with cstrings (3 of 5)

Comparision of cstrings cannot be done with the == operator.
The attempt to compare cstrings with == compiles, it does not
get the results you expect.
Array names carry the address value of the first array element.
The result of using == depends on where in memory the
cstrings are stored.
Use of the predefined comparison function strcmp.
char a_string[10] = "char a_string[10] = "char a_string[10] = "char a_string[10] = "aeoleanaeoleanaeoleanaeolean";";";";
char b_string[10] = "char b_string[10] = "char b_string[10] = "char b_string[10] = "aeonianaeonianaeonianaeonian";";";";

if (if (if (if (strcmpstrcmpstrcmpstrcmp(b_string, a_string))(b_string, a_string))(b_string, a_string))(b_string, a_string))

coutcoutcoutcout << "The strings are NOT the same.";<< "The strings are NOT the same.";<< "The strings are NOT the same.";<< "The strings are NOT the same.";
elseelseelseelse
coutcoutcoutcout << "The strings are the same.";<< "The strings are the same.";<< "The strings are the same.";<< "The strings are the same.";

The strcmp function is declared in the <cstring> header.

31

PITFALL:
Using = and == with cstrings (4 of 5)

strcmp compares cstrings is in lexicographic order:
For successive values of i starting at 0, cstring1[i] and cstring2[i]
are compared:

If the characters are different:
– If cstring1[i] < cstring2[i] strcmp returns a negative number.
– If cstring1[i] > cstring2[i] , strcmp returns a positive number.
– The number may be -1 or +1, or the difference of the encoding

(cstring1[i] - cstring2[i]), or some other value.
The actual value returned depends on the implemenation.
Do not write code that depends on the value returned.

– Testing then stops.
If the cstrings are equal up to the end of one of them, the value
returned indicates the longer string is greater than the shorter
string.
If the strings are equal in length and have the same characters,
the strings are equal. 32

Predefined cstring Functions (5 of 5)

Display 10.1 (next slide) contains a few of the functions from the
cstring library.
You must #include <cstring> to gain access to these functions.
strcpy(target, source) replaces target with source. Be sure there is
enough space in target to hold all of source.
strcat(target, source) appends source to target. The first character of
source is copied into the null terminator of target, and all successive
characters of source are copied into target. Be sure there is enough
space in target for all of source’s characters, including source’s null
terminator.
strlen(source) returns the number of characters up to but not
including the null terminator.
strcmp(str1, str2) We discussed this in an earlier slide. Refer to
Display 10.1 for detail.

33 34

PITFALL:
Dangers in Using Functions from <<<<cstringcstringcstringcstring>>>>

There is a very real danger associated with the functions strcpy
and strcat.
Both these functions copy characters until a null character is
found in the source string, without regard to whether space is
available in the target.
If there is no space in the target, strcpy and strcat will happily
overwrite any variables in memory beyond the target array.
This may be some of your variables, or it could be something
that your system depends on to run correctly.
There could be no effect what so ever.
There could be a segmentation violation or illegal operation
error, with your program crashing, and no further problems.
The operating system could crash and burn.
Nothing apparent may happen. But the next application started
could crash and burn on loading. So, be careful!

Defining cstring functions

The strcpy and strcat functions have problems.

The Standard Library defines versions that have an additional
parameter that can avoid some of these problems.

To learn to write safe cstring functions, we write a string_copy
function with an additional parameter to make the function safer.

The added parameter takes an argument that is the declared size of
the target argument.

35 36

617

Display 10.2 The function string_copy (1 of 2)
// Program to demonstrate the function string_copy
#include <iostream>
#include <cstring>

void string_copy(char target[], const char source[], int target_size);
// Precondition: target_size is the declared size of the cstring variable target.
// The array source contains a cstring value terminated with ’\0’.
// Postcondition: The value of target has been set to the cstring value in source,
// provided the declared size of target is large enough. If target is not large
// enough to hold the entire cstring, a cstring equal to as much of the value of
// source as will fit is stored in target.

int main()
{

using namespace std;
char short_string[11]; //Can hold cstrings of up to 10 characters.
string_copy(short_string, "Hello", 11);
cout << short_string << "STRING ENDS HERE.\n";

char long_string[] = "This is rather long.";
string_copy(short_string, long_string, 11);
cout << short_string << "STRING ENDS HERE.\n";
return 0;

} 37

Display 10.2 The fucntion string_copy (2 of 2)

//Uses header file cstring or string.h:
void string_copy(char target[], const char source[], int target_size)
{

using namespace std;
int new_length = strlen(source);
if (new_length > (target_size - 1))

new_length = target_size - 1; // That is all that will fit.
int index;
for (index = 0; index < new_length; index++)
{ target[index] = source[index]; }
target[index] = '\0';

}

38

cstring Input and Output (1 of 3)

cstrings may be output using the insertion operator <<
cout << short_string << “STRING ENDS HERE.\n”;

cstrings may receive input using the extraction operator >>
cin >> short_string >> some_other_string;

HOWEVER: Remember that extraction ignores all white space, and
that extraction from istream objects stops at whitespace.
Whitespace is blanks, tabs, and line breaks.

The code
char a[80], b[80];
cin >> a >> b ;
cout << a << b << “END OF OUTPUT.\n”;

produces a dialog like:

39

Do be do to you!
DobeEND OF OUTPUT.

cstring Input and Output (2 of 3)

To get an entire line, you can write a loop to extract the line a word at
a time, but this won’t read the blanks.

To get an entire line, you can use the predefined member getline.

getline has two arguments: a cstring and a number of characters to
extract to the cstring, allowing for the null terminator.

Typically this is the declared size of the variable

Example: This code
char a[80];
cin.getline(a, 80);
cout << a << “END OF OUTPUT.\n”;

produces a dialog like:

40

Do be do to you!
Do be do to you!END OF OUTPUT.

cstring Input and Output (3 of 3)

The getline member function stops reading when a number of
characters equal to the second argument have been read:

Example: This code
char a[80];
cin.getline(a, 5);
cout << a << “END OF OUTPUT.\n”;

produces a dialog like:

These cstring i/o techniques work the same for file i/o:
If in_stream has been declared and connected to a file, this code will
input 79 or fewer characters (up to the end of line) into cstring
variable a.

char a[80];
in_stream.getline(a, 80); 41

Dobedo to you!
DobeEND OF OUTPUT.

42

43

cstring-to-number Conversions and Robust Input (1 of 3)

‘1’, “1” and 1 are all different.
1 is a int constant, also called a literal.

‘1’ is a char constant. It occupies one byte and is represented by
some encoding. In C++ the value is the ASCII encoding, which has
the decimal value 49. Recall we talked about ASCII encoding in
PIC10A.
(There is a new encoding called unicode characters. The C++ type
that holds unicode is wchar_t.)
“1” is a cstring constant. It occupies two bytes, one for the encoding
of the character 1 and one for the null terminator.
In a program in any language, you cannot ignore the difference
between these objects.
Robust numeric input may be written by inputting a cstring,
extracting the digit characters and building the number from the
digits.

44

cstring-to-number Conversions and Robust Input (2 of 3)

Once you have a cstring containing the digits that represent an
intintintint, use the predefined function atoi
atoi is named and pronounced: Ascii TO Integer)

atoi takes a cstring argument and returns the int value represented
by the digit characters in cstring.
atoi returns 0 if the cstring contains a non-digit character.
Example: atoi(“#37”) returns 0.

The atoi function is declared in the <cstdlib> header.

Display 10.3 has two utility functions:
read_and_clean that inputs a string, ignoring any non-digits entered.
new_line that discards all input remaining on the line.

45

cstring-to-number Conversions and Robust Input (3 of 3)

The function atof is named and pronounced Ascii TO Floating
point.
atof is similar to atoi. It converts its cstring argument to the
double value the cstring represents. Like atoi, the function atof
returns 0.0 if the cstring argument does not represent to a double.
Display 10.3 demonstrates read_and_clean, and Display 10.4 is
demonstrates Robust Input Functions.

Display 10.3 cstrings to Integers (1 of 3)
// Demonstrates the function read_and_clean.
#include <iostream>
#include <cstdlib>
#include <cctype>

void read_and_clean(int& n);
// Reads a line of input. Discards all symbols except the digits. Converts
// the cstring to an integer and sets n equal to the value of this integer.
void new_line();
// Discards all the input remaining on the current input line.
// Also discards the '\n' at the end of the line.
int main()
{ using namespace std;

int n;
char ans;
do
{ cout << "Enter an integer and press return: ";

read_and_clean(n);
cout << "That string converts to the integer " << n << endl;
cout << "Again? (yes/no): ";
cin >> ans;
new_line();

} while ((ans != 'n') && (ans != 'N'));
return 0;

} 46

Display 10.3 cstrings to Integers (2 of 3)

// Uses iostream, cstdlib, and cctype:
void read_and_clean(int& n)
{ using namespace std;

const int ARRAY_SIZE = 6;
char digit_string[ARRAY_SIZE];

char next;
cin.get(next);
int index = 0;
while (next != '\n')
{ if ((isdigit(next)) && (index < ARRAY_SIZE - 1))

{
digit_string[index] = next;
index++;

}
cin.get(next);

}
digit_string[index] = '\0';

n = atoi(digit_string);

}

47

Display 10.3 cstrings to Integers (3 of 3)

// Uses iostream:

void new_line()
{

using namespace std;
char symbol;

do
{

cin.get(symbol);
} while (symbol != '\n');

}

48

Display 10.4 Robust Input Functon (1 of 4)
// Demonstration program for improved version of get_int.
#include <iostream>
#include <cstdlib>
#include <cctype>

void read_and_clean(int& n);
// Reads a line of input. Discards all symbols except the digits. Converts
// the cstring to an integer and sets n equal to the value of this integer.

void new_line();
// Discards all the input remaining on the current input line.
// Also discards the '\n' at the end of the line.

void get_int(int& input_number);
// Gives input_number a value that the user approves of.

int main()

{ using namespace std;
int input_number;
get_int(input_number);
cout << "Final value read in = " << input_number << endl;

return 0;

}
49

Display 10.4 Robust Input Functon (2 of 4)
// Uses iostream and read_and_clean:

void get_int(int& input_number)

{ using namespace std;

char ans;

do

{ cout << "Enter input number: ";

read_and_clean(input_number);

cout << "You entered " << input_number

<< " Is that correct? (yes/no): ";

cin >> ans;

new_line();

} while ((ans != 'y') && (ans != 'Y'));

}

50

Display 10.4 Robust Input Functon (3 of 4)
// Uses iostream, cstdlib, and cctype:
void read_and_clean(int& n)
{

using namespace std;
const int ARRAY_SIZE = 6;
char digit_string[ARRAY_SIZE];
char next;
cin.get(next);
int index = 0;

while (next != '\n')

{ if ((isdigit(next)) && (index < ARRAY_SIZE - 1))
{

digit_string[index] = next;
index++;

}
cin.get(next);

}
digit_string[index] = '\0';

n = atoi(digit_string);

} 51

Display 10.4 Robust Input Functon (4 of 4)
//Uses iostream:
void new_line()
{

using namespace std;
char symbol;
do
{ cin.get(symbol);
} while (symbol != '\n');

}

52

53 54

10.2 Multidimensional Arrays
Multidimensional Array Basics (1 of 2)

It is useful to have an array with more than one index. In C++, this
is implemented using an array with an array type as base type.
Such an array is declared as following:

char page[30][100];
There are 30*100 indexed variables for this array. The indexed
variables for this array are:

page[0][0], page[0][0], page[0][99]
page[1][0], page[1][1], page[1][99]
page[2][0], page[2][1], page[2][99]

. . .

. . .

. . .
page[29][0], page[29][1], . . . page[29][99]

Column index [][k]

Row
index
[k][]

55 56

Multidimensional Array Basics (2 of 2)

We said that a two-dimensional array is an array with a base type that is an
array type. In other words, two-dimensional array is an array of arrays.
The array

char page[30][100];
is a one dimensional array of size 30, whose base type is an array of size 100
with base type char.
Each entry in the array of size 30 is an array of char of size 100.
Most of the time the programmer can treat a two-dimensional array as if it
were an array with two indices.
There are two situations where being an arrays of arrays is evident:
One is when a function with an array parameter for a two dimensional array:
void display(const char p[][100], int size);
With a two-dimensional array parameter the first dimension is ignored even if
specified, and the compiler does not use it. This necessitates a size parameter.
This makes sense if you think of the multidimensional array parameter as an
array of arrays. The first dimension is the index, the rest describe the base
type.
With a higher-dimension array parameters the first dimension is (usually) not
specified, but all the rest of the dimensions must be specified.

57

630

58

A Programming Example
A Two-Dimensional Grading Program.

Display 10.5 presents a program that uses a two-dimensional array
named grade to store then display grade records for a small class.
The first index designates a student, the second designates a grade.
The grade of student 4 on quiz 1 is recorded in grade[3][0]
The program has an array, quiz_ave to hold a list of class averages
for each quiz over all student grades in the class, and an array
st_ave to hold a list of student averages over the quizes that student
has taken.

59

630
Display 10.5 Two-dimensional Array (1 of 5)

// Reads quiz scores for each student into the two-dimensional array grade

// Computes the average score for each student and the average score for

// each quiz. Displays the quiz scores and the averages.

#include <iostream>

#include <iomanip>

const int NUMBER_STUDENTS = 4, NUMBER_QUIZZES = 3;

void compute_st_ave(const int grade[][NUMBER_QUIZZES], double st_ave[]);
// Precondition: Global constant NUMBER_STUDENTS and NUMBER_QUIZZES
// are the dimensions of the array grade. Each of the indexed variables
// grade[st_num-1, quiz_num-1] contains the score for student st_num on
// quiz quiz_num.
// Postcondition: Each st_ave[st_num-1] contains the average for student number
// stu_num.

60

Display 10.5 Two-dimensional Array (2 of 5)

void compute_quiz_ave(const int grade[][NUMBER_QUIZZES], double quiz_ave[]);

// Precondition: Global constant NUMBER_STUDENTS and NUMBER_QUIZZES
// are the dimensions of the array grade. Each of the indexed variables
// grade[st_num-1, quiz_num-1] contains the score for student st_num
// on quiz quiz_num.
// Postcondition: Each quiz_ave[quiz_num-1] contains the average for quiz

numbered
// quiz_num.

void display(const int grade[][NUMBER_QUIZZES],
const double st_ave[], const double quiz_ave[]);

// Precondition: Global constant NUMBER_STUDENTS and
// NUMBER_QUIZZES are the dimensions of the array grade.
// Each of the indexed variables grade[st_num-1, quiz_num-1] contains
// the score for student st_num on quiz quiz_num. Each st_ave[st_num-1]
// contains the average for student stu_num. Each quiz_ave[quiz_num-1]
// contains the average for quiz numbered quiz_num.
// Postcondition: All the data in grade, st_ave, and quiz_ave have been output.

61

Display 10.5 Two-dimensional Array (3 of 5)

int main()
{

using namespace std;
int grade[NUMBER_STUDENTS][NUMBER_QUIZZES];
double st_ave[NUMBER_STUDENTS];
double quiz_ave[NUMBER_QUIZZES];

grade[0][0] = 10; grade[0][1] = 10; grade[0][2] = 10;
grade[1][0] = 2; grade[1][1] = 0; grade[1][2] = 1;
grade[2][0] = 8; grade[2][1] = 6; grade[2][2] = 9;
grade[3][0] = 8; grade[3][1] = 4; grade[3][2] = 10;

compute_st_ave(grade, st_ave);
compute_quiz_ave(grade, quiz_ave);
display(grade, st_ave, quiz_ave);
return 0;

}

62

Display 10.5 Two-dimensional Array (4 of 5)
void compute_st_ave(const int grade[][NUMBER_QUIZZES], double st_ave[])
{

for (int st_num = 1; st_num <= NUMBER_STUDENTS; st_num++)
{ //Process one st_num:

double sum = 0;
for (int quiz_num = 1; quiz_num <= NUMBER_QUIZZES; quiz_num++)

sum = sum + grade[st_num-1][quiz_num-1];
// sum contains the sum of the quiz scores for student number st_num.
st_ave[st_num-1] = sum/NUMBER_QUIZZES;
// Average for student st_num is the value of st_ave[st_num-1]

}
}
void compute_quiz_ave(const int grade[][NUMBER_QUIZZES], double quiz_ave[])
{

for (int quiz_num = 1; quiz_num <= NUMBER_QUIZZES; quiz_num++)
{ //Process one quiz (for all students):

double sum = 0;
for (int st_num = 1; st_num <= NUMBER_STUDENTS; st_num++)

sum = sum + grade[st_num-1][quiz_num-1];
// sum contains the sum of all student scores on quiz number quiz_num.
quiz_ave[quiz_num-1] = sum/NUMBER_STUDENTS;
// Average for quiz quiz_num is the value of quiz_ave[quiz_num-1]

}
}

63

Display 10.5 Two-dimensional Array (5 of 5)

// Uses iostream and iomanip:
void display(const int grade[][NUMBER_QUIZZES],

const double st_ave[], const double quiz_ave[])
{ using namespace std;

cout.setf(ios::fixed);
cout.setf(ios::showpoint);
cout.precision(1);

cout << setw(10) << "Student"
<< setw(5) << "Ave"
<< setw(15) << "Quizzes\n";

for (int st_num = 1; st_num <= NUMBER_STUDENTS; st_num++)
{ // Display for one st_num:

cout << setw(10) << st_num
<< setw(5) << st_ave[st_num-1] << " ";

for (int quiz_num = 1; quiz_num <= NUMBER_QUIZZES; quiz_num++)
cout << setw(5) << grade[st_num-1][quiz_num-1];

cout << endl;
}

cout << "Quiz averages = ";
for (int quiz_num = 1; quiz_num <= NUMBER_QUIZZES; quiz_num++)

cout << setw(5) << quiz_ave[quiz_num-1];
cout << endl;

} 64

65

634_01

66

634_02

67

3D Arrays

x

z

y

Coordinate
System

int A[Z_dim][Y_dim][X_dim];

X_dim - 1

Y_dim - 1

Z_dim - 1

[0][0][0]

Z

Y

X

A[Z][Y][X]

Fastest-varying indexSlowest-varying index 68

3D Arrays – demo LONI_Viz

69

2 Dice Modeling Program

Write a program that simulates the rolling of two dice.The
program should use rand to roll the first die and should use
rand again to roll the second die.The sum of the two values
should then be calculated. Note:Since each die can show an
integer value from 1 to 6,then the sum of the two values will

vary from 2 to 12,with 7 being the most frequent sum and 2 and
12 being the least frequent sums. The figure below shows the 36
possible combinations of the two dice. Our program should roll
the two dice 36,000 times. Use a single-subscripted array to tally

the numbers of times each possible sum appears. Print the
results in a tabular format. Also, determine if the totals are

reasonable (i.e.,there are six ways to roll a 7,so approximately
one sixth of all the rolls should be 7).

70

2 Dice Modeling Program

121110987

11109876

1098765

987654

876543

765432

Die 1

Die 2

654321

6

5

4

3

2

1

Probabilities 1/36 2/36 3/36 4/36 5/36

6/36=1/6

5/36

4/36

3/36

2/36

1/36

71

2 Dice Modeling Program –
Problem Understanding

1. roll the two dice 36,000 times.
2. Tally the numbers of times each possible sum appears.
3. Print the results in a tabular format.
4. Determine if the totals are reasonable.

72

2 Dice Modeling Program –
Top-Down Algorithmic Design

Main Driver

Class
DIE

Reporting
Module

Reasonableness
Module

73

2 Dice Modeling Program –
Modular Specifications - Main

Main Driver

-Instantiate two objects of type Die
-Request 36,000 die rolls from both objects
-Tally the observed sums and send them to

Reporter-Module for Printing
- Return 0, if all is Okay.

74

2 Dice Modeling Program –
Modular Specifications – Class Die

Class
DIE

-Abstract class which allows us to
roll any number of times a regular
die and obtain the observed values.

-Methods: int rollDie();
-Variables: int die_roll_value;
-Constructors: default Die();

Non-trivial: Die(int value);

75

2 Dice Modeling Program –
Modular Specifications – Reporting Module

Reporting
Module

void reportModule(int i2, int i3, int i4, . . . , int i12)
{ // Called with observed frequencies of Sums

// Reporting in tabular form these and the
// Expected sums for a pair of regular dice

}

76

2 Dice Modeling Program –
Modular Specifications – Reasonableness Module

Reasonableness
Module

Deals with and discusses how reasonable are
the OBSERVED Dice sums and the
EXPECTED ones. Are the Dice fair?!?

77

2 Dice Modeling Program –
Modular Specifications - Implementation

Main Driver

Class
DYE

Reporting
Module

Reasonableness
Module

78

2 Dice Modeling Program –
Modular Specifications - Testing

Main Driver

Class
DYE

Reporting
Module

Reasonableness
Module

79

2 Dice Modeling Program –
Modular Specifications – Analysis and ReSpecification

Main Driver

Class
DYE

Reporting
Module

Reasonableness
Module

80

2 Dice Modeling Program –
Modular Specifications

Main Driver

Class
DYE

Reporting
Module

Reasonableness
Module

81

Arrays of cstrings

A cstring is an array of base type char.
Consequently an array of cstrings is a two-dimensional array of
base type char.
A cstring must hold a null terminator, ‘\0’, so each element of this
array of 5 cstrings can hold at most 19 characters:

char name[5][20];
Like any array, you can manipulate an array of cstrings by using
both index values in nested loops.
It is nicer to treat the cstrings as entities:
coutcoutcoutcout << “Enter 5 names, one per line:<< “Enter 5 names, one per line:<< “Enter 5 names, one per line:<< “Enter 5 names, one per line:\\\\n “;n “;n “;n “;
for (for (for (for (intintintint index = 0; index < 5; index++)index = 0; index < 5; index++)index = 0; index < 5; index++)index = 0; index < 5; index++)
cincincincin....getlinegetlinegetlinegetline(name[index], 20);(name[index], 20);(name[index], 20);(name[index], 20);

Output to the screen is also straightforward:
for (for (for (for (intintintint index = 0; index < 5; index++)index = 0; index < 5; index++)index = 0; index < 5; index++)index = 0; index < 5; index++)
coutcoutcoutcout << name[index] << << name[index] << << name[index] << << name[index] << endlendlendlendl;;;;

82

636

83

10.3 The C++ Standard stringstringstringstring class

Using cstrings with predefined cstring functions is not as safe as
we would like.

Using strcpy to copy a longer cstring to another (shorter) cstring
will overwrite memory that may be important to your program. If you
are fortunate, it will be only your program that is the casualty. Your
operating system may crash, or someone else’s program running
on the same system could generate errors.

84

Interface for the Standard Class string (1 of 4)

The Standard Library supplied class, string, provides far more utility
than the cstrings C++ gets by way of its C heritage.

Class strings behave very much like built-in data types and are far
safer than cstrings.
Let s1, s2, and s3 be objects of class string, and suppose s1 and s2
have string values. Then + may be used for concatenation:

s3 = s1 + s2;
Additional space needed is allocated for s3 automatically.
The default constructor (???) generates an empty string
There is a constructor that takes a cstring argument:

string phrase, word1(“Hello “), word2(“World”);
phrase = word1 + word2;
cout << phrase << endl;

The output will be
Hello World

85

Interface for the Standard Class string (2 of 4)

You can concatenate one string literal with a class string object:
string phrase, word1(“Hello“), word2(“World”);
phrase = word1 + “ “ + word2;
cout << phrase << endl;

The output will be
Hello World

This works because there is a constructor that converts from cstring
to class string objects. C++ sees word1 + “ “, sees a string on the
left of + looks for a string on the right of the +. Failing to find it, C++
looks and finds another overloading that has a cstring on the right.
Finding such an overloading, it proceeds.
If such an overloading were not found, C++ would look for a
constructor to convert from cstring to string.
An attempt such as

phrase = “Hello “ + “World “ + word2;
fails. The + operator groups from left to right, “Hello “ + “ World“ is
done first. This fails because there is no concatenation operator for
cstrings. 86

Interface for the Standard Class string (3 of 4)

The class string overloads the << (insertion) and
>> (extraction) operators with stream left
arguments and string right hand arguments with
familiar behavior.
Overloaded >> operator skips leading
whitespace and reads nonwhite characters up to
the next white space.
To get an entire line of input for cstrings, we
used the getline member of the istream class.
To get an entire line of input for class string
objects, we use a stand alone version of getline.

87

642

88

Interface for the Standard Class string (4 of 4)

Characteristic use of the getline function follow:

#include <#include <#include <#include <iostreamiostreamiostreamiostream>>>>

#include <string>#include <string>#include <string>#include <string>
using namespace std;using namespace std;using namespace std;using namespace std;
//. . .//. . .//. . .//. . .
string str1;string str1;string str1;string str1;
getlinegetlinegetlinegetline((((cincincincin, str1);, str1);, str1);, str1);
//insert into str1 all input up to ‘//insert into str1 all input up to ‘//insert into str1 all input up to ‘//insert into str1 all input up to ‘\\\\n’n’n’n’
////////getlinegetlinegetlinegetline discards the ‘discards the ‘discards the ‘discards the ‘\\\\n’n’n’n’

NOTE THAT class string objects do not range check index values.
If you want range checked indexing into strings, use the string
member function at(int_index).

str1.at(9); //Checks index value 9 for legality in str1.str1.at(9); //Checks index value 9 for legality in str1.str1.at(9); //Checks index value 9 for legality in str1.str1.at(9); //Checks index value 9 for legality in str1.
//If legal,returns the character at index value 9. //If legal,returns the character at index value 9. //If legal,returns the character at index value 9. //If legal,returns the character at index value 9.

89

Pitfall
Code That Depends on Order of Evaluation is Illegal. (1 of 2)

ANSI C++ does not specify the order of evaluation for terms in an
expression. Writing code that depends on the order of evaluation is
illegal. Unfortunately, most compilers do not catch this error. The
reason is code parallelization and optimization.

Example: (a + b) * (c + d)(a + b) * (c + d)(a + b) * (c + d)(a + b) * (c + d)

There is no guarantee whether a + b or c + d is evaluated first, nor
does it make any difference in this case.

HOWEVER -- There is a considerable difference here:

intintintint i = 0;i = 0;i = 0;i = 0;
coutcoutcoutcout << i << “ “ << i++ << << i << “ “ << i++ << << i << “ “ << i++ << << i << “ “ << i++ << endlendlendlendl; ; ; ;
// Some compilers evaluate the expressions i and i++ right// Some compilers evaluate the expressions i and i++ right// Some compilers evaluate the expressions i and i++ right// Some compilers evaluate the expressions i and i++ right
// to left before calling the operator << overloading,// to left before calling the operator << overloading,// to left before calling the operator << overloading,// to left before calling the operator << overloading,
// giving the result 1 0// giving the result 1 0// giving the result 1 0// giving the result 1 0
// A different compiler might give the result 0 1// A different compiler might give the result 0 1// A different compiler might give the result 0 1// A different compiler might give the result 0 1

90

Pitfall
Code That Depends on Order of Evaluation is Illegal. (2 of 2)

If you need such code, write it so that the sequence of evaluations of
the operations can be guaranteed:

intintintint i = 0;i = 0;i = 0;i = 0;

coutcoutcoutcout << i << “ “ ;<< i << “ “ ;<< i << “ “ ;<< i << “ “ ;

i++;i++;i++;i++;

coutcoutcoutcout << i++ << << i++ << << i++ << << i++ << endlendlendlendl; ; ; ;

// Some compilers evaluate the expressions i and i++ right// Some compilers evaluate the expressions i and i++ right// Some compilers evaluate the expressions i and i++ right// Some compilers evaluate the expressions i and i++ right

// to left before calling the operator << overloading,// to left before calling the operator << overloading,// to left before calling the operator << overloading,// to left before calling the operator << overloading,

// giving the result 1 0// giving the result 1 0// giving the result 1 0// giving the result 1 0

91

Programming Tip
The Ignore Member Function

With cin >> intVariable, everything entered beyond the integer just
read in will still be available on the input stream, ready for further
extraction. This includes the return key pressed to make the line of
data available.

This data will cause the getline function to misbehave.

We presented one fix, the new_line function, remember?

A standard fix is to use the predefined cin member function ignore,
whose prototype is

istream& ignore(int count, char delimiter);

This function will read count characters unless it reads a delimiter
character first. All the characters are discarded.

92

Pitfall
Mixing cincincincin >> variable>> variable>> variable>> variable and getlinegetlinegetlinegetline can lose input.

Careless mixed use of cin >> variable and getline can lose data in
strange ways.

cin >> variable skips leading whitespace and leaves the newline (‘\n’)
character on the input stream.

getline reads everything up to and including the ‘\n’, keeps the data
and discards the ‘\n’.

Use of cin >> variable leaves a ‘\n’ that makes a getline see an empty
string.

Use the new_line function from the text or

cin.ignore(10000, ‘\n’);

to discard up to 10,000 characters or up to the newline.

93

Programming Example
Palindrome Testing (1 of 2)

In PIC 10A we had a HW problem that determines whether a string
is a palindrome.

A palindrome has the same characters read front to back as it does
read back to front. Examples (ignore punctuation, case, and
blanks):

Able was I ere I saw Elba.

Madam, I’m Adam.

Rats live on no evil star.

Back then we did not have access to the following string facilities:

string str; // default constructor - defines empty string

getline(cin, str); // fetches an entire line of input

isPal(str) // boolean function that tests for palindrome
94

Programming Example
Palindrome Testing (2 of 2)

The isPal funtion defines a string containing the characters we want
removed (punctuation and space)

Makes a working copy (Str) of the reference parameter

forces working copy to all lower case

makes a copy (lowerStr) of working string with punctuation removed

returns the results of comparing work reverse(working string)

makeLower cycles through all the characters in its parameter,
returning a string all of whose characters has any uppercase
characters replaced by corresponding lowercase letters.

removePunct uses the string member function substr and find.

Display 10.10 Palindrome Testing Program (1 of 5)
// test for palindrome property

#include <iostream>
#include <string>
#include <cctype>
using namespace std;

void swap(char& lhs, char& rhs);
// swaps char args corresponding to parameters lhs and rhs

string reverse(const string& str);
// returns a copy of arg corresponding to parameter
// str with characters in reverse order.

string removePunct(const string& src,
const string& punct);

// returns copy of string src with characters
// in string punct removed

string makeLower (const string& s);
// returns a copy of parameter s that has all upper case
// characters forced to lower case, other characters unchanged.
// Uses <string>, which provides tolower

bool isPal(const string& this_String);
// uses makeLower, removePunct. If this_String is a palindrome,
// return true; else return false;

95

Display 10.10 Palindrome Testing Program (2 of 5)

int main()
{ string str;

cout << "Enter a candidate for palindrome test "
<< "\nfollowed by pressing return.\n";

getline(cin, str);
if (isPal(str)) cout << "\"" << str + "\" is a palindrome ";
else cout << "\"" << str + "\" is not a palindrome ";
cout << endl;
return 0;

}

void swap(char& lhs, char& rhs)

{ char tmp = lhs;
lhs = rhs;
rhs = tmp;

}

96

Display 10.10 Palindrome Testing Program (3 of 5)

string reverse(const string& str)
{ int start = 0;

int end = str.length();
string tmp(str);

while (start < end)
{ end--;

swap(tmp[start], tmp[end]);
start++;

}
return tmp;

}

// Returns arg that has all upper case characters forced to lower case,
// other characters unchanged. makeLower uses <string>, which
// provides tolower
string makeLower(const string& s) //uses <cctype>
{ string temp(s); //This creates a working copy of s

for (int i = 0; i < s.length(); i++) temp[i] = tolower(s[i]);
return temp;

}
97

Display 10.10 Palindrome Testing Program (4 of 5)

// Returns a copy of src with characters in punct removed
string removePunct(const string& src, const string& punct)
{

string no_punct;
int src_len = src.length();
int punct_len = punct.length();
for(int i = 0; i < src_len; i++)
{ string aChar = src.substr(i,1);

int location = punct.find(aChar, 0);
// find location of successive characters of src in punct

if (location < 0 || location >= punct_len)
no_punct = no_punct + aChar; //aChar not in punct -- keep it

}
return no_punct;

}

98

Display 10.10 Palindrome Testing Program (5 of 5)

// uses functions makeLower, removePunct. Returned
// value: if this_String is a palindrome, return true;
// else return false;
bool isPal(const string& this_String)
{

string punctuation(",;:.?!'\" "); //includes a blank
string str(this_String);
str = makeLower(str);
string lowerStr = removePunct(str, punctuation);
return lowerStr == reverse(lowerStr);

}

99 100

650

Class
String

101

651

102

Arrays of string Revisited

Remember, string is a type that acts exactly like any
other type.

You can have arrays whose base type is string:
string list[20];

This is an arrray of 20 string objects.

This array can be filled as follows:

coutcoutcoutcout << “Enter 20 names, one per line: << “Enter 20 names, one per line: << “Enter 20 names, one per line: << “Enter 20 names, one per line: \\\\n”;n”;n”;n”;

for (for (for (for (intintintint i = 0; i < 20; i++) i = 0; i < 20; i++) i = 0; i < 20; i++) i = 0; i < 20; i++) getlinegetlinegetlinegetline((((cincincincin, list[i]);, list[i]);, list[i]);, list[i]);

Output is the same as for cstrings
for (for (for (for (intintintint i = 0; i < 20; i++)i = 0; i < 20; i++)i = 0; i < 20; i++)i = 0; i < 20; i++)

coutcoutcoutcout << list[i] << << list[i] << << list[i] << << list[i] << endlendlendlendl;;;;

103

Namespaces Revisited

Display 10.12 is a version of Display 10.10 where we
have handled the namespace issues differently.

Display 10.10 has only one using directive that applies to
the entire file: using namespace std;

In Display 10.12, we keep the scope of the using
directives to a single function, and do not place using
directives in swap because none is needed there.

Names in function headers are qualified with std::, as in
std::string.

Display 10.12 Careful Namespace Usage (1 of 6)
// test for palindrome property

#include <iostream>
#include <string>
#include <cctype>

void swap(char& lhs, char& rhs);
// swaps char args corresponding to parameters lhs and rhs

std::string reverse(const std::string& str);
// returns a copy of arg corresponding to parameter
// str with characters in reverse order.

std::string removePunct(const std::string& src, const std::string& punct);
// returns copy of string src with characters in string punct removed

std::string makeLower (const std::string& s);
// returns a copy of parameter s that has all upper case
// characters forced to lower case, other characters unchanged.
// Uses <string>, which provides tolower

bool isPal(const std::string& this_String);
// uses makeLower, removePunct. If this_String is a palindrome,
// return true; else return false;

104

Display 10.12 Careful Namespace Usage (2 of 6)

int main()
{ using namespace std;

string str;
cout << "Enter a candidate for palindrome test "

<< "\n followed by pressing return.\n";
getline(cin, str);
if (isPal(str))

cout << "\"" << str + "\" is a palindrome ";
else

cout << "\"" << str + "\" is not a palindrome ";
cout << endl;
return 0;

}

105

Display 10.12 Careful Namespace Usage (3 of 6)

void swap(char& lhs, char& rhs)
{ char tmp = lhs;

lhs = rhs;
rhs = tmp;

}

std::string reverse(const std::string& str)
{ using namespace std;

int start = 0;
int end = str.length();
string tmp(str);

while (start < end)
{ end--;

swap(tmp[start], tmp[end]);
start++;

}
return tmp;

}
106

Display 10.12 Careful Namespace Usage (4 of 6)

// Returns arg that has all upper case characters forced
// to lower case, other characters unchanged. makeLower
// uses <string>, which provides tolower
std::string makeLower(const std::string& s) //uses<cctype>
{

using namespace std;
string temp(s); //This creates a working copy of s
for (int i = 0; i < s.length(); i++)

temp[i] = tolower(s[i]);
return temp;

}

107

Display 10.12 Careful Namespace Usage (5 of 6)
// Returns a copy of src with characters in punct removed

std::string removePunct(const std::string& src, const std::string& punct)

{
using namespace std;
string no_punct;

int src_len = src.length();
int punct_len = punct.length();
for(int i = 0; i < src_len; i++)
{ string aChar = src.substr(i,1);

int location = punct.find(aChar, 0);
// find location of successive characters of src in punct

if (location < 0 || location >= punct_len)
no_punct = no_punct + aChar; //aChar not in punct -- keep it

}
return no_punct;

}
108

Display 10.12 Careful Namespace Usage (6 of 6)

// uses functions makeLower, removePunct. Returned value:
// if this_String is a palindrome, return true; else return false;

bool isPal(const std::string& this_String)
{

using namespace std;
string punctuation(",;:.?!'\" "); //includes a blank
string str(this_String);
str = makeLower(str);
string lowerStr = removePunct(str, punctuation);
return lowerStr == reverse(lowerStr);

}

109 110

657-58

