
1

UCLA PIC 10 B
Problem Solving using C++ Programming

Instructor: Ivo Dinov, Asst. Prof. in

Mathematics, Neurology, Statistics

Teaching Assistant:, Suzanne Nezzar, Mathematics

University of California, Los Angeles, Summer 2001

http://www.math.ucla.edu/~dinov/10b.1.011/

2

Chapter 11
Pointers and Dynamic Arrays

3

Pointers and and Dynamic Arrays

Pointers
Pointer Variables

Basic Memory Management

Static, Dynamic, and Automatic Variables

Dynamic Arrays
Array Variables and Pointer Variables

Pointer Arithmetic (Optional)

Classes and Dynamic Arrays
Destructors

Copy Constructors

Overloading the Assignment Operator

11

4

Pointers and and Dynamic Arrays

A pointer is a construct that gives you more

control of the computer’s memory.

In this chapter we discuss pointers and a new

form of array called dynamic arrays.

Dynamic arrays are arrays whose size is

determined while the program is running

rather than at writing of the program.

11

5

11.1 Pointers
A pointer is the memory address of a variable.

Memory is divided into adjacent locations (bytes).

If a variable uses a number of adjacent locations, the address of the
location with the smallest address is the address of the variable.

An address that is used as to name a variable (by providing the
address where the variable starts) is called a pointer variable.

The address is said to point to a variable because it tells where the
variable is.

A pointer variable at 1007 can be pointed to by a pointer variable at
location 2096 by supplying the address 1007, in effect, “Its over there,
at 1007.”

We have used pointers in call-by-reference arguments and in array
names. The C++ system handles all this automatically. 6

Pointer Variables (1 of 3)

A pointer may have an address stored in it called a pointer variable.

A pointer variable has a pointer type, and holds pointer values.

This declares a pointer variable that can hold a pointer to double:

double ∗∗∗∗ dPtr;

This declares p1 and p2 to have type pointer to double, and v1 and v2
to have type double.

double ∗∗∗∗p1, ∗∗∗∗p2, v1, v2;

The asterisk, ∗∗∗∗, is used in two ways.

In this declaration, the asterisk, ∗∗∗∗, is a pointer declarator. We won’t use
this term much, but you should remember this for future reference.

In the expression ∗∗∗∗ p1, the asterisk is called the dereferencing operator,

and the pointer variable p1 is said to be dereferenced. The meaning is
“The value where the pointer p1 points.”

7

Review, Thursday, July 05, 2001
PIC 10 B

- Finished the description of the string objects:
cin.ignore(10000, ‘\n’); // vs. new_line(istream& is); function

Palindrome test for an arbitrary string (design, implementation)

HTML source code description of your C++ software (see PIC10B

class-notes page online).

- Started with Pointers and dynamic arrays
double ∗∗∗∗p1, ∗∗∗∗p2, v1, v2;

The asterisk, ∗∗∗∗, is used in two ways. 1. declaration of a pointer type
variable. 2. In arithmetic expressions: dereferencing operator.

8

Pointer Variables (2 of 3)

We speak of a pointer pointing rather than speaking of
addresses.

If pointer variable p1 contains the address of variable v1,
we say that p1 points to the variable v1 or p1 is a pointer to
variable v1.

Given the declaration, we can make p1 point to variable v1
by:

double ∗∗∗∗p1, v1; // declaration usage of *
p1 = &v1;

The & is the address-of operator. This statement assigns
the address of v1 to the pointer variable p1.

Example -- This code--
v1 = 0; p1 = &v1; ∗∗∗∗p1 = 42;
cout << v1 << “ “<< ∗∗∗∗p1 << endl; // de-referencing usage

Generates the output: 42 42

9

Pointer Variables (3 of 3)

We can assign the value of one pointer variable to another pointer
variable of the same type:

double ∗∗∗∗p1, ∗∗∗∗p2, v;

v1 = 78; // give v1 a value

p1 = &v; // make p1 point to (the address of) v1

p2 = p1; // assign p2 the value of p1, i.e., a pointer to v.

cout << ∗∗∗∗p2 << endl; // output is v’s value, 78.

Not all variables have to have program names:

p1 = new double; // allocates space for a (nameless) double variable.

The variable created with new can only be referred to using the pointer
value in p1:

cin >> ∗∗∗∗p1;

Variables created using the new operator are called dynamic variables. 10

680_01

11

681

12

682

Display 11.2 Basic Pointer Manipulations
// Program to demonstrate pointers and dynamic variables.
#include <iostream>
using namespace std;

int main()
{ int ∗∗∗∗p1, ∗∗∗∗p2;

p1 = new int;
∗∗∗∗p1 = 42; p2 = p1;
cout << "∗∗∗∗p1 == " << ∗∗∗∗p1 << “ ∗∗∗∗p2 == " << ∗∗∗∗p2 << endl;

∗∗∗∗p2 = 53;
cout << "∗∗∗∗p1 == " << ∗∗∗∗p1 << “ ∗∗∗∗p2 == " << ∗∗∗∗p2 << endl;

p1 = new int; ∗∗∗∗p1 = 88;
cout << "∗∗∗∗p1 == " << ∗∗∗∗p1 << endl << "∗∗∗∗p2 == " << ∗∗∗∗p2 <<
endl;
return 0;

}
13 14

Pointer Variables Used with =

If p1 and p2 are pointer variables, then the statement

p2 = p1;

will change p1 so that it points to the same variable that
p2 currently points to.

Unless measures are taken, any memory pointed to by
p1 is lost.

15

685

16

686

Basic Memory Management

Where are variables created with the operator new?
There is an area of memory called the heap, that is reserved for

dynamic variables. The word comes from C++’s heritage in the C
language. The C++ Standard and other writers use freestore

instead of heap because there is an important data structure name
heap. Our text follows the C heritage.
Regardless of size, it is possible to consume all of heap memory with
a large number of calls to new with a large data type. In this event, a
program will use all heap memory then fail.
A facility is provided to reclaim unused heap memory.
The deletedeletedeletedelete operator when applied to a pointer that points to memory
allocated with new will release that memory, making it available for
reallocation by further calls to new. It is an error to apply delete to a
pointer twice and it is an error to apply delete to memory that was not
allocated with new.

17 18

688_01

19

688_02 Pitfall: Dangling Pointers

If two pointers point to the same variable in the heap, and the delete
operator is applied to one of them, the other still points where it did,
but the memory no longer is allocated. That pointer to de-allocated
memory is called a dangling pointer.

Two remarks: The pointer that delete was applied to may or may not
still be pointing where it was before deletion. The memory that was
pointed to may or may not still have the same value stored in it.
Use of a dangling pointer or a deleted pointer is very dangerous.
Though illegal, few compilers detect use of such pointers.
The worst part is that both the deleted and dangling pointers may
point to the same place they did before deletion and the value stored
there may not have been changed. Your program works seemingly
correctly until you change some other part, then it is nearly
impossible to find the error.
Anything done to find a use of a dangling pointer is worth the effort.

20

Static Variables and Automatic Variables

Variables created with new and destroyed with delete are called
dynamic variables .
Ordinary variables that we have been defining (local variables defined
in a block) are called automatic variables. They are created
automatically and destroyed automatically.
Variables declared outside any function or class are called global
variables. Global variables are accessible in any function after the
global is defined, and in any file where the global is declared.
Significant use of global variables makes code hard to understand.
We do not use globals, and outside operating systems and a very few
other situations, you will not need them.
C uses the keyword static with variables defined outside any function
or struct to prevent visibility from within other files. C++ has had this
usage but the Standard deprecated it. (Deprecated: The next compiler
version warns about deprecated usage, the next version is permitted
to generate an error message). C++ uses unnamed namespaces to
make names invisible outside a file. 21 22

Programming Tip:
Define Pointer Types(1 of 2)

Writing clear code is essential. C++ provides the typedef mechanism
to give a name a type value.
With the typedef statement:

typedef int* IntPtr; // make IntPtr carry int* information

The two definitions define p1 and p2 to be int pointers.
IntPtr p1;

int *p2;

To create a typedef as an alias for a type, define an identifier with that
type:

double *dPtr;

Then place typedef in front:
typedef double *dPtr;
dPtr dp;

dPtr carries pointer to double type.

23

Programming Tip:
Define Pointer Types(2 of 2)

With these type definitions we can:

declare several pointer variables in one definition:

Dptr dp1, dp2, dp3;

pass a pointer by reference with clarity:

void sample(Dptr & ptr);

rather than writing:

void sample(double ∗∗∗∗& ptr);
// Is it ∗∗∗∗& or &∗ ?? ∗ ?? ∗ ?? ∗ ?? −−−− Typedef knows!

24

691

25

11.2 Dynamic Arrays
Array Variables and Pointer Variables

Given the following definitions,
int a[10];
typedef int ∗∗∗∗ IntPtr;
IntPtr p;

a and p are very close to having the same type.
Both have the same base type.
If p is assigned a pointer to some memory, then both may be indexed.
p may be assigned a’s value:

p = a;

This is how a and p are different: you CANNOT assign to a.

a = p; // ILLEGAL

Display 11.4 Array and Pointer Variables
//Program to demonstrate that an array variable is a kind of pointer

variable.
#include <iostream>
using namespace std;
typedef int∗∗∗∗ IntPtr;
int main()
{ IntPtr p;

int a[10];
int index;
for (index = 0; index < 10; index++) a[index] = index;
p = a;
for (index = 0; index < 10; index++) cout << p[index] << " ";
cout << endl;

for (index = 0; index < 10; index++) p[index] = p[index] + 1;

for (index = 0; index < 10; index++) cout << a[index] << " ";
cout << endl;

return 0;

}
26

27

Size of Arrays up to this point has been defined at program writing.
We could not set the size of an array in response to a program’s need.
Dynamic arrays using the new operator fix this problem.

typedef double∗ ∗ ∗ ∗ DoublePtr;
DoublePtr d;
int size;
cout << “Enter the size of the array” << endl;
cin >> size;
d = new double[size];

To release the storage allocated for a dynamic array requires the
syntax

delete [] d;
to signal that the store pointed to by d was allocated as an array.
Notice the position of the [] in this statement.

Creating and Using Dynamic Arrays(1 of 2)

28

Creating and Using Dynamic Array(2 of 2)

Do NOT attempt to release the storage allocated for a dynamic array
using the syntax

delete d;
This is an error, but compilers do not usually detect this error.
The Standard says the results of this is “undefined”. This means the
Standard allows, the compiler writer freedom, to have the compiler do
anything convenient for the compiler writer in response to such code.

Even if your compiler does something useful in this case, you cannot
expect consistent behavior across compilers with such code.
Always use the syntax:

delete [] ptr;
when allocation was done in a manner similar to this:

ptr = new MyType[37];

29

695

Display 11.5 A Dynamic Array (1 of 4)
// Sorts a list of numbers entered at the keyboard.
#include <iostream>
#include <cstdlib>
#include <cstddef>
using namespace std;

typedef int* IntArrayPtr;

void fill_array(int a[], int size);
//Precondition: size is the size of the array a.
//Postcondition: a[0] through a[size-1] have been
//filled with values read from the keyboard.

void sort(int a[], int size);
// Precondition: size is the size of the array a.
// The array elements a[0] through a[size-1] have values.
// Postcondition: The values of a[0] through a[size-1] have been
// rearranged so that a[0] <= a[1] <= ... <= a[size-1].

void swap_values(int& v1, int& v2);
int index_of_smallest(const int a[], int start_index, int number_used);

30

Display 11.5 A Dynamic Array (2 of 4)

int main()
{ cout << "This program sorts numbers from lowest to highest.\n";

int array_size;
cout << "How many numbers will be sorted? ";
cin >> array_size;

IntArrayPtr a;
a = new int[array_size];

fill_array(a, array_size);
sort(a, array_size);
cout << "In sorted order the numbers are:\n";

for (int index = 0; index < array_size; index++)
cout << a[index] << " ";

cout << endl;

delete [] a; // Do NOT forget to release system resources

return 0;

} 31

Display 11.5 A Dynamic Array (3 of 4)
//Uses the library iostream:
void fill_array(int a[], int size)
{

cout << "Enter " << size << " integers.\n";
for (int index = 0; index < size; index++)

cin >> a[index];
}

void sort(int a[], int size)
{ int index_of_next_smallest;

for (int index = 0; index < size - 1; index++)
{ // Place the correct value in a[index]:

index_of_next_smallest =
index_of_smallest(a, index, size);

swap_values(a[index], a[index_of_next_smallest]);
// a[0] <= a[1] <=...<= a[index] are the smallest of the original array
// elements. The rest of the elements are in the remaining positions.

}
}

32

Display 11.5 A Dynamic Array (4 of 4)
void swap_values(int& v1, int& v2)
{ int temp;

temp = v1;
v1 = v2;
v2 = temp;

}

int index_of_smallest(const int a[], int start_index, int number_used)
{ int min = a[start_index],

index_of_min = start_index;
for (int index = start_index + 1; index < number_used; index++)
{ if (a[index _of_min] < min)

{
min = a[index];
index_of_min = index;
//min is the smallest of a[start_index] through a[index]

}
}

return index_of_min;
}

33 34

Pointer Arithmetic (1 of 2)

You can do arithmetic with pointers and integers. The behavior is
easy to understand.
Consider the code:
typedef double * DoublePtr;
DoublePtr dPtr;
dPtr = new double[10];
At this point in the code, dPtr contains the address of indexed
variable dPtr[0].

The expression dPtr + 1 contains the address of dPtr[1]

The expression dPtr + 2 contains the address of dPtr[2]

. . .

What is happening?

35

Pointer Arithmetic (2 of 2)

What is happening is:
The compiler knows the size of a double.
When the program adds 1 to dPtr, the compiler generates code to
add the size of a ONE double to dPtr.
This generates the address of dPtr[1].
When the program adds 2 to dPtr, the compiler generates code to
add 2 times the size of a double to dPtr.
This is the address of dPtr[2].
In these loops that step through a dynamic array generate the
same output:

for (for (for (for (intintintint i = 0; i < size; i++)i = 0; i < size; i++)i = 0; i < size; i++)i = 0; i < size; i++)
coutcoutcoutcout <<*(<<*(<<*(<<*(dPtrdPtrdPtrdPtr + + + + ii) << " " ; // ii) << " " ; // ii) << " " ; // ii) << " " ; // + overload+ overload+ overload+ overload

for (for (for (for (intintintint i = 0; i < size; i++)i = 0; i < size; i++)i = 0; i < size; i++)i = 0; i < size; i++)

coutcoutcoutcout << << << << dPtrdPtrdPtrdPtr[i] << " " ;[i] << " " ;[i] << " " ;[i] << " " ; 36

11.3 Classes and Dynamic Arrays

A dynamic array, like an ordinary array, can have a class
or struct type as a base type.

A class or a struct can have a dynamic array as a
member.

The basic techniques are exactly as you expect.

However, there are some details when using classes and
dynamic arrays that, if neglected, can cause a disaster.

37

Programming Example:
A String Variable Class (1 of 3)

We talked about the Standard string type in Chapter 10, so we don't
need to write our own string class.

Nevertheless it is an excellent exercise to design and code a string
class. See Display 11.6 for the interface.

There are four StringVar constructors and a destructor.

An int parameter constructor that creates an empty StringVar
of size equal to the constructor's argument.

A default constructor that creates an empty StringVar with store
allocated of size 100 characters.
A constructor that creates StringVar object with the characters
from a cstring argument.
A copy constructor so we can pass a StringVar object to a
function as value parameters, return our string from a function,
and initialize one StringVar object from another StringVar object.

38

Programming Example:
A String Variable Class (2 of 3)

There is a destructor, ~StringVar() to release dynamically allocated
memory to the heap manager.
Details of the destructor are presented later.
See Display 11.7 for a simple demonstration program.

The constructors allocate a dynamic array of size depending on the
constructor. The StringVar object created is empty except for the
cstring constructor.

The constructor with the int parameter allocates a dynamic array of
size equal to the argument, and sets max_length to this value.
The default constructor allocates a dynamic array of size 100, and
sets max_length to 100.
The constructor with a cstring parameter allocates a dynamic array
of size equal to the argument size, and sets max_length to this
value.

39

Programming Example:
A String Variable Class (3 of 3)

The StringVar class is implemented using a dynamic
array. The implementation is in Display 11.8.
At definition of a StringVar object, a constructor is called
that defines a dynamic array of chars using the newnewnewnew
operator and initializes the object.
The array uses the null character, '\0', to indicate "past
the last" character as is done in a cstring.
Note that StringVar indicates end of string differently
from String from Display 10.11. There a separate int
value is used to record length. There are trade-offs, as in
everything in Computer Science and Information
Systems.

Display 11.6 Interface file for StringVar class (1 of 3)
// FILE strvar.h

// This is the INTERFACE for class StringVar whose
// values are strings. Note that you use (max_size), not
// [max_size] StringVar Your_object_Name(max_size);
// max_size is the longest string length allowed.
// max_size can be a variable
#ifndef STRVAR_H
#define STRVAR_H
#include <iostream>
using namespace std;

namespace savitchstrvar
{ // class StringVar

40

Display 11.6 Interface file for StringVar class (2 of 3)

class StringVar
{
public:

StringVar(int size);
// Initializes the object so it can accept string values up to size in length.
// Sets the value of the object equal to the empty string.

StringVar();
// Initializes the object so it can accept string values of length 100 or less.
// Sets the value of the object equal to the empty string.

StringVar(const char a[]);
// Precondition: The array a contains characters terminated with ’\0’.
// Initializes the object so its value is the string stored in a and
// so that it can later be set to string values up to strlen(a) in length

StringVar(const StringVar& string_object);
//Copy constructor.

~StringVar();
// Returns all the dynamic memory used by the object to the heap.

41

Display 11.6 Interface file for StringVar class (3 of 3)
int length() const;
// Returns the length of the current string value.

void input_line(istream& ins);
// Precondition: If ins is a file input stream, then ins has already been
// connected to a file.
// Action: The next text in the input stream ins, up to ’\n’, is copied to the
// calling object. If there is not sufficient room, then only as much as
// will fit is copied.

friend ostream& operator <<(ostream& outs, const StringVar& the_string);
// Overloads the << operator so it can be used to output values of type
// StringVar
// Precondition: If outs is a file output stream, then outs
// has already been connected to a file.

private:
char ∗∗∗∗value; //pointer to the dynamic array that holds the string value.
int max_length; //declared max length of any string value.

};
} // savitchstrvar
#endif // STRVAR_H 42

Display 11.7 Program using StringVar class
#include <iostream>
#include "strvar.h"
using namespace std;
using namespace savitchstrvar;

void conversation(int max_name_size);
// Carries on a conversation with the user.

int main()
{ conversation(30);

cout << "End of demonstration.\n";
return 0;

}

// This is only a demonstration function:
void conversation(int max_name_size)
{ StringVar your_name(max_name_size), our_name(“PIC10B");

cout << "What is your name?\n";
your_name.input_line(cin);
cout << "We are " << our_name << endl;
cout << "We will meet again " << your_name << endl;

} 43

Display 11.8 Implementation of StringVar (1 of 3)
// FILE: strvar.cpp IMPLEMENTATION of the class StringVar.
#include <iostream>
#include <cstdlib>
#include <cstddef>
#include <cstring>
#include "strvar.h"

namespace savitchstrvar
{

//Uses cstddef and cstdlib:
StringVar::StringVar(int size)
{ max_length = size;

value = new char[max_length + 1]; // +1 is for '\0'.
value[0] = '\0';

}

//Uses cstddef and cstdlib:
StringVar::StringVar()
{

max_length = 100;
value = new char[max_length + 1]; // +1 is for '\0'.

value[0] = '\0';
}

44

Display 11.8 Implementation of StringVar (2 of 3)

// Uses cstring, cstddef, and cstdlib:

StringVar::StringVar(const char a[])
{ max_length = strlen(a);

value = new char[max_length + 1]; //+1 is for '\0'.
strcpy(value, a);

}

// Uses cstring, cstddef, and cstdlib:
StringVar::StringVar(const StringVar& string_object)
{ max_length = string_object.length();

value = new char[max_length + 1]; //+1 is for '\0'.
strcpy(value, string_object.value);

}
StringVar::~StringVar()
{ delete [] value; }

// Uses cstring:
int StringVar::length() const
{ return strlen(value); }

45

Display 11.8 Implementation of StringVar (3 of 3)

// Uses iostream:
void StringVar::input_line(istream& ins)
{

ins.getline(value, max_length + 1);
}

// Uses iostream:
ostream& operator <<(ostream& outs, const StringVar& the_string)
{

outs << the_string.value;
return outs;

}

} // savitchstrvar

46

47

Destructors (1 of 3)

A dynamic variable is ONLY accessible through a pointer variable

that tells where it is. Their memory is not released at the end of the

block where the local (automatic) variable was created. Memory

allocated for dynamic variables must be released by the

programmer.

This is true even if the memory is allocated for a local pointer to

point to, and the pointer goes away. The memory remains allocated,

and deprives the program and the whole computer system of that

memory until the program that allocated it stops.

For a badly behaved programs, this can cause the program or

maybe the operating system to crash.

48

Destructors (2 of 3)

If the dynamic variable is embedded in the implementation, a user
cannot be expected to know, and cannot be expected to do the
memory management, even in the unlikely event that facilities for
such are provided.

The good news is C++ has destructors that are implicitly called
when a class object passes out of scope.

If in a function, you have a local variable that is an object with a
destructor, when the function ends, the destructor will be called
automatically.

If defined correctly, the destructor will do what ever clean-up the
programmer intends, part of which is deleting dynamic memory
allocated in by the object's constructors.

49

Destructors (3 of 3)

A destructor's name is required to be the name of the class, except
the class name is prefixed by the tilde character, ~.
The member ~StringVar of the class StringVar is the destructor for
this class.
Examine the implementation of ~StringVar, and notice that it calls
delete to release the dynamic memory to the heap manager

50

Pitfall
Pointers as Call-by-Value Parameters (1 of 2)

If a call-by-value parameter is a pointer, the behavior can be subtle
and troublesome.
If a pointer call-by-value parameter is dereferenced inside a function,
the dereferenced pointer expression can be used to fetch the value
of the variable the pointer points to, or the expression can be used
to assign a value to the variable the pointer points to.
This is exactly the scenario in function void (IntPointer sneaky) in
Display 11.9.
There temp is a local variable, and no changes to temp go outside
the function. This does not extend to an expression that is a
dereferenced pointer parameters.
Dereferencing the pointer, temp, that is a copy of the argument that
points to a variable in main will make that variable accessible inside
the function.

51

Pitfall
Pointers as Call-by-Value Parameters (2 of 2)

If the parameter is struct or class object with a member
variable of a pointer type, changes can occur with a call-
by-value parameter.

Inadvertent and surprising changes can be controlled by
writing copy constructor for classes.

Display 11.9 A Call-by-Value Pointer Parameter
// Program to demonstrate the way call-by-value parameters
// behave with pointer arguments.
#include <iostream>
using namespace std;
typedef int* IntPointer;
void sneaky(IntPointer temp);

int main()
{ IntPointer p;

p = new int;
*p = 77;
cout << "Before call to function *p == " << *p << endl;

sneaky(p);
cout << "After call to function *p == " << *p << endl;
return 0;

}
void sneaky(IntPointer temp)
{ *temp = 99;

cout << "Inside function call *temp == " << *temp << endl;
} 52

53

710

54

Copy Constructors (1 of 8)

A copy constructor is a constructor that has one parameter that is a
reference to an object of the same type as the class.

In order to be able to copy const objects, the copy constructor
usually has a const reference parameter.

The reference parameter (&) is to break the implied infinite recursion
that would otherwise occur with the copy constructor.

Historical Note: With an early C++ compiler from a well known
company, if the & was omitted in the copy constructor, the result
was an out of memory system crash during compilation.

A copy constructor's purpose is just as the name implies: to
construct an object that is a copy of the argument object.

55

Copy Constructors (2 of 8)

Example:

StringVar line(20), motto("Constructors help!");
cout << "Enter a string of length 20 or less:\n";
line.input_line(cin);
StringVar temp(line); // copy constructor creates temp as duplicate

// of object line.
The constructor used is selected by the compiler based on the
argument.
In the first line, the argument 20 is an exact match for the int
parameter constructor.
In the second constructor, the "Constructors… " argument is an
exact match for the const char[] parameter.
In the last line, the argument is a StringVar object, which calls the
copy constructor.

56

Copy Constructors (3 of 8)

We have pointed out in these slides that a copy constructor is called

in several situations.

1. Any time C++ needs to make a copy of an object, the copy

constructor is called automatically. These situations are:

2. When a class object is being defined and initialized by another

object of the same type,

3. When a class object is the return value of a function,

4. when a class object is plugged in for a call-by-value parameter. The

copy constructor defines what "plugged in for" means.

57

Copy Constructors (4 of 8)

If there is no copy constructor, the members are copied according to

the default for the member:

Built-in types are just copied, which is fine.

Pointers are just copied too, which isn't "fine". You have two

pointers to the same memory. An example follows.

Copying fails members declared to be arrays.

Members that are class objects are also copied, using the copy

constructor for that class.

This is called Member-Wise copy. A student coined the

phrase, "Member UN-wise copy". Let's see why.

58

Copy Constructors (5 of 8)

Suppose that in the StringVar class, there is no copy constructor,
but there IS a destructor. Consider this code:

void show (void show (void show (void show (StringVarStringVarStringVarStringVar the_the_the_the_strstrstrstr))))

{{{{
coutcoutcoutcout <<"The String is: " << the_string << <<"The String is: " << the_string << <<"The String is: " << the_string << <<"The String is: " << the_string << endlendlendlendl;;;;

} } } }

//Suppose in another function we have this code://Suppose in another function we have this code://Suppose in another function we have this code://Suppose in another function we have this code:

StringVarStringVarStringVarStringVar greeting("Hello");greeting("Hello");greeting("Hello");greeting("Hello");

show(greeting);show(greeting);show(greeting);show(greeting);

coutcoutcoutcout << "after the call: " << greeting << << "after the call: " << greeting << << "after the call: " << greeting << << "after the call: " << greeting << endlendlendlendl;;;;

Copy Constructors (6 of 8)

greeting.value the_string.value

This is the situation before the function ends.
Since we used a call-by-value both greeting and

the_string are pointers to the same memory location.
59

"Hello""Hello""Hello""Hello"

Copy Constructors (7 of 8)

greeting.value the_string.value

This is the situation after the function ends. The
destructor has been called, invoking

delete[] the_string;
which makes the memory pointed to by greeting.value
and the_string.value have an undefined value.

60

UndefinedUndefinedUndefinedUndefined

61

Copy Constructors (8 of 8)

Object passed to a function by value was destroyed.
The destructor was invoked on a member-(un)wise COPY
of the object, which in turn destroyed the data common to
the local copy object and the argument object .
In contrast with many programming languages (Java in
particular) where the semantics of initialization and
assignment are identical, C++ make careful distinction
between initialization (done by the copy constructor) and
assignment (done by operator assignment overloading).
That’s why with cstring:: char A[10]=“ABC”; works, but A=“ABC”; doesn’t!

Initialization is done by the copy constructor which creates
a new object that is an identical copy of the argument.
The assignment operator modifies an already existing
object into a copy that is identical in all respects except
location to the right-hand side of the assignment .

62

714_01

63

714_02

64

Overloading the Assignment Operator(1 of 4)

If String1 and String2 are defined as follows:

StringVar sring1(10), sring2(20);
Suppose further that string2 has been given a value, this assignment
is defined, but the default definition is NOT defined in StringVar:

string1 = string2;

Like the copy constructor, the default operator assignment copies
members. The effect is as if we had access the private members and
these assignments were carried out:

string1.value = string2.value;

string1.max_length = string2.max_length;

The pointer members of string1 and string2 share the data that
belonged only to string2 before the assignment. This is member-
wise copy.

65

Overloading the Assignment Operator(2 of 4)

How do we fix this problem? Answer: We overload the = operator.
Operator = is one of four operators that must be overloaded as
regular members of a class; they cannot be overloaded as a friend.
class StringVar should be changed as follows:
class class class class StringVarStringVarStringVarStringVar

{{{{

public:public:public:public:

void operator=(void operator=(void operator=(void operator=(const const const const StringVarStringVarStringVarStringVar & & & & rhsrhsrhsrhs););););

// the remainder is the same as Display 11.6// the remainder is the same as Display 11.6// the remainder is the same as Display 11.6// the remainder is the same as Display 11.6

};};};};

Assignment is carried out just as we indicated earlier:
string1 = string2;

As in all operator overloading, this infix is converted to a call to the
operator= overloading function with the left hand member of the
assignment is the calling object, the right hand side is the argument.

66

Overloading the Assignment Operator(3 of 4)

When we implement operator =, we should check for unobvious
errors such as destroying the left hand side too soon. This would
cause a bug when the rhs and rhs are the same object, as in

string1 = string1;
We need to decide whether there is enough room in the left hand
side string to store the right hand side string. If not, they aren't the
same string, destroy the left hand side, allocate enough space then
copy.
If there is enough space we don't need to destroy lhs object, so we
proceed to copy the rhs object to the char array of the lhs.
You should note that our implementation returns void. This means
only that we cannot write a chain of assignments, as in

string1 = string2 = string3;
Implementing this involves changing the return type to StringVar and

returning the right hand side of the assignment. We leave this as an
assignment for the interested student.

67

Overloading the Assignment Operator(4 of 4)

// Final version of implementation// Final version of implementation// Final version of implementation// Final version of implementation

void void void void StringVarStringVarStringVarStringVar::operator=(::operator=(::operator=(::operator=(const const const const StringVarStringVarStringVarStringVar & & & & rhsrhsrhsrhs))))

{{{{

intintintint new_length = new_length = new_length = new_length = strlenstrlenstrlenstrlen((((rhsrhsrhsrhs.value);.value);.value);.value);

if (new_length > max_length) //not enough room in lhsif (new_length > max_length) //not enough room in lhsif (new_length > max_length) //not enough room in lhsif (new_length > max_length) //not enough room in lhs

{{{{

delete [] value; //delete [] value; //delete [] value; //delete [] value; //deallocatedeallocatedeallocatedeallocate lhs spacelhs spacelhs spacelhs space

max_length = new_length;max_length = new_length;max_length = new_length;max_length = new_length;

value = new char[max_length + 1];//allocate spacevalue = new char[max_length + 1];//allocate spacevalue = new char[max_length + 1];//allocate spacevalue = new char[max_length + 1];//allocate space

}}}}

for(for(for(for(intintintint i = 0; i < new_length; i++)//have space now,i = 0; i < new_length; i++)//have space now,i = 0; i < new_length; i++)//have space now,i = 0; i < new_length; i++)//have space now,

value[i] = value[i] = value[i] = value[i] = rhsrhsrhsrhs.value[i]; //copy data..value[i]; //copy data..value[i]; //copy data..value[i]; //copy data.

value[new_length] = 'value[new_length] = 'value[new_length] = 'value[new_length] = '\\\\0';0';0';0';

}}}} 68

719-20

