UCLA PIC10B

Problem Solving using C++ Programming

e Instructor: VO DinoV, asst. prof.in

Mathematics, Neurology, Statistics

e Teaching Assistant: suzanne Nezzar, Mathematics

University of California, Los Angeles, Summer 2001
http://www.math.ucla.edu/~dinov/10b.1.011/

Review, Wednesday, July 25, 2001
PIC10B

- Function Templates:

- Class templates:

- Shape template class for drawable
N-tagons

- Matrix template class

Chapter 14

Pointers and Linked Lists
pt—C T T T T T T T T TITTTTTITTTTIT]
Basic Problem:

Suppose we a data structure which is truly dynamic
and changes extremely often and we do not know
how many elements could this structure have even

dynamic
array

at run-time. E.g., An alphabetical ordering of all people
affiliated with UCLA at any one time. This is extremely
dynamic database. People come and go, still we need

to be able to obtain, order and process individual's

data (say payroll, enrollment, etc.) How should we design
and implement such a complex data structure?

14 Pointersand Linked Lists

o Nodes and Linked Lists

= Nodes

= Linked Lists

= Inserting a Node at the Head of a List

= Searching a Linked List

= Inserting and Removing Nodes Inside a List
o A Linked List Application

= Stacks

14 Pointersand Linked Lists - Notes

e Useful dynamically allocated variables are
normally of complex type struct or class.

® \We have already seen that dynamic variables are
useful in solution to some problems. But these
constructs are dynamic only at the time of
memory allocation. As soon as memory is
allocated dynamic objects become “static”, well
almost

14.1 Nodesand Linked Lists

e Alinked list is a list constructed of objects of
type structs or classes with pointer(s) and data.
The objects in the list are called nodes.

The nodes are dynamically allocated and
connected as the program requires (throughout
run-time).

The pointers enable connecting the nodes and
traversal of the linked list.

e Display 14.1 provides an example of a linked
(shopping) list. 7
° 6]
N

o,

Display 14.1 Nodes and Pointers

Nodes (1 of 6)

e Display 14.1 has boxes which we have connected by arrows.

e The boxes are called nodes and the arrows represent pointers.

e The value of the pointer is the address of the next node. Thus the
pointer points to an entire node, not to the individual items ("rolls"
or 10) stored in the node.

e Nodes may be implemented as struct or class objects.
e The nodes in Display 14.1 may be defined as:
const int STRING_SIZE = 10;
struct ListNode
{ char item[STRING_SIZE];
int count;
ListNode *1ink;
I
typedef ListNode * ListNodePtr;
e Order of definitions is important: the definition of struct ListNode
must precede the type definition. 8

803
head ———— .
| | "rolls" <= Descriptors
T e A
] Address of
l ! next element
Y
‘;jam”
\ 3
‘ Address of
| next element
1
"tea" ‘
.
end marker Address of
next element
Nodes (2 of 6)
e How do we get to the list?

In Display 14.1, the box labeled head is not a node, rather itis a
pointer variable of type allowing it to point to a node. It points to
the start of the list. It may be declared by:
ListNodePtr head;

We observe that the definition of ListNode is inductive (recursive).
The trouble with recursive definitions is when things do not stop.
This is alegal circularity.
An indication that this is a legal circularity is the fact that we can
draw pictures of objects that are defined.
In Display 14.1 and in the running program:

= There is a pointer variable, head, that points to a node

= that contains a pointer that points to another node

= that contains a pointer that points to another node and so on.

= Things stop when alink node contains a NULL pointer.

Nodes (3 of 6)

How do we access data in a node?

The pointer variable head points to the first node. We illustrate:

The variable head points to the first node, so ...

The expression +head is the first node, i.e., a dynamic variable, so ...

The expression +head can be used to access members using the dot

operator:

(*head) .count = 12;

e Why the parentheses? The short answer is:

e The dot operator . has higher precedence than the dereference
operator *.

e Thelong answer is:

= Inthe table in Appendix 2, on Page 913, we see that the dot operator .
is a postfix operator (second box in the table). These operators have
higher precedence than the prefix operators (in the third box in the
table), including the * operator.

10

Nodes (4 of 6)

C++ provides the arrow operator, & which is composed of the
minus (-) followed by the less than (>) to combine the effect of the
*and . operators:
head->count = 12; // EQ. (*head).count=12;
Spaces are usually placed around operators such as +,/, ==and =,
but with 9 this is not usually done.
The expression head->count may be used to fetch data from or
assign data to the count member of the dynamic variable pointed
to by head.
This works the same for any member of a struct or class object
pointed to by a pointer variable.
Display 14.2 uses the predefined (library) function strcpy declared
in the <cstring> header to copy "bagels" into the item member:
strcpy(head->item, "bagels");
Remember that = does not work for cstrings. You must use
strcpy instead. 11

Display 14.2 Accessing Node Data

805 head->count = 12;
strcpy(head->item, "bagels");
head head
"rolls" "bagels" |
-

10 12 |

|

struct ListNode .' .'

{ char item[10]; {Jam Jam
int count; 3 3
ListNode *1ink; | | |

} [

! Y Y

Nodes (5 of 6)

We said that inductive (circular) reference was OK as
long as things terminate.

Remember that recursion has base cases that must be
guaranteed to be reached.

Notice the list pointer member in the last node in
Display 14.2.

We do not see a pointer, rather we see NULL.

In Display 14.1 this is written as the non-C++ "end
marker", for that is what NULL does. NULL signals code
that traverses the list that this is the end of the list.

We introduced NULL in Chapter 11 where we noted that
NULL is defined as the const int 0. Our author and
many other writers prefer that you write this NULL
rather than 0.

13

806

The Arrow Operator ->
The arrow operator -> specifies a member of a struct (or a member of a class
obiject) that is pointed to by a pointer variable. The syntax is:
Pointer_Variable->Member_Name
The above refers to a member of the struct or object pointed to by the
Pointer_Variable. Which member it refers to is given by the Member_Name. For
example, suppose you have the following definition:
struct Record
{
int number;
char grade;
by
The following creates a dynamic variable of type Record and sets the member
variables of the dynamic struct variable to 2001 and *A’:

Nodes (6 of 6)

NULL is used for a number of purposes.

NULL is defined as a pointer value that is different from any other
pointer value.

NULL is used to assign a value to a pointer that otherwise would
not have a value (i.e. would have a garbage value left by the
previous user of that memory location.)

NULL is used to signal the end of a linked list.

Technically:

= A pointer has the null pointer value if it compares true (==) to the int
const 0.

= If a pointer is assigned the value of an expression that has the value 0,
C++ converts the int const 0 to the null pointer value that is appropriate
for the system.

Itis illegal to dereference a pointer that has the NULL pointer value.
"Null pointer dereferenced” tends to be a difficult error to find and
fi

ix.
15

Record *p;
p = new Record;
p->number = 2001;
p->grade = ’A’;
14
807

NULL

NULL is a special constant pointer value that is used to give a value to a pointer
variable that would not otherwise have a value. NULL can be assigned to a pointer
variable of any type. The identifier NULL is defined in a number of libraries
including the library with header file cstddef. With earlier compilers, the operator
new returned a NULL pointer value whenever new failed in its attempt to create a
dynamic variable. Current compilers "throw the exception std: :bad alloc." The
effect is to abort the program with an error message.

16

Linked Lists(1 of 2)

e Alinked list is alist of nodes where each node has a
member variable that is a pointer that points to the
next node in the list. (Let's call this member link.)

The first node is called the head.

There is a simple pointer variable that points to the
head called the head pointer.

The last node is not named, but the link member of the
last node has the NULL pointer value.

17

Linked Lists(2 of 2)

e A simplified node struct and a pointer type definition:
struct Node
{ int data;
Node * Tink;
i

typedef Node * NodePtr;
e We construct the start of a linked list of nodes of this type:

NodePtr head; // only a pointer so far
head = new Node; // allocate a node

head->data = 3; // set the data member
head->1ink = NULL; // set the link field to make
// this the end of the list.
head

N
—_ -

Review, Thursday, July 26, 2001
PIC 10B

- Started Ch. 14, linked-lists: /'O\
- @ O\

struct ListNode

{ char item[10]; O\
int count; (@)
ListNode *1ink; // recursive definition?!?

I

ListNode * head;
head = new ListNode;

strcpy(head>item, "bagels"); // vs.
strcpy((*head) .item, "bagels");

Inserting a Node at the Head of aList (1 of 3)

This section assumes that we have a linked list that
contains several nodes.

We write a function having two parameters: a node pointer
that points to the head of a list, and an int value for data.
This function inserts a node as the new head of the list
with the int value in the data field.

void head_insert(NodePtr& head, int the_number);
struct Node

{ int data;

Linked List Arguments Node * Tink;
You should always keep one pointer variable pointing -r{,pgdef Node* NodePtr;
to the head of a linked list. This pointer variable is a way
to_name the linked list. When you write a function that
takes a liked list as an argument, this pointer (that points
to the head of the linked list) can be used as the linked
list argument.

20

19
Inserting a Node at the Head of aList (2 of 3)
e Pseudo code for head_insert function
1. Create a new dynamic variable of type Node pointed to
by temp_ptr. (This is the new node. It can be referred to by
*temp_ptr)
2. Assign the data member of the new node the new data.
3. Make the 1ink member of the new node point to the head
node.
4. Make the pointer variable head point to the new node.
e Display 14.3 has a diagram of this algorithm.
® Steps 2 and 3 are expressed by the C++ code: |1, T = new Node;
temp_ptr->link = head; 2. T>data=5;
head = temp_ptr; 3. Tlink=head;
e Display 14.4 has the complete code. 4, Head=T;
21

Inserting a Node at the Head of aList (3 of 3)

A list with nothing in it is called an empty list.
A list is named by the pointer that points to the head of the
list but an empty list does not have any nodes at all.
To specify an empty list, the head pointer has the NULL
pointer value.
Create an empty list by declaring a head pointer initialized
with the pointer the value NULL.

NodePTr empty_head = NULL;
When designing a function to manipulate a linked list.
always check to see if it works on the empty list.
Display 14.4 was designed with the non-empty list as
model.
You should check that it works for an empty list as well.

22

Display 14.3 Adding a Node to a Linked List

Set up new node temp_ptr->Tink = head;

811 s s 5
emp_ptr o emp_ptr o
- -
e B I —
'
head head
15 ‘ 15
- - -
I
v Y

3 3
NULL

head = temp_ptr;
temp_ptr

head

23

Display 14.4 Function to Add a Node at the Head of a
Linked List (1 of 2) Prototype:

struct Node

{ int data;
Node #link;

b

typedef Node* NodePtr;

void head_insert(NodePtr& head, int the_number);
/IPrecondition: The pointer variable head points to the
I head of a linked list.

/IPostcondition: A new node containing the_number has
l been added at the head of the linked list.

24

Display 14.4 Function to Add a Node at the Head of a
Linked List (2 of 2)

Function Definition:

void head_insert(NodePtr& head, int the_number)
{
NodePtr temp_ptr;
temp_ptr = new Node;
temp_ptr->data = the_number;
temp_ptr=dlink = head; /M See next slide
head = temp_ptr;
/INOTE: that temp_ptr is deleted as soon as head_insert completes ...
/I But, before that in addr(head) we have the temp_ptr node saved ...

}

25

Pitfall: Losing Nodes

e |f you write the assignment statements in your version of
head_insert, you will chop off the end of your list and lose it.

e Display 14.5 shows this situation.

e Do NOT assign the head pointer before assigning the link:
head = new Node; // temp_ptr = new Node;

head>data =the_number; // temp_ptr->data = the_number;
head>1ink = head; // head = temp_ptr;

// tremp_ptr->1ink = head;
//loses the rest of the list
e The link pointer points to the node, not to the rest of the list.
e Therest of the list is an orphan. Your program has no way to
access the rest of the list.
e A carefully drawn sketch is worth a thousand lines of code.

26

814 Display 14.5 Lost Nodes

head
‘7‘ 12

15

27

Searching a Linked List(1 of 5)

e We use the same node type we have seen.
struct Node
{ int data;
_Node * Tink;
‘}‘)‘/pedef Node* NodePtr;
e The function search will have two arguments:
= head, of type NodePtr, that points to the head of alist to
be searched.
= target, an intthatis the value being sought.
e |f target is present, the function returns a pointer to the
first node that contains target, otherwise the function
returns the NULL pointer value.

28

Searching aLinked List(2 of 5)

e We use alocal pointer, here, to step through the list in the
search.

e To step through the list we must follow the pointers.

We start by assigning our local pointer, here, the value of

the head pointer. The details are in Display 14.6.

e The Prototype is: ode sdata

NodePtr search(NodePtr head, int target);
//Precondition: The pointer head points to the

// head of a 1inked 1ist.

// The pointer variable in the last node is NULL.
// If the 1ist is empty, then head is NULL.
//Returns a pointer that points to the first node
// that contains the target. If no node contains
// the target, the function returns NULL.

29

Searching a Linked List(3 of 5)

e Pseudocode for search:

make the local pointer variable, here , point to the
head node of the Tinked Tist.

while (here is not pointing to a node containing target
and here is not pointing to the last node)
Make here point to the next node in the list.

if (the node pointed to by here contains target)
return here;

else
return NULL;

30

Searching a Linked List(4 of 5)

To move a pointer in the list, we must use the pointers available.
The pointer to the node after here is

here->1ink
To move here to the next node after the node here points to ,we
make the assignment:
We have this preliminary version of the search function body:
here = head;

while(here->data != target && here->1ink != NULL)
here = here->1ink;

if (here->data == target)
else return NULL;

return here;

Searching a Linked List(5 of 5)

We still must handle the special case of an empty list.

The preliminary code fails for an empty list.

The error is caused by a null pointer dereference.

When we search an empty list, the local pointer variable here is
assigned from the parameter head which has the null pointer
value.

e This makes the following expressions are illegal:

here->data

and
here->1ink
e because both are null pointer dereference errors.
e Display 14.7 presents the complete function definition.

32
Display 14.7 Function to Locate a Node in a linked list (1 of 2)
Prototypes:
struct Node
{ intdata;
Node *link;
I
typedef Node* NodePtr;
NodePtr search(NodePtr head, int target);
/I Precondition: The pointer head points to the head of a
I linked list.
1 The pointer variable in the last node is NULL.
1 If the list is empty, then head is NULL.
/IReturns a pointer that points to the first node that
1 contains the target. If no node contains the target,
1 the function returns NULL.
34

31
Display 14.6 Searching a Linked List
target /6
head) head .
815 - -
here ! nere !
P A
s .
A A
3 3
NULL NULL
head) head)
here Y Y
o 1
! here !
A A
3 3
NULL NULL 33
Display 14.7 Function to Locate a Node in alinked list (2 of 2)
Function Definition:
/lUses cstddef:
NodePtr search(NodePtr head, int target)
NodePtr here = head;
if (here == NULL)
return NULL: Empty list case
else
{
while (here->data != target && here->link != NULL)
here = here=->link;
if (here->data == target)
return here;
else
return NULL;
}
35

Inserting and Removing Nodes
Insidealist (10of 2)

e There are many reasons for inserting into alist other than
at the ends. E.g., maintaining a list in some order will
necessitate insertion in the middle.

e We design a function to insert a node after a specified node
in alinked list (named appropriately) insert.

e The function returns void, and takes two parameters:
- atype NodePtr parameter after_me that specifies the
node after which the new node is to be inserted.
- an int parameter the_number that is used to initialize the
data member of the new node.

36

Inserting and Removing Nodes
Insidealist (2 0f 2)

The prototype and implementation for insert are given in
Display 14.9.

The initial setup is similar to head_insert.

The difference is that now we want to insert not at the head
but after the head.

Display 14.8 presents a sketch of the insertion process.

e Here is C++ code:
// add a 1ink from the new node to the Tist:
temp_ptr->1link = after_me->11ink;
// add a 1ink from the 1ist to the new node:
after_me->1ink = temp_ptr;

819
Display 14.8 Inserting in the Middle of a Linked List

head

New Node

after_me
temp_ptr

NULL

37
Display 14.9 Function to Add a Node in the Middle of
alinked list (1 of 2)
Prototypes:
struct Node
{ intdata;
Node *link;
If
typedef Node* NodePtr;
void insert(NodePtr after_me, int the_number);
/IPrecondition: after_me points to anodein a
I linked list.
/IPostcondition: A new node containing the_number
I has been added after the node pointed to
I by after_me.
39

Review, M onday, July 30, 2001

PIC10B
- Linked-lists: LT = now Node, /'O\K‘
struct Node 2 T data=5:; o Y
{ intdata; .)) ‘ ‘O\
Node *link; 3. T>link=head; ®
¥ 4. Head=T; New Qode

typedef Node* NodePtr;

void head_insert(NodePtr& head, int the_number);
/lPrecondition: The pointer variable head points to the head of alinked list.
//Postcondition: A new node containing the_number has been added at the head
NodePtr search(NodePtr head, int target);

void insert(NodePtr after_me, int the_number); // Just Started
/IPrecondition: after_me points to anode in alinked list.
/IPostcondition: A new node containing the_number

/I has been added after the node pointed to by after_me. 40

Display 14.9 Function to Add a Node in the Middle of
a linked list (2 of 2)

Function Definitions:

/lUses cstddef:
void insert(NodePtr after_me, int the_number)
{ NodePtr temp_ptr;

temp_ptr = new Node;

temp_ptr->data = the_number;

isimportant!!!

temp_ptr->link = after_me->link; } Order of Operations

after_me->link = temp_ptr;

41

Using Assignment Operator with
Dynamic Data Structures.

Pitfall:

e |f headl and head2 are pointer variables and head1l points
to the head node of alinked list, the following will make
Iheadz point to the same head node, hence the same linked
ist.

head2 = headl;

® You must remember that there is only one linked list, not
two. If you change the linked list pointed to by headl you
are changing the linked list pointed to by head2, since they
are the same list.

e To get a separate list you have two choices:

= you can copy the entire list, node by node, or

= you can overload assignment, operator =, to do whatever you
want. See Chapter 11, optional subsection "Overloading the
Assignment Operator*, for data type: NodePtr.

e This is an example of the "aliasing" problem, where we
have two variables pointing to one object.

42

Display 14.10 Removing a Node

1 pointos discard
and p before

821

2 before->Tink = discard->Tink;

head
2

Deleting a 1
Node :
From List

3 delete discard;

before head

iscard

before

14.2 A Linked List Application
' Stacks

e A stack stores information in a way that the last item
stored is the first item available when information is
examined, LIFO.

e The only data in a stack that is accessible is that data
on top.

e A consequence is the stack retrieves information in

reverse order in which the data was stored.

Display 14.11 diagrams the use of a stack.

Stacks are useful in language processing tasks, and

for keeping track of function calls.

e Our application will be simple example to show a use
of linked lists. 44

825

Display 14.11 A Stack

Insertion

A Q B Q [

Q
c
B B
A A A
Extraction ¢ _»B A

U

Programming Example:
A Stack ADT (1 of 2)

The interface for the stack ADT is given in Display
14.12

e This stack stores data of type char.

The basic operations on a stack are push and pop
= Push places data on the top of the stack (insertion)
= Pop returns the data on the top of the stack and
removes it (extraction).
Display 14.13 is a simple program illustrating use
of the stack ADT.
Display 14.14 is the implementation of our stack
ADT.

46

Programming Example:
A Stack ADT (2 of 2)

The implementation of push is left to Self-Test Exercise 10.
The default constructor creates an empty stack.
The copy constructor is left to Self-Test Exercise 11.

The pop member function checks for empty stack, if the
stack is not empty, it returns the data from the top and
removes that data. If the stack is empty, pop issues an
error message and terminates the program.

e Each node removed by the pop is destroyed with a call to
delete.

The (total stack) destructor has only to traverse the list,
calling pop until the stack is empty.

47

Display 14.12 Interface File for a Stack Class (1 of 2)

/I stack.h —

/I INTERFACE for class Stack, an ADT for a stack of symbols.
#ifndef STACK_H

#define STACK_H

namespace savitchstack

{

struct StackFrame
{ char data;
StackFrame *link;

typedef StackFrame* StackFramePtr;

Display 14.12 Interface File for a Stack Class (2 of 2)
Il stack.h -- INTERFACE for class Stack, an ADT for a stack of symbols.
class Stack
{ public:
Stack(); //Initializes the object to an empty stack.
Stack(const Stack& a_stack); //Copy constructor.
~Stack();
/IDestroys the stack and returns all the memory to the heap.
void push(char the_symbol);
/IPostcondition: the_symbol has been added to the stack.
char pop();

/IPrecondition: The stack is not empty.
/IReturns the top stack symbol and removes that top symbol.

bool empty() const; /IReturns TRUE if the stack is empty.
StackFramePtr getTop();
private:
StackFramePtr top;
Y
Misavitchstack
#endif ISTACK_H 49

Display 14.13 Program Using the Stack ADT (1 of 2)

#include <iostream>
#include "stack.h"
using namespace std;
using namespace savitchstack;
int main()
{ Stacks;
char next, ans;
do
{ cout <<"Enter aword: ";
cin.get(next);
while (next !1="\n")

s.push(next);
cin.get(next);
}

Display 14.13 Program Using the Stack ADT (2 of 2)

cout << "Written backward that is: "
while (! s.empty())
cout << s.pop();
cout << endl;
cout << "Again?(y/n): "
cin >> ans;
cin.ignore(10000, '\n");
twhile (ans !="'n' && ans !="'N');

Display 14.14 Implementation of the Stack ADT (1 of 2)
/I FILE stack.cxx. IMPLEMENTATION of the driver class Stack.

/[The interface for the class Stack is in the header file stack.h.
#include <iostream>

#include <cstddef>

#include "stack.h"

using namespace std;

namespace savitchstack
{
/lUses cstddef:
Stack::Stack()
{
top = NULL;
}

return O;
}
51
Display 14.14 Implementation of the Stack ADT (2 of)
Stack Stack&const Stack& a_stack) // Uses cstddef
if (a stac getTop() == NOLL) I/l copy constructor
else
{ StackFramePtr temp = a_stack.getTo temp moves

p0;
through the nodes from top to E)ottom of a_stack.
StackFramePtr end; // Points to end of the new stack.

end = new StackFrame
end->data = temp->data;

top = end;
i First node created and filled with data.
1 New nodes are now added AFTER this first node.

temp = temp->link;

while (temp != NULL)
end->link = new StackFrame;
end end->link;
end->data = temp->data;
temp = temp->link;

end->link = NULL;

Display 14.14 Implementation of the Stack ADT (3 of)

Stack::~Stack()
{ char next;

whllet(l_esr(])[r))el()

/lpop calls delete.
/lUses cstddef:
bool Stack::empty() const

return (top == NULL);

/lUses cstddef:

void Stack::push(char the_symbol)

{ StackFramePtr temp_ptr;
temp_ptr = new StackFrame;

temp_ptr->data = the_symbol;
temp_ptr->link = top;
top = temp_ptr;

Display 14.14 Implementation of the Stack ADT (4 of)

/lUses iostream:
char Stack::pop()

if (empty())
cout << "Error: popping an empty stack.\n";
exit(1);

}

char result = top->data;

StackFramePtr temp_ptr;
temp_ptr = top;

top = top->link;

delete temp_ptr;

return result;

} Illsavitchstack

/I Standard class LIST (list.h)
#ifndef LIST_H
#define LIST_H

#include <functional>
#include <algorithm>
#include <iterator>
#include <climits>
#nclude "memman.h”

#ifdef __ ITERATOR_NEEDED
namespace std {
template <class _Category, class _Tp, class _Distance = ptrdiff_t,
class _Pointer = _Tp*, class _Reference = _Tp&>
struct iterator {
typedef _Category iterator_category;
typedef _Tp value_type;
typedef _Distance difference_type;
typedef _Pointer pointer;
typedef _Reference reference;
g
g
#endif

Il Standard class LIST (list.h)

/I Open a new namespace, to avoid conflict with std::list
namespace list_presentation {

using namespace std;

template <class T>
class list {

protected:
/I Representation (doubly linked):
struct list_node {
list_node* next;
list_node* prev;
T data;
h

/I Standard class LIST (list.h)

public: // Types:
typedef T value_type;
typedef T& reference;
typedef const T& const_reference;
typedef size_t size_type;
typedef ptrdiff_t difference_type;

private:
typedef T* pointer;
typedef list_node* link_type;
typedef list_memory_manager<list_node>
list_memory_manager_type;

protected:
link_type node;
size_type length;
static size_type number_of_lists;
static list_memory_manager_type manager;

/I Standard class LIST (list.h)

public:
Il lterator types (defined by nested classes and typedefs)
Il class iterator;
/l class const_iterator;
Il class reverse_iterator;
/I class const_reverse_iterator;
#include "listiter.h"

/I Constructors:
list();
list(size_type n, const T& value = T());
list(const T* first, const T* last);
list(const list<T>& x);

/I Destructor:
~list();

/I Standard class LIST (list.h)

/I Assignment and swap:
list<T>& operator=(const list<T>& Xx);
void swap(list<T>& x);
/I Queries:
iterator begin() { return node->next; }
iterator end() { return node; }
bool empty() const { return length ==0; }
size_type size() const { return length; }
size_type max_size() const {
return max(size_type(1),
size_type(UINT_MAX/sizeof(T)));
}
reference front() { return *begin(); }
reference back() { return *(--end()); }

10

Il Standard class LIST (list.h)

/I Queries for reverse traversal:
reverse_iterator rbegin() { return reverse_iterator(end()); }
reverse_iterator rend() { return reverse_iterator(begin()); }

/I Insertion:
iterator insert(iterator position, const T& x);
void insert(iterator position, const T* first, const T* last);
void insert(iterator position, const_iterator first,

const_iterator last);

void insert(iterator position, size_type n, const T& x);
void push_front(const T& x) { insert(begin(), x); }
void push_back(const T& x) { insert(end(), x); }

/I Standard class LIST (list.h)

Il Erasure (deletion):
void erase(iterator position);
void erase(iterator first, iterator last);
void pop_front() { erase(begin()); }
void pop_back() { iterator tmp = end(); erase(--tmp); }

protected: Il Auxiliary function for implementing splice functions:
void transfer(iterator position, iterator first, iterator last);
public:

/I Splicing elements or ranges from one list to another (or same) list:

void splice(iterator position, list<T>& Xx);
void splice(iterator position, list<T>& x, iterator i);
void splice(iterator position, list<T>& X, iterator first, iterator last);

void remove(const T& value); // Remove all occurrences of a value:

void unique(); /I Remove all consecutive duplicate values:

void merge(list<T>& x); /I Merge a list with the current list:

Il Standard class LIST (list.h)

void reverse(); // Reverse the current list:
void sort(); /I Sort the current list:
}; !l end class list;

/I Equality and less-than operations:
template <class T>
inline bool operator==(const list<T>& x, const list<T>& y) {
return x.size() == y.size() && equal(x.begin(), x.end(), y.begin()); }

template <class T>
inline bool operator<(const list<T>& x, const list<T>& y) {

return lexicographical compare(x.begin(), x.end(), y.begin(),
yend(); }

#include "list.C"
}; Il close namespace list_presentation
#endif

830

CHAPTER SUMMARY

= Anode is a struct or class object that has one or more member variables
that are pointer variables. These nodes can be connected by their member
pointer variables to produce data structures that can grow and shrink in size
while your program is running.

= A linked list is a list of nodes in which each node contains a pointer to the
next node in the list.

= The end of a linked list is indicated by setting the pointer member variable
equal to NULL.

11

