
1

1

UCLA PIC 10 B
Problem Solving using C++ Programming

Instructor: Ivo Dinov, Asst. Prof. in

Mathematics, Neurology, Statistics

Teaching Assistant: Suzanne Nezzar, Mathematics

University of California, Los Angeles, Summer 2001

http://www.math.ucla.edu/~dinov/10b.1.011/

2

Review, Tuesday, July 31, 2001
PIC 10 B

- Linked-lists: struct Node
{ int data;

Node ∗∗∗∗link;
};

void head_insert(NodePtr& head, int the_number);
NodePtrNodePtrNodePtrNodePtr searchsearchsearchsearch((((NodePtrNodePtrNodePtrNodePtr head,head,head,head, intintintint target);target);target);target);

void insert(NodePtr after_me, int the_number);
void remove(NodePtr before);
// If before link ==NULL, do nothing, else
// before link = (before link) link;
// Ptr to next element
Template<class T>
class Stack

{ void push(T the_data);
T pop();

before

C
B
A

3

Review, Tuesday, July 31, 2001
PIC 10 B

- Two questions arose from the Linked-List chapter:
1. Can we have a linked-list where the Nodes are of different type?
template<class T_data, class T_link> struct Node

{ Node();
Node(T_data data, T_link * _link);
// a number of data and link interface get/set methods ….

private: T_data data;
T_link * link;

}

2. Do we need a public interface method getTop() in the Stack class
example?

Stack::Stack(const Stack& a_stack) // copy constructor
{ if (a_stack.getTop() == NULL)

EQ.
Stack::Stack(const Stack& a_stack) // copy constructor
{ if (a_stack.top() == NULL) // since inside the scope of Stack class

NULL

head

4

Chapter 15
Inheritance

5

Inheritance

n Inheritance
g Derived Classes
g Constructor Base Initializer List
g Constructors in Derived Classes
g The protected Qualifier
g Redefinition of Member Functions
g Redefining Versus Overloading

n Polymorphism
g Late Binding
g Virtual Functions in C++
g Virtual Functions and Extended Type Compatibility

15

6

Inheritance

n Object oriented programming (OOP) is a popular and
powerful programming technique.

n OOP provides the abstraction technique called inheritance.
n There are several definitions of an Object Oriented

Language. Most definitions disagree in some detail.
n All agree that inheritance is necessary.
n Inheritance provides:

g A very general form of a class/type can be defined and
compiled.

g Later, another version of the class that can use (inherit)
the already defined features of the first class, that can
add new features not present in the first class, and can
redefine (in at least two senses) features from the first
class.

15

2

7

Inheritance Basics

n The process of inheritance allows the programmer to
create a new class -- called the derived (sub-) class --
from another -- called the base (super-) class.

n The derived class automatically has all the member
variables and functions present in the base class.

n The derived class can define additional member
functions, variables, or both.

n class D is derived from class B means that class D has
all the features of class B and some extra, added
features as well.

n Sometimes D is called the child class and B the parent
class.

n Recall that class class class class ifstreamifstreamifstreamifstream is derived from class class class class istreamistreamistreamistream

by adding extra features such as openopenopenopen and closeclosecloseclose.

15.1

8

Inheritance: Point, Circle, Cylinder

n We now consider the capstone exercise for
Inheritance topic. We consider a point, circle,
cylinder hierarchy. First, we develop and use
class Point. Then we present an example in
which we derive class Circle from class
Point. Finally, we present an example in
which we derive class Cylinder from class
Circle .

Inheritance: Point, Circle, Cylinder
//Definition of class Point actually Point2D

#ifndef POINT2_H
#define POINT2_H
#include <iostream>
using std::ostream;
class Point {

friend ostream &operator<<(ostream &,const Point &);
public:

Point(int =0,int =0); //default constructor
void setPoint(int,int); //set coordinates
int getX() {return x;} //get x coordinate
int getY() {return y;} //get y coordinate

protected: //accessible to derived classes
int x,y; //coordinates of the point

};
#endif

Inheritance: Point, Circle, Cylinder
// Member functions for class Point
#include "point2.h“

// Constructor for class Point
Point::Point(int a,int b) { setPoint(a, b); }
// Set the x and y coordinates
void Point::setPoint(int a, int b)
{ x =a; y =b; }
// Output the Point
ostream &operator<<(ostream &output, const Point &p)
{ output <<'['<<p.x <<","<<p.y <<']';

return output; // enables cascading
}

Inheritance: Point, Circle, Cylinder
//Definition of class Circle

#ifndef CIRCLE2_H
#define CIRCLE2_H
#include <iostream> // using std::ostream;
#include "point2.h"
class Circle :public Point { // NOTE class-extension
{ friend ostream &operator<<(ostream &,const Circle &);

public: //default constructor
Circle(double r =0.0,int x =0,int y =0);
void setRadius(double); //set radius
double getRadius(); //return radius
double area(); //calculate area

protected: //accessible to derived classes
double radius; //radius of the Circle

};
#endif

Inheritance: Point, Circle, Cylinder

// Member function definitions for class Circle

using std::ios;
using std::setiosflags;
using std::setprecision;
#include "circle2.h"

// Constructor for Circle calls constructor for Point
// with a member initializer and initializes radius
Circle::Circle(double r,int a,int b) : Point(a,b)

//call base-class constructor
{ setRadius(r); }

3

Inheritance: Point, Circle, Cylinder
//Set radius

void Circle::setRadius(double r)
{ radius =(r >=0 ?r :0); }

//Get radius
double Circle::getRadius() { return radius; }

//Calculate area of Circle
double Circle::area() { return 3.14159 *radius *radius; }

//Output a circle in the form:
//Center =[x,y];Radius =#.##

ostream &operator<<(ostream &output,const Circle &c)
{ output <<"Center ="<< static_cast<Point >(c) <<

"; Radius =“ <<setiosflags(ios::fixed |ios::showpoint)
<<setprecision(2) << c.radius;

return output; //enables cascaded calls
}

Inheritance: Point, Circle, Cylinder
//Definition of class Cylinder

#ifndef CYLINDR2_H
#define CYLINDR2_H
#include <iostream> // using std::ostream;
#include "circle2.h"
class Cylinder : public Circle {

friend ostream &operator<<(ostream &,const Cylinder &);
public: //default constructor

Cylinder(double h =0.0,double r =0.0, int x =0,int y =0);
void setHeight(double); //set height
double getHeight()const; //return height
double area(); //calculate and return area
double volume(); //calculate and return volume

protected:
double height; //height of the Cylinder

};
#endif

Inheritance: Point, Circle, Cylinder

//Member and friend function definitions for class Cylinder.
#include "cylindr2.h“

//Cylinder constructor calls Circle constructor
Cylinder::Cylinder(double h,double r,int x, int y):Circle(r,x,y)
{ setHeight(h); } //call base-class constructor

//Set height of Cylinder
void Cylinder::setHeight(double h)
{height =(h >=0 ?h :0);}
//Get height of Cylinder
double Cylinder::getHeight() { return height; }

//Calculate area of Cylinder (i.e.,surface area)
double Cylinder::area()
{ return (2 *Circle::area() + 2 *3.14159 *radius *height); }

Inheritance: Point, Circle, Cylinder

//Member and friend function definitions for class Cylinder.

//Calculate volume of Cylinder
double Cylinder::volume()
{ return Circle::area()*height; }

//Output Cylinder dimensions
ostream &operator<<(ostream &output, const Cylinder &c)
{ output << static_cast<Circle >(c)

<< "; Height =“ << c.height;
return output; //enables cascaded calls

}

Inheritance: Point, Circle, Cylinder

//Driver for class Cylinder
#include <iostream>
using std::cout;
using std::endl;
#include "point2.h"
#include "circle2.h"
#include "cylindr2.h"

int main()
{ Cylinder cyl(5.7, 2.5, 12, 23);

//use get functions to display the Cylinder
cout << "X coordinate is “ << cyl.getX()

<< "\nY coordinate is “ << cyl.getY()
<< "\nRadius is “ << cyl.getRadius()
<< "\nHeight is “ << cyl.getHeight() << endl;

Inheritance: Point, Circle, Cylinder
//Driver for class Cylinder

//use set functions to change the Cylinder's attributes
cyl.setHeight(10); cyl.setRadius(4.25); cyl.setPoint(2,2);

cout <<"The new location,radius,and height of cyl are:\n"<<cyl <<endl;
cout << "The area of cyl is:\n“ << cyl.area() << endl;

//display the Cylinder as a Point
Point &pRef =cyl; // pRef "thinks“ it is a Point
cout <<"\nCylinder printed as a Point is:"<<pRef <<"\n \n";

//display the Cylinder as a Circle
Circle &circleRef =cyl; // circleRef “thinks” it is a Circle
cout <<"Cylinder printed as a Circle is:\n"<<circleRef

<<"\nArea:"<<circleRef.area()<<endl;
return 0;
} // end of main()

4

Inheritance: Point, Circle, Cylinder

//Output of main() driver

X coordinate is 12
Y coordinate is 23
Radius is 2.5
Height is 5.7
The new location, radius, and height of cyl are:
Center =[2,2];Radius =4.25;Height =10.00
The area of cyl is:
380.53
Cylinder printed as a Point is:[2,2]
Cylinder printed as a Circle is:
Center =[2,2];Radius =4.25
Area:56.74

Point Circle Cylinder Class hierarchy

Memory allocated for (base/super-) class Point
Point(int =0,int =0); //default constructor

int x,y; //coordinates of the point

Memory allocated for class Circle
Circle::Circle(double r, int a, int b) : Point(a,b)

double radius; //radius of the Circle

Memory allocated for (sub-) class Cylinder
Cylinder::Cylinder(double h,double r,int x, int y):Circle(r,x,y)

double height;

Addr & size of Point
Addr & size of Circle
Addr & size of Cylinder

Legal: Point p=myCircle;
Illegal: Circle c==myPoint;

Inheritance

So far, we have discussed single inheritance in which
each class is derived from exactly one base class.

A class may be derived from more than one base class;
such derivation is called multiple inheritance .

Multiple inheritance means that a derived class inherits
the members of several base classes. This powerful
capability encourages interesting forms of software
reuse, but can cause a variety of ambiguity problems.

Go to polymorphism, sec. 15.2, slide 52.

22

Sub- Classes (1 of 6)

n There is a hierarchy for classifying employees.
n We may think of employees in terms of:
n A general class of employee, of which there is

g A subset of employees that are paid an hourly wage
g A subset of employees that are paid a fixed wage

(Employee subsets such as administrative, permanent,
temporary, part-time, or a catch-all "other" may be added.)

n A notion of general employee may not be essential to the
program but it can be useful in thinking about the program.

n All kinds of employees have names, employee numbers, and
perhaps member functions that are the same.

23

Sub- Classes (2 of 6)

n These can be put into the base class so each of these is
inherited by other classes derived from the general employee
class.

n We define an undifferentiated class Employee (Display 15.1) to
enable definition of derived classes for different kinds of
employees.

n The reason for an (undifferentiated) base class Employee is to
encapsulate the common behavior and data for all employees
so we can derive classes for different employees from this.

n Each derived class inherits all member functions of the base
class Employee: print_check, get_name, change_name, print_check, get_name, change_name, print_check, get_name, change_name, print_check, get_name, change_name,

give_raisegive_raisegive_raisegive_raise, , , , and so on.
n Each derived class (re)defines the functions print_checkprint_checkprint_checkprint_check and

give_raise in a way that is meaningful for an employee of that
class.

24

Sub- Classes (3 of 6)

n It makes little sense to call the base class Employee
print_checkprint_checkprint_checkprint_check function, so it is implemented to display an error
message and stop the program.

n A class that is derived from class Employee will automatically
have the data members of the class Employee: (name, ssn, name, ssn, name, ssn, name, ssn,

net_paynet_paynet_paynet_pay).

n Notice there is the keyword protectedprotectedprotectedprotected where you may be
accustomed to seeing privateprivateprivateprivate.

n A protectedprotectedprotectedprotected member is the same as privateprivateprivateprivate to any function
that is except a member function of a class derived from the
base class (or a class that is derived from a class derived from
the base class, that is by any chain of derivations).

5

25

Sub- Classes (4 of 6)

n A sub-class inherits all data members and all function members
of the super-class. The publicpublicpublicpublic members of the base class are
accessible to any function. The protectedprotectedprotectedprotected members are directly
accessible by any function that is a member of any class
derived directly or indirectly by an inheritance chain from the
super-class, regardless of length.

n Interface files for classes derived from class Employee are
given in Display 15.3 (HourlyEmployeeHourlyEmployeeHourlyEmployeeHourlyEmployee) and in Display 15.4
(SalariedEmployeeSalariedEmployeeSalariedEmployeeSalariedEmployee).

n Because these classes are related, we have placed them in one
namespace.

Display 15.1 Interface for the Base Class Employee (1 of 2)

//This is primarily intended to be used as a base class to derive
//classes for different kinds of employees.

#ifndef EMPLOYEE_H

#define EMPLOYEE_H
#include <string>
using namespace std;

namespace savitchemployees
{ class Employee

{ public:
Employee();
Employee(string new_name, string new_ssn);
string get_name();
string get_ssn();
void change_name(string new_name);
void change_ssn(string new_ssn);
void print_check();
void give_raise(double amount);

27

Display 15.1 Interface for the Base Class Employee (2 of 2)

protected:
string name;
string ssn;
double net_pay;

};

} // savitchemployees

#endif //EMPLOYEE_H

28

Display 15.2 Implementation for the Base Class Employee (1 of 3)

#include <iostream>
#include <string>
#include <cstdlib>
#include "employee.h"
using namespace std;

namespace savitchemployees

{ Employee::Employee() // default is to fetch data from keyboard
{ cout << "Enter employee name, followed by return.:\n";

getline(cin, name);
cout << endl << "Enter employee social security number,"

<< " followed by return.:\n";
getline(cin, ssn);

cin.ignore(10000, '\n');
cout << endl;

}

Display 15.2 Implementation for the Base Class Employee (2 of 3)

Employee::Employee(string new_name, string new_number) :
name(new_name), ssn(new_number) //initializer list

{
//deliberately empty

}

string Employee::get_name()
{ return name; }

string Employee::get_ssn()

{ return ssn; }

void Employee::change_name(string new_name)
{ name = new_name; }

Display 15.2 Implementation for the Base Class Employee (3 of 3)

void Employee::change_ssn (string new_ssn)
{ ssn = new_ssn; }

void Employee::print_check()

{ cout << "\nERROR: print_check FUNCTION CALLED FOR AN \n"
<< "UNDIFFERENTIATED EMPLOYEE. Aborting the program.\n"
<< "Check with the author of the program about this bug.\n";

exit(1);
}

void Employee::give_raise(double amount)

{ cout << "\nERROR: give_raise FUNCTION CALLED FOR AN \n"
<< "UNDIFFERENTIATED EMPLOYEE. Aborting the program.\n"
<< "Check with the author of the program about this bug.\n";

exit(1);
}

}//savitchemployees

6

31

Sub- Classes (5 of 6)

n Interface files for classes derived from class Employee are
given in Display 15.3 (HourlyEmployeeHourlyEmployeeHourlyEmployeeHourlyEmployee) and in Display 15.4
(SalariedEmployeeSalariedEmployeeSalariedEmployeeSalariedEmployee).

n These classes are related so they are placed in one namespace.

n Syntax for inheritance:
class HourlyEmployee : public Employee
{ . . . };

n The definition of a sub-class begins in the usual way: with the
keyword class, followed by the name of the class.

n Then there is a colon separator, followed by an access specifier
public, then the name of the super-class, Employee.

n This is called public inheritance. There is private and protected
inheritance as well, but we will not deal with that in this course.

Display 15.3 Interface for the Derived Class HourlyEmployee (1 of 2)

#ifndef HOURLYEMPLOYEE_H
#define HOURLYEMPLOYEE_H
#include <string>
#include "employee.h"
using namespace std;

namespace savitchemployees
{

class HourlyEmployee : public Employee

{ public:
HourlyEmployee();
HourlyEmployee(string new_name, string new_ssn,

double new_wage_rate, double new_hours);
void set_rate(double new_wage_rate);
double get_rate();

void set_hours(double hours_worked);
double get_hours();
void give_raise(double amount);
void print_check(); 32

33

Display 15.3 Interface for the Derived Class HourlyEmployee (2 of 2)

private:
double wage_rate;
double hours;

};

} // savitchemployees

#endif //HOURLYMPLOYEE_H

Display 15.4 Interface for Sub-Class SalariedEmployee (1 of 2)

#ifndef SALARIEDEMPLOYEE_H
#define SALARIEDMPLOYEE_H

#include <string>
#include "employee.h"

using namespace std;

namespace savitchemployees
{

class SalariedEmployee : public Employee
{ public:

SalariedEmployee();
SalariedEmployee (string new_name, string new_ssn,

double new_weekly_salary);
double get_salary();
void change_salary(double new_salary);
void print_check();
void give_raise(double amount);

34

35

Display 15.4 Interface for Derived Class SalariedEmployee (2 of 2)

private:
double salary;//weekly

};

} // savitchemployees

#endif //SALARIEDEMPLOYEE_H

36

Sub-Classes (6 of 6)

n The definition of class HourlyEmployee does not
mention member variables name and net_pay, nor is
there any need to do so. These variables along with the
super-class's member functions are automatically
supplied by inheritance.

n When a sub-class is defined, all prototypes of new
member functions must be given. For example, in class
HourlyEmployee the prototype for the replacement for
print_check must be given.

n You do not give the prototypes of inherited member
functions that are not being replaced when a derived
class is defined.

7

37

Sub-Classes (7 of 7)

Inherited Members
A derived class automatically has all the functions and
member variables of the base class. These members from
the base class are said to be inherited. These inherited
member functions and inherited member variables are
not mentioned in the definition of the derived class, but
they are automatically member of the derived class. (As
we will see, you do mention an inherited member
function in the definition of the derived class if you
want to change the definition of the inherited member
function.)

38

An Object of a Sub-Class is also an Object of the Super-Class

In everyday experience an hourly employee is an employee. In C++ the same
sort of thing holds. Since HourlyEmployee is a derived class of class
Employee, every object of the class HourlyEmployee can be used any place
a class Employee can be used. In particular, you can use an argument of
type HourlyEmployee when a function requires an argument of type
Employee. You can assign an object of class HourlyEmployee to a variable

of type Employee. (But be warned: You cannot assign a plain old
Employee object to a variable of type HourlyEmployee. After all, an
Employee object is not necessarily an HourlyEmployee.) Of course, the
same remarks apply to any base class and its derived class. You can use an
object of a derived class any place that an object of its base class is allowed.

This relationship between a derived class and its base class is often referred
to as the "Is-A" relationship. An HourlyEmployee is an Employee.

38

39

Constructor Base Initialization List (1 of 3)

n When we use inheritance, the inherited members must be
initialized as well as new variables defined in the derived class.

n When defining a constructor you can initialize member
variables in a base initialization list.

n The base initialization list is part of the heading of the
constructor definition.

class Rational
{ public:

Rational();
Rational(int t, int b);
Rational(int w);
// other members

private:
int top;
int bottom;

}; 40

Constructor Base Initialization List (2 of 3)

n The base initialization list AS part of the heading of the
constructor definition.

Rational::Rational(): top(0), bottom(0)
{ /* empty body */ }
Rational::Rational(int t, int b): top(t), bottom(b)
{ /* empty body */ }
Rational::Rational(int w): top(w), bottom(1)
{ /* empty body */ }

n These examples illustrate the rule: The initialization goes in the
constructor implementation header following a colon that in
turn follows the parenthesis that closes the parameter list, and
before the opening brace of the function block.

n The initialization list is a comma separated list of initializers.
n The initializers consist of the name of the member variable with

its initializing value enclosed in parentheses.

41

Constructor Base Initialization List (3 of 3)

n These examples recall an alternate initialization we discussed
briefly in Chapter 2 for simple variables:

int x(2); is a variant of int x = 2;

n There need not be an initialization section, but when we define a
derived class constructor, most of the time we must invoke a base
class constructor to initialize the inherited variables.

n Use of initializer lists in constructor is a good practice, and will
help you in some obscure cases where you must use initializer
lists. (See the footnote on page 849 of the text.)

n There are times when the logic necessary to confirm that a
constructor's argument is legal will be difficult or impossible to
squeeze into the parentheses of in an initializer. Place such logic in
the body of the constructor.

42

Constructors in Derived Classes (1 of 2)

n A constructor for a derived class uses the constructor for the
base class to initialize the inherited data members.

n A derived class constructor calls the base class constructor
first. The call is placed in the implementation.

n An example of a constructor for a derived class is illustrated in
Display 15.5.

n The syntax for invoking a base class constructor is:

HourlyEmployee::HourlyEmployee() : Employee()HourlyEmployee::HourlyEmployee() : Employee()HourlyEmployee::HourlyEmployee() : Employee()HourlyEmployee::HourlyEmployee() : Employee()

{{{{
//code for the default HourlyEmployee initialization.//code for the default HourlyEmployee initialization.//code for the default HourlyEmployee initialization.//code for the default HourlyEmployee initialization.

}}}}

n The portion, : Employee(): Employee(): Employee(): Employee(), is the initialization section for the
default constructor call to initialize the inherited data members.

n Always include a call to the super-class constructor in the
initialization section of sub-class constructor.

8

43

Review, Thursday, Aug. 02, 2001
PIC 10 B

- We considered a Point<Circle<Cylinder hierarchy.
ostream &operator<<(ostream &output, const Circle &c)
{ output <<"Center ="<< static_cast<Point >(c) <<

"; Radius =“ <<setiosflags(ios::fixed |ios::showpoint)
<<setprecision(2) << c.radius;

return output; //enables cascaded calls
}
class Cylinder : public Circle {

public: //default constructor
Cylinder(double h =0.0,double r =0.0, int x =0,int y =0);
void setHeight(double); //set height
double getHeight()const; //return height
double area(); //calculate and return area
double volume(); //calculate and return volume

protected:
double height; //height of the Cylinder

};

44

Review, Thursday, Aug. 02, 2001
PIC 10 B

- We considered a Point<Circle<Cylinder hierarchy.

- Employee and HourlyEmployee/SalariedEmployee
class organization

Memory allocated for (base/super-) class Point
Point(int =0,int =0); //default constructor

int x,y; //coordinates of the point

Memory allocated for class Circle
Circle::Circle(double r, int a, int b) : Point(a,b)

double radius; //radius of the Circle

Memory allocated for (sub-) class Cylinder
Cylinder::Cylinder(double h,double r,int x, int y):Circle(r,x,y)

double height;

Addr & size of Point
Addr & size of Circle
Addr & size of Cylinder

Legal: Point p=myCircle;
Illegal: Circle c==myPoint;

45

Review, Thursday, Aug. 02, 2001
PIC 10 B

You can assign an object of class HourlyEmployee to a
variable of type Employee. But you cannot assign a
plain Employee object to a variable of type
HourlyEmployee.

HourlyEmployee is an Employee
but is Employee not an HourlyEmployee.)

n base initialization list.

Rational::Rational(int t, int b): top(t), bottom(b)
{ /* empty body */ }

n Heterogeneous Linked Lists: See online class notes for examples.

46

Constructors in Derived Classes (2 of 2)

n This is the parameterized constructor for HourlyEmployee
constructor.

HourlyEmployee::HourlyEmployee::HourlyEmployee::HourlyEmployee::

HourlyEmployee(string new_name, string new_number,HourlyEmployee(string new_name, string new_number,HourlyEmployee(string new_name, string new_number,HourlyEmployee(string new_name, string new_number,

double new_wage_rate, double new_hours)double new_wage_rate, double new_hours)double new_wage_rate, double new_hours)double new_wage_rate, double new_hours)

: Employee(new_name, new_number),Employee(new_name, new_number),Employee(new_name, new_number),Employee(new_name, new_number),

wage_rate(new_wage_rate), hours(new_hours)wage_rate(new_wage_rate), hours(new_hours)wage_rate(new_wage_rate), hours(new_hours)wage_rate(new_wage_rate), hours(new_hours)
{{{{

// deliberately empty.// deliberately empty.// deliberately empty.// deliberately empty.

}}}}

n Notice that all the work of the constructor is done in the initializer
list, so the body is empty.

n It is good practice to comment a deliberately empty block.

47

Display 15.5 Implementations for the Derived Class HourlyEmployee (1 of 3)

#include <iostream>
#include <string>
#include "hourlyemployee.h"
using namespace std;

namespace savitchemployees
{ HourlyEmployee::HourlyEmployee() : Employee()

{ cout << "Enter HourlyEmployee wage rate, followed by return.:\n";
cin >> wage_rate;
cout << "Enter number of hours worked, followed by return:\n";
cin >> hours;

}

HourlyEmployee::HourlyEmployee(string new_name, string new_number,
double new_wage_rate, double new_hours) : Employee(new_name,

new_number), wage_rate(new_wage_rate), hours(new_hours)
{

// deliberately empty

}

47

Display 15.5 Implementations for the Derived Class HourlyEmployee (2 of 3)

void HourlyEmployee::set_rate(double new_wage_rate)

{ wage_rate = new_wage_rate; }

double HourlyEmployee::get_rate()

{ return wage_rate; }

void HourlyEmployee::set_hours(double hours_worked)

{ hours = hours_worked; }

double HourlyEmployee::get_hours()
{ return hours; }

48

9

Display 15.5 Implementations for the Derived Class HourlyEmployee (3 of 3)

void HourlyEmployee::give_raise(double amount)

{ wage_rate = wage_rate + amount; }

void HourlyEmployee::print_check()

{ net_pay = hours * wage_rate;
cout << "\n___\n";
cout << "Pay to the order of " << name << endl;
cout << "The sum of " << net_pay << " Dollars\n";

cout << "___\n";
cout << "Check Stub: NOT NEGOTIABLE\n";
cout << "Employee Number: " << ssn << endl;
cout << "Hourly Employee. \nHours worked: " << hours

<< " Rate: " << wage_rate << " Pay: " << net_pay << endl;
cout << "___\n";

}

} // savitchemployees 49 50

The protectedprotectedprotectedprotected Qualifier

n We used the keyword protectedprotectedprotectedprotected where you might expect to
see privateprivateprivateprivate.

n A protectedprotectedprotectedprotected member is the same as privateprivateprivateprivate to any function
that is except a member function of a class derived from the
base class (or a class that is derived from a class derived from
the base class, that is by any chain of derivations).

n The meaning of the protectedprotectedprotectedprotected qualifier is illustrated in the
definition of the function print_checkprint_checkprint_checkprint_check of the derived class
HourlyEmployeeHourlyEmployeeHourlyEmployeeHourlyEmployee in Display 15.5.

n The inherited member variables net_paynet_paynet_paynet_pay, namenamenamename and ssnssnssnssn are
marked protectedprotectedprotectedprotected in the base class, these variables can be
accessed by name in the definition of member functions of all
derived classes.

n If the inherited members had been marked privateprivateprivateprivate in the base
class definition, direct use of these variables in the derived
class would be illegal.

51

Redefinition of Member Functions (1 of 2)

n In HourlyEmployee we gave prototypes for the new member
functions set_rateset_rateset_rateset_rate, get_rateget_rateget_rateget_rate, set_hoursset_hoursset_hoursset_hours, and get_hoursget_hoursget_hoursget_hours.

n We gave prototypes for some but not all member functions
inherited from class Employee.

n The inherited member functions whose prototypes were not
given have the same definition in the derived class
HourlyEmployee as they do in the base class Employee.

n The only prototypes from the base class that are included in
the derived class are the functions whose definitions are to be
changed in the derived class definition.

n The class HourlyEmloyee gave new definitions for print_checkprint_checkprint_checkprint_check

and give_raisegive_raisegive_raisegive_raise, definitions that are different from the base
class definitions.

n We say that the functions, print_checkprint_checkprint_checkprint_check and give_raisegive_raisegive_raisegive_raise are
redefined (like overloading, but not quite) in the sub-class. 52

Redefinition of Member Functions (2 of 2)

n We can derive another class for company officers from
SalariedEmployee, which itself is a class derived from
Employee.

n A class that does nothing more than add a title is
possible.

n The only changes needed are
g a change in constructor to add set the new

information
g redefinition of change_name to insert a title.

n All other member functions are inherited unchanged
from the base class SalariedEmployee, and its base
class, Employee.

Redefining an Inherited Function

A derived class inherits all of the member function
(and data members as well) that belong to the base
class. However, if a derived class requires a
different implementation for an inherited member
function, the function may be redefined in the derived
class. When a member function is redefined, you must
list its prototype in the definition of the derived class,
even though the prototype is the same as in the base
class. If you do not wish to redefine a member
function that is inherited from the base class, then it
is listed in the definition of the derived class.

Display 15.7 Using Derived Classes

#include <iostream>
#include "hourlyemployee.h"
#include "salariedemployee.h"
using namespace std;
using namespace savitchemployees;

int main()
{ cout << "Data for hourly employee \n";

HourlyEmployee h;
cout << "Check for " << h.get_name()

<< " for " << h.get_hours() << " hours.\n";
h.print_check();
SalariedEmployee doc("Doc Adams", "345-12-3456", 1234.45);
cout << "Check for " << doc.get_name() << endl;
doc.print_check();
return 0;

} 54

10

55

Redefining versus Overloading (1 of 2)

n Do not confuse redefinition with overloading.
n When you redefine a function, the new function given in the

derived class has the exact same number and types of
parameters.

n By contrast, suppose that in the derived class, there is a (new)
function with the same name, but a different number of
parameters or a different sequence of parameter types (or both).

n Then the derived class will have access to both functions.
n This is an example of overloading.
n Overloading is defined on page 158, in Chapter 3.
n If this prototype had been added to class HourlyEmployee:

void change_name(string first_name, string last_name);
n The class HourlyEmployee would have this function and the

inherited function as well:
void change_name(string new_name); 56

Redefining versus Overloading (2 of 2)

n By contrast, both the base class Employee and the derived class
HourlyEmployee have the prototype

void print_check();
n The derived class HourlyEmployee has only the one function

named print _check, namely the one provided in the
implementation of HourlyEmployee.

n print_check has been redefined.
Signature

A function's signature is the function's name with the
sequence of types in the parameter list, including things like
the const keyword. When you redefine a function, the
function in the base class and the redefined function in the
derived class have the same signature. If a function has the
same name in a derive class as in the base class, but has a
different signature, that is overloading not redefinition.

57

Polymorphism

n The term polymorphism is made up of "poly", meaning many;
"morph", meaning form; and "ism", an action suffix. The most
general meaning of the term is "having many forms".

n In the most general sense in programming, the word refers to the
association of multiple meanings with one function name.

n Polymorphism is also used in a more restrictive sense.
n When used in this more restrictive sense, overloading refers to the

ability to associate multiple meanings with one function name by
means of the mechanism of late binding.

n Remember, in C++, the name of a function is more than just the
function identifier. In C++, the name of a function is the function's
identifier together with the sequence of types in the parameter
list.

n Polymorphism is more than conventional function identifier
overloading.

15.2

58

Late Binding (1 of 4)

n A virtual function is a function that, in some sense, may be
used prior to definition.

n Consider a graphics program that has several kinds of
figures: rectangles, circle, ovals, etc.

n There is a base class Figure.
n Each figure might be an object of a different class, derived

from class Figure:
g A rectangle class has width, breadth and center point.
g An oval class has a large width, a short width and center

point.
g A circle class has a radius and center point.

n Each of these classes needs a draw member function, and
each implemented differently.

n What does this have to do with "virtual functions" and use
before definition?

59

Late Binding (2 of 4)

n The class Figure may have functions that apply to all figures.
n Suppose Figure has a member function Figure::center that

moves a figure to the center of the screen by two steps:
g erasing the existing figure,
g redrawing the figure at the center of the screen

n The Figure::center member function uses the draw function to
to redraw the figure at the center.

n Suppose the class Figure is already written. In some later time
we add a class for a new kind of figure, perhaps Triangle.

n Triangle is a derived class of base class Figure.
n The member function center is inherited by each derived class

from base class Figure, and should perform correctly for all
Triangle class objects.

n We have some trouble here. Why?
60

Late Binding (3 of 4)

n There is trouble here. Why?
n The inherited function center (unless something special is

done) will use the definition of draw in class Figure, and that
version of draw won't work for Triangle figures.

n We want the inherited function draw to use Triangle::draw, not
Figure::draw.

n However, class Triangle and Triangle::draw were not written at
the time Figure was written.

n If the function draw is declared virtual (abstract) function in
class Figure, then things work correctly. How?

n By declaring a member function virtual in a super-class, we are
telling the compiler to wait until this function is used in a
program to decide what implementation to use.

n This is called late binding or dynamic binding.

11

61

Late Binding (4 of 4)

n Technically:
g Late or dynamic binding is carried out with a

table, called the virtual table, that is hidden from
the programmer.

g If you have a virtual function for which there is no
implementation, you may get an error message
that mentions a virtual table.

g When a derived class needs a virtual base class
function, the system decides at run time which of
several available functions to use.

g We will show how the system makes these
decisions later.

62

Virtual Functions in C++ (1 of 5)

n In an automobile parts store point of sales program:
n We cannot account for all possible types of sales but
n We want to make the program versatile enough to be sure it is

possible to account for all possibilities in the future.
n Initially, there are only retail sales of single parts.
n Later we include support for

g volume discount,
g mail order sales that include shipping costs

n This version must report the sum of gross sales daily.
n Additional features intended for the future:

g the largest and smallest sales, and
g average

n The additional features these can be computed from individual
sales.

Display 15.8 Interface for Base Class Sale

#ifndef SALE_H
#define SALE_H
#include <iostream>
using namespace std;

namespace savitchsale
{

class Sale
{ public:

Sale();
Sale(double the_price);
virtual double bill() const;
double savings(const Sale& other) const;
//Returns the savings if you buy other instead of the calling object.

protected:
double price;

};
bool operator < (const Sale& first, const Sale& second);
// Compares two sales to see which is larger.

} // savitchsale

#endif // SALE_H
63

Display 15.9 Implementation of the Base Class Sale

#include "sale.h"

namespace savitchsale
{ Sale::Sale() : price(0)

{ }

Sale::Sale(double the_price) : price(the_price)

{ }
double Sale::bill() const
{ return price; }
double Sale::savings(const Sale& other) const
{ return (bill() - other.bill()); }

bool operator < (const Sale& first, const Sale& second)
{ return (first.bill() < second.bill()); }

}//savitchsale

65

Virtual Functions in C++ (2 of 5)

n Only a stub, bill(), for comparing sales will be provided to allow
delay of implementation until types of sales are known.

n To enable this, the sales computation function will be virtual.
n Display 15.8 contains the interface and Display 15.9 contains the

implementation for the base class SaleSaleSaleSale.
n In 15.8, the keyword virtual is used with the prototype of the function

billbillbillbill.
n In 15.9, both the member function savings and the overloaded

operator < use the function billbillbillbill.
n The function billbillbillbill is declared to be virtual, we can define derived

classes of the class SaleSaleSaleSale each of which defines its own versions of
the function billbillbillbill.

n The version of billbillbillbill in the derived classes will use the version of
savingssavingssavingssavings, and overloaded operator<operator<operator<operator< that correspond to the object of
the derived class.

66

Virtual Functions in C++ (3 of 5)

n Display 15.10 shows a derived class DiscountSaleDiscountSaleDiscountSaleDiscountSale.

n The class class class class DiscountSaleDiscountSaleDiscountSaleDiscountSale requires a new definition for the function
billbillbillbill.

n The function savingssavingssavingssavings and operator<operator<operator<operator< will use the new version of billbillbillbill

given with DiscountSaleDiscountSaleDiscountSaleDiscountSale.
n Note that the new version of the function billbillbillbill had not been written at

the time the functions savingssavingssavingssavings and operator<operator<operator<operator< were written.
n How can these functions know to use the DiscountSaleDiscountSaleDiscountSaleDiscountSale version of

billbillbillbill?
n In C++ you assume that it happens automatically.
n When you define a function to be virtual, you are telling the C++

environment to create the necessary machinery so it can wait until
the program is being run to decide how to get the correct
implementation.

12

67

Virtual Functions in C++ (4 of 5)

n Display 15.11 contains a sample program illustrating how the virtual
function billbillbillbill and the functions that use billbillbillbill work in a complete
program.

n Some useful technical details:
1. If a function will have a different definition in a derived class than in

the base class, and you want it to be a virtualvirtualvirtualvirtual function, you place
the virtualvirtualvirtualvirtual keyword in front of the function prototype in the base
class.

2. The property of being virtualvirtualvirtualvirtual is inherited. That means if the base
class declares a function to be virtualvirtualvirtualvirtual, then a function with the
same signature in a derived class will automatically be virtualvirtualvirtualvirtual. (It is
a good practice to use the virtualvirtualvirtualvirtual keyword on function the derived
class that are already virtual, though this is not required.)

3. The virtualvirtualvirtualvirtual keyword is used in the prototype (in the class) but not
in the function definition.

4. You do not get a virtualvirtualvirtualvirtual function and you do not get the benefits of
a virtualvirtualvirtualvirtual function unless you use the keyword virtualvirtualvirtualvirtual.

Display 15.10 The Derived Class DiscountSale (1 of 2)
//This is the INTERFACE for the class DiscountSale.
#ifndef DISCOUNTSALE_H
#define DISCOUNTSALE_H
#include "sale.h"

namespace savitchsale
{ class DiscountSale : public Sale

{ public:
DiscountSale();
DiscountSale(double the_price, double the_discount);
// Discount is expressed as a percent of the price.
double bill() const;

protected:
double discount;

};
} // savitchsale
#endif //DISCOUNTSALE_H

Display 15.10 The Derived Class DiscountSale (2 of 2)
//This is the IMPLEMENTATION for the class DiscountSale.
#include "discountsale.h"

namespace savitchsale
{ DiscountSale::DiscountSale() : Sale(), discount(0)

{ }
DiscountSale::DiscountSale(double the_price, double

the_discount) : Sale(the_price), discount(the_discount)
{ }

double DiscountSale::bill() const
{

double fraction = discount/100;
return (1 - fraction)*price;

}
} // savitchsale

Display 15.11 Use of a Virtual Function
#include <iostream>
#include "sale.h" //Not really needed, but safe due to ifndef.
#include "discountsale.h"
using namespace std;
using namespace savitchsale;
int main()
{ Sale simple(10.00); //One item at $10.00.

DiscountSale discount(11.00, 10); //One item at $11.00 with a 10%
// discount.

cout.setf(ios::fixed);
cout.setf(ios::showpoint);
cout.precision(2);
if (discount < simple) // compares 2 obj’s of type Sale

{ cout << "Discounted item is cheaper.\n";
cout << "Savings is $" << simple.savings(discount) << endl;

}
else cout << "Discounted item is not cheaper.\n";
return 0;

} 70

71

Virtual Functions in C++ (5 of 5)

n Some languages make all functions virtualvirtualvirtualvirtual .
n Why doesn't C++ do that?
n There is a small but significant cost in the use of virtual

functions.
n A C++ design rule says

"If you don't use a feature, you don't pay for that feature."
n C++ provides both late binding (at a cost) with virtualvirtualvirtualvirtual

functions and early binding (at no cost) for functions that
are not.

n Rule: Use virtualvirtualvirtualvirtual functions only when you need them.

Overriding
When a function definition is changed in a derived
class, programmers often say the function definition is
overridden. In C++ literature a distinction is made
between the terms redefined and overridden. Both
terms refer to changing the definition of the function in
a derived class. If the function is a virtual function then
this is called overriding. If the function is not a virtual
function then it is called a redefinition.
This may seem silly -- a distinction without a difference,
but these are treated differently by the compiler: One
case, virtual functions and overriding, involves
significant overhead while the other, redefinition, does
not. 72

13

73

Polymorphism
The term polymorphism is made up of "poly", meaning many;
"morph", meaning form; and "ism", an action suffix. The most
general meaning of the term is "having many forms". In the most
general sense in programming, the word refers to the association of
multiple meanings with one function name.

Polymorphism is also used in a more restrictive sense. When used in
this more restrictive sense, overloading refers to the ability to
associate multiple meanings with one function name by means of the
mechanism of late binding.

Remember, in C++, the name of a function is more than just the
function identifier. In C++, the name of a function is the function's
identifier together with the sequence of types in the parameter list.

Polymorphism is more than conventional function identifier
overloading.

When we use polymorphism in the more restricted sense,
polymorphism, late binding, and virtual functions all really are the
same topic. 73

74

Review, Monday, Aug. 06, 2001
PIC 10 B

- Redefining (same function signature) vs.
Overloading (diff. Signature) functions

- Polymorphism - association of multiple meanings with one
function name.

n By declaring a member function virtual in a super-class, we are
telling the compiler to place it in a virtual-table & wait until this
function is used in a program to decide what implementation to use.

class Sale
{ ….

virtual double bill() const;
….

};
bool operator < (Sale &first, Sale &second)
{ return (first.bill() < second.bill()); }

Sale
Virtual bill()

DiscountSale
new bill()

NoTaxSale
new bill()

75

Review, Monday, Aug. 06, 2001
PIC 10 B

- Note that the new version of the function bill()bill()bill()bill() had not been
written at the time the operator<operator<operator<operator< was written.

n Some useful technical details:
1. The virtualvirtualvirtualvirtual keyword in front of the

function prototype in the base class.
2. The property of being virtualvirtualvirtualvirtual is

inherited. That means if the base
class declares a function to be virtualvirtualvirtualvirtual, then a function with the
same signature in a derived class will automatically be virtualvirtualvirtualvirtual.

3. The virtualvirtualvirtualvirtual keyword is used in the prototype (in the class) but not
in the function definition.

4. You do not get a virtualvirtualvirtualvirtual function and you do not get the benefits
of a virtualvirtualvirtualvirtual function unless you use the keyword virtualvirtualvirtualvirtual.

5. There is a cost in the use of virtual functions. So, use
virtualvirtualvirtualvirtual functions only when you need them.

Sale
Virtual bill()

DiscountSale
new bill()

NoTaxSale
new bill()

76

Virtual Functions and Extended Type
Compatibility (1 of 5)

n Further consequences of declaring a class member
function to be virtual and one example of use of some
of these features follows:

n C++ is strongly typed but relaxes this by providing
automatic casts, called coercion, enabling assignment
of a value of one type to variable of another type, such
as intintintint to doubledoubledoubledouble.

n On the other hand, you cannot assign a doubledoubledoubledouble to any of
the integer types (intintintint, charcharcharchar, shortshortshortshort, longlonglonglong)))).

n However, strong typing prevents assignments between
base and derived class objects.

77

Virtual Functions and Extended Type
Compatibility (2 of 5)

n Consider the declarations:
class Petclass Petclass Petclass Pet

{ pubic:{ pubic:{ pubic:{ pubic:

virtual void print();virtual void print();virtual void print();virtual void print();

string name;string name;string name;string name;

};};};};

class Dog : public Petclass Dog : public Petclass Dog : public Petclass Dog : public Pet

{ public:{ public:{ public:{ public:

virtual void print(); // virtual not needed, butvirtual void print(); // virtual not needed, butvirtual void print(); // virtual not needed, butvirtual void print(); // virtual not needed, but

// provides clarity and is good style// provides clarity and is good style// provides clarity and is good style// provides clarity and is good style

string breed;string breed;string breed;string breed;

};};};};

Dog Dog Dog Dog vdogvdogvdogvdog;;;;

Pet Pet Pet Pet vpetvpetvpetvpet;;;; 78

Virtual Functions and Extended Type
Compatibility (3 of 5)

n We concentrate on data members name and breed.
n Note that this is an example. In a real example, the data would be

private or protected, and functions would be provided to
manipulate them.

n Anything that is a DogDogDogDog is also a PetPetPetPet. Thus these assignments
should be reasonable and legal.

vdog.name = "Tiny";vdog.name = "Tiny";vdog.name = "Tiny";vdog.name = "Tiny";

vdog.breed = "Great Dane";vdog.breed = "Great Dane";vdog.breed = "Great Dane";vdog.breed = "Great Dane";

vpet = vdog;vpet = vdog;vpet = vdog;vpet = vdog;

n This is legal, but there are problems. The breedbreedbreedbreed field is lost. The
variable vpetvpetvpetvpet has type Pet, and only members of PetPetPetPet are available
to the object vpetvpetvpetvpet, regardless of what was assigned to it. This is the
"slicing problem". Here is an attempted access and an error
message:

cout << vpet.breed; cout << vpet.breed; cout << vpet.breed; cout << vpet.breed;

//Error: class Pet has no member named breed.//Error: class Pet has no member named breed.//Error: class Pet has no member named breed.//Error: class Pet has no member named breed.

14

79

Virtual Functions and Extended Type
Compatibility (4 of 5)

n It is arguable that this is reasonable, that vpet should be an
ordinary Pet object though it was set from a Dog of type Pet.

n Interesting discussion -- but little assistance with programming.
n The dog is named Tiny, it is a Great Dane, and we would like for it

to retain its breed even if we treat it as a Pet along the way.
n C++ provides a mechanism to treat Dog as a Pet without slicing

away the derived class attributes of breed and the member function
associated with class Dog. Consider the declarations:

Pet *ppet;Pet *ppet;Pet *ppet;Pet *ppet;
Dog *pdog;Dog *pdog;Dog *pdog;Dog *pdog;

n Using pointers and dynamic variables we can treat Tiny as a Pet
yet keep the breed:

pdog = new Dog;pdog = new Dog;pdog = new Dog;pdog = new Dog;
pdogpdogpdogpdog---->name = "Tiny";>name = "Tiny";>name = "Tiny";>name = "Tiny";
pdogpdogpdogpdog---->breed = "Great Dane";>breed = "Great Dane";>breed = "Great Dane";>breed = "Great Dane";

ppet = pdog;ppet = pdog;ppet = pdog;ppet = pdog;

80

Virtual Functions and Extended Type
Compatibility (5 of 5)

n We can still access the breedbreedbreedbreed data member of the node pointed to
by ppetppetppetppet, but not directly:

n Suppose Dog::print();Dog::print();Dog::print();Dog::print();

n is defined:
void Dog::print()void Dog::print()void Dog::print()void Dog::print()

{{{{ coutcoutcoutcout << "name: " << name << endl;<< "name: " << name << endl;<< "name: " << name << endl;<< "name: " << name << endl;

cout << "breed: " << breed << endl; cout << "breed: " << breed << endl; cout << "breed: " << breed << endl; cout << "breed: " << breed << endl;

}}}}

The statement
ppetppetppetppet print();print();print();print(); // (*// (*// (*// (*ppetppetppetppet).print();).print();).print();).print();

will cause the following to be printed:
name: Tinyname: Tinyname: Tinyname: Tiny

breed: Great Danebreed: Great Danebreed: Great Danebreed: Great Dane

by virtue of the fact that printprintprintprint() is a virtualvirtualvirtualvirtual member of PetPetPetPet and DogDogDogDog.

81

Bottom line: The Slicing Problem

n It is legal to assign a derived class object to a base class
variable, because such an assignment slices off data belonging
exclusively to the derived class object.

n Any data members in the derived class but not in the base
class will be lost in the assignment and any member functions
that are not defined in the base class are similarly unavailable
to the resulting base class object.

n If we make the assignments
g Dog vdog;
g Pet vpet;
g vdog.name = "Tiny";
g vdog.breed = "Great Dane";
g vpet = vdog;

then vpet cannot be a calling object for a member function
introduced in Dog, and the data member Dog::breed is lost.

n Why? The base class doesn't know about derived class
extensions made in the inheritance process. 82

Not Using virtualvirtualvirtualvirtual

Member Functions(1 of 3)

n To get the benefit of extended type compatibility discussed in
above, you must use virtualvirtualvirtualvirtual member functions.

n Example: If we have not used virtual virtual virtual virtual member functions in
Display 15.7, and suppose in place of

ppetppetppetppet print();print();print();print();

we had used
cout << "name: " << ppet cout << "name: " << ppet cout << "name: " << ppet cout << "name: " << ppet name name name name

<< " breed: " << << " breed: " << << " breed: " << << " breed: " << ppetppetppetppet breed << endl;breed << endl;breed << endl;breed << endl;

n This would have precipitated an error message to the effect
that there is no member variable breed for an object of class
Pet.

n The type of the variable ppet ppet ppet ppet pointer to class Pet, thus the
expression ∗∗∗∗ppetppetppetppet has type class Pet, which has no member
variable breedbreedbreedbreed.

Pitfall:

83

Not Using virtualvirtualvirtualvirtual

Member Functions(2 of 3)

n The function, print()print()print()print() was declared
virtualvirtualvirtualvirtual in class Pet, so when the system
sees the call

ppetppetppetppet print();print();print();print();

it looks in the virtualvirtualvirtualvirtual table for classes Pet
and Dog, sees that ppet points to an object
of type Dog, and calls the function

Dog::print()Dog::print()Dog::print()Dog::print()

instead of
Pet::print()Pet::print()Pet::print()Pet::print()

Pitfall:

84

Not Using virtualvirtualvirtualvirtual

Member Functions(3 of 3)

n Object oriented programming with dynamic variables is very
different way of viewing programming. This can be
bewildering.

n These rules will help:

1. If the domain type of a pointer p_ancestor is a base class for
the domain type of the pointer p_descendant, then the
following assignment of pointers is allowed:

p_ancestor = p_descendant; // p_ancestor = p_descendant; // p_ancestor = p_descendant; // p_ancestor = p_descendant; // POINTER assignmentPOINTER assignmentPOINTER assignmentPOINTER assignment!!!!!!!!!!!!

Moreover, none of the data members or member functions of
the dynamic variable being pointed to by p_descendant will be
lost.
2. Although all the extra fields of the dynamic variable are
there, you will need virtual member functions to access them.

Pitfall:

15

85

Attempting to Compile Class Definitions
without the Definitions for Every Virtual
Member Function (1 of 2)

n We have advocated developing incrementally. This means code
a little and test a little, then code a little more then test some
more. Usually, you can ignore implementations of member
functions you do not call.

n This is definitely not the case for virtual member functions.
n An attempt to compile a program with a class that has even one

virtual function that does not have an implementation, results
in some very hard-to-understand error messages, even if you
do not call the undefined member functions!

n An error message that one compiler gives is
"undefined reference to Class_Name virtual table."

n Such an error message results even if there is no derived class
and there is only one virtual member, but that member is not
defined.

Pitfall:

86

Attempting to Compile Class Definitions
without the Definitions for Every Virtual
Member Function (2 of 2)

n It gets worse: For the functions declared virtual, there will be
further error messages complaining about an undefined
reference to a default constructor, even if these constructors
are already defined.

n The moral is clear: You should implement all virtual functions
prior to compiling, even if it is just a dummy, as in
class Aclass Aclass Aclass A

{ public:{ public:{ public:{ public:
// constructors // constructors // constructors // constructors

virtual void foo();virtual void foo();virtual void foo();virtual void foo();

// the rest of the class members// the rest of the class members// the rest of the class members// the rest of the class members

};};};};

void A::foo() void A::foo() void A::foo() void A::foo()

{ // dummy implementation to prevent hard to understand{ // dummy implementation to prevent hard to understand{ // dummy implementation to prevent hard to understand{ // dummy implementation to prevent hard to understand

// error messages.// error messages.// error messages.// error messages.

}}}}

Pitfall:

87

Summary

n Inheritance provides a tool for code reuse by
deriving one class from another, adding features to
the derived.

n Derived class object inherit all the members of the
base class, and may add members.

n Late binding means that the decision of which
version of a member function is appropriate is
decided at runtime. Virtual functions are what C++
uses to achieve late binding.

n A protected member in the base class is directly
available to a publicly derived class's member
functions.

