
1

1

UCLA PIC 10 B
Problem Solving using C++ Programming

Instructor: Ivo Dinov, Asst. Prof. in

Mathematics, Neurology, Statistics

Teaching Assistant: Suzanne Nezzar, Mathematics

University of California, Los Angeles, Summer 2001

http://www.math.ucla.edu/~dinov/10b.1.011/

2

Chapter 16
Exception Handling

3

Exception Handling

n Exception Handling Basics
g A Toy Example of Exception Handling

g Defining Your Own Exception Classes

g Multiple Throws and Catches

g Throwing an Exception in a Function

n Programming Techniques for Exception Handling
g When to Throw an Exception

g Exception Class Hierarchies

g Testing for Available Memory

g Rethrowing an Exception

16

4

Exception Handling16
exception

logic_error runtime_error

range_error
overflow_error

underflow_error
length_error bad_alloc bad_cast

domain_error bad_exception bad_typeid
out_of_range ios_base::failure
invalid_argument

5

Exception Handling
Introduction (1 of 2)

n One way to write programs is to assume nothing unusual will

happen and no errors will occur.

n This is, of course, grossly optimistic.

n Once the program is running (correctly) where everything goes as

expected, then code is added to account for unusual cases.

n Exception handling is commonly used to handle error cases, but a

better way is to view exception handling as a way to manage

exceptional situations.

n If a program correctly handles an "error", then it is no longer an

error.

16

6

Exception Handling
Introduction (2 of 2)

n Typically, exception handling deals with functions that have special cases
that are best handled in a way specific to the use of the function.

n For some invocations a function should end, other invocations require
another action .

n Such a function can be defined to throw an exception if a special case
occurs, and the exception mechanism allows the special case to be
handled outside the function.

n C++ provides a mechanism that, when an exceptional situation has
occurred, program control is transferred to another code segment, and to
send information about the situation to that code.

n This mechanism is called throwing an exception.

n There is a code segment that receives control from and information about
the situation and manages the exceptional situation is called handling the
exception.

2

7

Exception Handling Basics

Some points to ponder:

n Exception handling should be used sparingly.

n Exceptional situations are not necessarily

errors.

n Exceptional handling examples are usually

more involved than the following examples.

16.1

8

A Toy Example of Exception Handling(1 of 14)

n This toy example introduces exception handling ideas and

C++ exception handling syntax.

n The initial code fragment computes a ratio of donuts to milk.

n A limitless supply of milk is assumed.

cin >> donuts; // number of donuts, intcin >> donuts; // number of donuts, intcin >> donuts; // number of donuts, intcin >> donuts; // number of donuts, int

cin >> milk; // number of glasses, intcin >> milk; // number of glasses, intcin >> milk; // number of glasses, intcin >> milk; // number of glasses, int

dpg = donuts/double(milk);dpg = donuts/double(milk);dpg = donuts/double(milk);dpg = donuts/double(milk);

cout << "There are " << dpg << " donuts per glass of milk.\n";

n If there is no milk, this code divides by zero, which is an error.

n We can add a test to protect against such a situation.

9

A Toy Example of Exception Handling(2 of 14)

n A complete program to manage this is in Display 16.1.

n This program does not use exception handling.

n In Display 16.2 we rewrite the program using C++

exception handling.

n The program is not made simpler by use of exceptions,

but the part in the block after the keyword try and before

the keyword catch is cleaner.

n This hints at the advantage of using exceptions.

10

A Toy Example of Exception Handling (3 of 14)

n Display 16.1 has a large if-else statement the manage the zero
divide.

n The new program has the smaller if statement:

if (milk <= 0)if (milk <= 0)if (milk <= 0)if (milk <= 0)

throw donuts;throw donuts;throw donuts;throw donuts;

n This if statement says if there is no milk, an exceptional situation
exists, do something to manage it.

n The normal situation is managed by code following try and code
following catch manages the exceptional circumstances.

n We have separated the normal case from the exceptional case.

Display 16.1 Handling a Special Case without Exception Handling

#include <iostream>
using namespace std;

int main()
{ int donuts, milk;

double dpg;
cout << "Enter number of donuts:\n";
cin >> donuts;
cout << "Enter number of glasses of milk:\n";
cin >> milk;
if (milk <= 0)
cout << donuts << " donuts, and No Milk!\n" << "Go buy some milk.\n";

else
{ dpg = donuts/double(milk);

cout << donuts << " donuts.\n" << milk << " glasses of milk.\n"
<< "You have " << dpg << " donuts for each glass of milk.\n";

}
cout << "End of program.\n";
return 0;

}

Display 16.2 Same thing Using Exception Handling

#include <iostream>
using namespace std;

int main()
{ int donuts, milk;

double dpg;
try
{ cout << "Enter number of donuts:\n";

cin >> donuts;
cout << "Enter number of glasses of milk:\n";
cin >> milk;
if (milk <= 0)

throw donuts;
dpg = donuts/double(milk);
cout << donuts << " donuts.\n" << milk << " glasses of milk.\n"

<< "You have " << dpg << " donuts for each glass of milk.\n";
}
catch(int e)
{ cout << e << " donuts, and No Milk!\n" << "Go buy some milk.\n"; }
cout << "End of program.\n";
return 0;

} 12

3

13

Review, Tuesday, Aug. 07, 2001
PIC 10 B

- Virtual functions:
class Pet class Pet class Pet class Pet { { { { virtual void print();virtual void print();virtual void print();virtual void print();

string name; };string name; };string name; };string name; };
class Dog : public Petclass Dog : public Petclass Dog : public Petclass Dog : public Pet{{{{ virtual void print(); virtual void print(); virtual void print(); virtual void print();

string breed; };string breed; };string breed; };string breed; };
DogDogDogDog vdogvdogvdogvdog;;;;

PetPetPetPet vpetvpetvpetvpet;;;;
vdogvdogvdogvdog.name .name .name .name = "Tiny";= "Tiny";= "Tiny";= "Tiny"; vdogvdogvdogvdog.breed .breed .breed .breed = "Great Dane";= "Great Dane";= "Great Dane";= "Great Dane"; vpetvpetvpetvpet ==== vdogvdogvdogvdog;;;;

coutcoutcoutcout <<<<<<<< vpetvpetvpetvpet.breed; // .breed; // .breed; // .breed; // ErrorErrorErrorError: class : class : class : class PetPetPetPet has no has no has no has no breedbreedbreedbreed....

However,However,However,However, Pet *Pet *Pet *Pet *ppetppetppetppet;;;;
Dog *Dog *Dog *Dog *pdogpdogpdogpdog;;;;

pdogpdogpdogpdog=new Dog;=new Dog;=new Dog;=new Dog; pdogpdogpdogpdog---->name>name>name>name="Tiny";="Tiny";="Tiny";="Tiny"; pdogpdogpdogpdog---->breed>breed>breed>breed="Great Dane";="Great Dane";="Great Dane";="Great Dane";
ppetppetppetppet = = = = pdogpdogpdogpdog;;;;

ppetppetppetppet print();print();print();print(); // (*// (*// (*// (*ppetppetppetppet).print();).print();).print();).print(); WORKSWORKSWORKSWORKS

// because// because// because// because printprintprintprint() is a virtualvirtualvirtualvirtual member of PetPetPetPet and DogDogDogDog

14

Review, Tuesday, Aug. 07, 2001
PIC 10 B

- Started with Exceptions, Ch. 16Started with Exceptions, Ch. 16Started with Exceptions, Ch. 16Started with Exceptions, Ch. 16

try { if (milk <= 0) throw donuts;
dpg = donuts/double(milk); }

catch(int e)
{ cout << e << " donuts, and No Milk!\n" << "Go buy some milk.\n"; }

exception

logic_error runtime_error

range_error
overflow_error

underflow_error
length_error bad_alloc bad_cast

domain_error bad_exception bad_typeid
out_of_range ios_base::failure
invalid_argument

15

A Toy Example of Exception Handling (4 of 14)

n If this were all there is to exception handling, we wouldn't have
bought much.

n The C++ exception handling mechanism consists of trytrytrytry----throwthrowthrowthrow----
catchcatchcatchcatch triple.

n A try block must be followed by a catch block.
n A try block has the syntax:

try { Some_code; }try { Some_code; }try { Some_code; }try { Some_code; }

n The try block contains the code for the algorithm, to be used when
things go smoothly.

n The block is called a try-block because we aren't sure things will
go smoothly, but we want to "give it a try".

16

A Toy Example of Exception Handling (5 of 14)

n If something does go wrong we need to throw an
exception to indicate that something has gone wrong.

n We add a throw statement controlled by some
conditional:
trytrytrytry

{ Some_code_to_try;{ Some_code_to_try;{ Some_code_to_try;{ Some_code_to_try;

Possibly_throw_an_exceptionPossibly_throw_an_exceptionPossibly_throw_an_exceptionPossibly_throw_an_exception;;;;

More_code;More_code;More_code;More_code;

}}}}

n In the next slide we copy the try-block from Display
16.2.

17

A Toy Example of Exception Handling (6 of 14)

n The try block from Display 16.2 is:

try { cout << "Enter number of donuts:\n";
cin >> donuts;

cout << "Enter number of glasses of milk:\n";
cin >> milk;
if (milk <= 0) throw donuts;
dpg = donuts/double(milk);
cout << donuts << " donuts.\n" << milk << " glasses of milk.\n"

<< "You have " << dpg << " donuts for each glass of milk.\n";
}

n The line, throw donutsthrow donutsthrow donutsthrow donuts;;;; throws the int value donuts (exception)donuts (exception)donuts (exception)donuts (exception).
n This value is called an exception.
n Executing a throwthrowthrowthrow statement is called throwing an exception.
n Values of any type, including class type, can be thrown.

throwthrowthrowthrow-Statement
Syntax:

throwthrowthrowthrow Expression_for_Value_to_be_Thrown;Expression_for_Value_to_be_Thrown;Expression_for_Value_to_be_Thrown;Expression_for_Value_to_be_Thrown;

When the throwthrowthrowthrow statement is executed, the execution of the
enclosing trytrytrytry----block is followed by a suitable catchcatchcatchcatch-block,
then flow of control is transferred to the catchcatchcatchcatch-block. A throwthrowthrowthrow-
statement is almost always embedded in a branching statement,
such as an ifififif-statement. The value thrown can be of any type.

Example:
if (milk <= 0)if (milk <= 0)if (milk <= 0)if (milk <= 0)

throw donuts;throw donuts;throw donuts;throw donuts;

4

catchcatchcatchcatch-Block Parameter
The catchcatchcatchcatch-block parameter is an identifier in the heading of a
catchcatchcatchcatch-block that serves as a place holder for an exception (a
value) that might be thrown. When a (suitable) value is thrown in
the preceding trytrytrytry-block, that value is plugged in for the catchcatchcatchcatch-
block parameter. You can use any legal (non-reserved word)
identifier for a catchcatchcatchcatch-block parameter.

Example:
catch(catch(catch(catch(intintintint e)e)e)e)

{ { { { coutcoutcoutcout << e << " donuts, and no milk!<< e << " donuts, and no milk!<< e << " donuts, and no milk!<< e << " donuts, and no milk!\\\\n"n"n"n"

<< "Go buy some milk.<< "Go buy some milk.<< "Go buy some milk.<< "Go buy some milk.\\\\n";n";n";n";

}}}}

Here, , , , eeee is the catch block parameter.

20

A Toy Example of Exception Handling (7 of 14)

n The word throw suggests that something goes from one place to
another.

n In C++ flow of control is passed from the trytrytrytry-block to another portion
of code called the catchcatchcatchcatch-block (along with the information in the
value thrown.)

n Execution of the trytrytrytry-block stops when the throwthrowthrowthrow statement is
executed, and execution of the catchcatchcatchcatch-block that corresponds to type
of the value thrown is started. (There can be more than one catch
block. Details shortly.)

n Executing the catchcatchcatchcatch-block is known as catching the exception or
handling the exception.

n In Display 16.2 the catch-block is:
catch(int e)
{ cout<< e << " donuts, and No Milk!\n"<<"Go buy some milk.\n"; }

21

A Toy Example of Exception Handling (8 of 14)

n The catch block looks and behaves very much like a function
definition with a parameter of type int.

n Of course this is not a function definition, but there are similarities.

n The catch block is a separate piece of code that is executed in
response to

throw some_int;throw some_int;throw some_int;throw some_int;

n Instead of calling a function the response is to start execution of the
catchcatchcatchcatch block.

n The catch block is often referred to as an exception handler.

n The similarities to a function call are:

g control flow is transferred to another piece of code

g information is transferred to that piece of code.
22

A Toy Example of Exception Handling (9 of 14)

n Look at the catchcatchcatchcatch block header:
catch(int e)catch(int e)catch(int e)catch(int e)

n The identifier eeee looks and behaves like a function parameter.
n In fact we call the parameter eeee the catchcatchcatchcatch-block parameter.
n The catchcatchcatchcatch-block parameter does two things:

g The catchcatchcatchcatch-block parameter type specifies what type exception
this catchcatchcatchcatch-block can catch.

g Upon starting the catchcatchcatchcatch-block, the identifier eeee receives the value
that is thrown by the throwthrowthrowthrow statement.

n The catchcatchcatchcatch-block parameter type enables choosing between catchcatchcatchcatch-
blocks corresponding to several exceptions which could be thrown.
More in the text's section, "Multiple Throws and Catches".

n The identifier eeee gives a name in the catchcatchcatchcatch-block to the value that was
thrown and is caught.

n Any legal C++ identifier may be used to name the catchcatchcatchcatch-block
parameter, even specific ExceptionType objects.

23

A Toy Example of Exception Handling (10 of 14)

n Let's take a detailed look at the catch block from Display 16.2:

catch(int e)
{ cout << e << " donuts, and No Milk!\n" <<

"Go buy some milk.\n";
}

n When the exception is thrown, the type must be int for
this catchcatchcatchcatch- block to apply/get-executed.

n The throw statement sends the value of the variable
donutdonutdonutdonut which has type intintintint.

n The catchcatchcatchcatch-block parameter matches the type thrown, so
the catchcatchcatchcatch-block catches the value thrown.

24

A Toy Example of Exception Handling (11 of 14)

n Suppose that the value of 12 and the value of milkmilkmilkmilk is 0:

n The value of milkmilkmilkmilk is not positive, so the ifififif statement
executes the throwthrowthrowthrow statement.

n When the catchcatchcatchcatch-block is executed the value of donuts

is plugged in for the catchcatchcatchcatch-block parameter eeee, and this

output is produced:
12 donuts, and No Milk!12 donuts, and No Milk!12 donuts, and No Milk!12 donuts, and No Milk!

Go buy some milk.Go buy some milk.Go buy some milk.Go buy some milk.

5

25

A Toy Example of Exception Handling (12 of 14)

n If the value of milkmilkmilkmilk is positive,

g the throwthrowthrowthrow statement is skipped,

g the remainder of the trytrytrytry-block is executed,

g the catchcatchcatchcatch-block is skipped, and

g the output and returnreturnreturnreturn statements are executed.

n The trytrytrytry----throwthrowthrowthrow----catchcatchcatchcatch setup is like an ifififif----elseelseelseelse

statement with the ability to send a message to one of the
branches.

n In practice, exception handling is very different from an
ifififif----elseelseelseelse statement.

26

A Toy Example of Exception Handling (13 of 14)

n Summarizing events when an exception is thrown:
n A trytrytrytry-block is followed immediately by one or more catchcatchcatchcatch-blocks.

(See "Multiple Throws and Catches" later.)
n The trytrytrytry-block code contains a throwthrowthrowthrow statement.
n The throwthrowthrowthrow statement is only executed under exceptional

circumstances.

n When executed, the trytrytrytry-block throws a value of some type.
n The trytrytrytry-block execution ends when the throw statement is executed.

n If the type of the value thrown and the type of the catchcatchcatchcatch-block
parameter match, that catchcatchcatchcatch-block is executed and the value thrown
is plugged in for the catchcatchcatchcatch-block parameter.

n Statements in the catchcatchcatchcatch-block are executed.

n If the thrown type and the catch block parameter type do not match
there is no appropriate block. See "Pitfall: Uncaught Exceptions".

27

A Toy Example of Exception Handling (14 of 14)

n Summarizing events when no exception is thrown:

n The trytrytrytry-block is executed up to the throw statement.

n We are assuming that the throw statement in the trytrytrytry-block
is skipped.

n The trytrytrytry-block is completed and the catchcatchcatchcatch-block is
skipped.

n Any statements remaining after the catchcatchcatchcatch-block are
executed.

n Most of the time the throw will not be executed, the trytrytrytry-
block will run to completion and the code in the catchcatchcatchcatch-
block will be ignored. 28

Defining Your Own Exception Type Classes

n A throwthrowthrowthrow-statement can throw a value of any type.

n A usual practice is to define a class so that the object to be thrown
carries precise information about the exceptional event.

n How the object is used makes a value be an exception.

n Care in choosing the exception's type and name will pay off.

n Display 16.3 contains an example program that has a programmer-
defined exception class.

n Notice the throw statement:

throw NoMilk(donuts);throw NoMilk(donuts);throw NoMilk(donuts);throw NoMilk(donuts);

n The value that is thrown is the result of a call to the constructor for
the class NoMilkNoMilkNoMilkNoMilk that takes one int parameter.

Display 16.3 Defining Your Own Exception Class (1 of 3)

#include <iostream>
using namespace std;

class NoMilk
{
public:
NoMilk();
NoMilk(int how_many_ donuts);
int get_donuts_count();

private:
int donuts _count;

};

Display 16.3 Defining Your Own Exception Class (2 of 3)

int main()
{ int donuts, milk;

double dpg;
try
{ cout << "Enter number of donuts:\n";

cin >> donuts;
cout << "Enter number of glasses of milk:\n";
cin >> milk;
if (milk <= 0)

throw NoMilk(donuts);
dpg = donuts/double(milk);
cout << donuts << " donuts.\n" << milk << " glasses of milk.\n"

<< "You have " << dpg << " donuts for each glass of milk.\n";
}
catch(NoMilk e)
{ cout << e.get_donuts_count() << " donuts, and No Milk!\n"

<< "Go buy some milk.\n";
}
cout << "End of program.";
return 0;

}

6

Display 16.3 Defining Your Own Exception Class (3 of 3)

NoMilk::NoMilk()

{ }

NoMilk::NoMilk(int how_many) : count_donuts(how_many)
{ }

int NoMilk::get_donuts_count()
{

return donuts_count;
}

Multiple Throws and Catches

try-throw-catch
This is the basic mechanism for throwing and catching

exceptions. The throw statement throws the exception (a value).
The catch-block catches the exception (a value). When an
exception is thrown, the try-block ends and then the code in the
catch-block is executed. After the catch-block is complete, the
code after the catch block(s) is executed, provided the catch-block
has not ended the program or taken some other special action.

If no exception is thrown in the try-block then after the try-
block is completed, program execution continues with the code
after the catch-block(s). (In other words, then the catch-block(s) are
ignored.)
Syntax:

try
{ Some_statements;
<Either some code with a throw-statement or an invocation of

a function that might throw an exception.>
Some_more_statements;

}
catch(Type e)
{ <Code to handle exception if a value of type Type is thrown.> }

32

33

Multiple Throws and Catches

n A single trytrytrytry-block could throw any number of exception objects of
several different types.

n In any one trytrytrytry-block only one exception will be thrown (because
throwing an exception ends the trytrytrytry-block).

n Different types of exceptions may be thrown depending on events.

n While each catchcatchcatchcatch-block can catch only one type of exception, the
exact behavior can be tailored to the value of the exception.

n Display 16.4 has two catchcatchcatchcatch-blocks for its one try-block.

n A coding note:
In Display 16.4, there is no parameter for the catchcatchcatchcatch-block for
DivideByZero. The exception type communicates everything
needed -- namely the fact that there is a divide by zero exception --
so there no need for a parameter, and we do not provide one.

Display 16.4 Catching Multiples Exceptions (1 of 3)

#include <iostream>
#include <string>
using namespace std;

class NegativeNumber
{
public:

NegativeNumber();
NegativeNumber(string take_me_to_your_catch_block);
string get_message();

private:
string message;

};

class DivideByZero
{ DivideByZero(); };

Display 16.4 Catching Multiples Exceptions (2 of 3)

int main()
{ int jem_hadar, klingons;

double portion;

try
{ cout << "Enter number of Jem Hadar warriors:\n";

cin >> jem_hadar;
if (jem_hadar < 0)

throw NegativeNumber("Jem Hadar");
cout << "How many Klingon warriors do you have?\n";
cin >> klingons;
if (klingons < 0)

throw NegativeNumber("Klingons");
if (klingons != 0)

portion = jem_hadar/double(klingons);
else

throw DivideByZero();
cout << "Each Klingon must fight " << portion << " Jem Hadar.\n";

}

Display 16.4 Catching Multiples Exceptions (3 of 3)

catch(NegativeNumber e)
{ cout << "Cannot have a negative number of "

<< e.get_message() << endl;
}
catch(DivideByZero)
{ cout << “C++ is fun and division by zero is forbidden.\n"; }

cout << "End of program.\n";
return 0;

}

NegativeNumber::NegativeNumber()
{ }
NegativeNumber::NegativeNumber(

string take_me_to_your_catch_block)
: message(take_me_to_your_catch_block)

{ }
string NegativeNumber::get_message()
{ return message; }

7

37

Pitfall:
Catch the More Specific Exception First (1 of 3)

n When there are several catchcatchcatchcatch-blocks for 1 trytrytrytry-block the catchcatchcatchcatch-
blocks are tried in order.

n The first catchcatchcatchcatch-block that matches the type of the exception value
is executed, this includes the is-a relation!!!

n This catch statement will catch a thrown value of any type:

catch (...) //the three dots are part of the syntaxcatch (...) //the three dots are part of the syntaxcatch (...) //the three dots are part of the syntaxcatch (...) //the three dots are part of the syntax

{{{{

<any code you wish goes here><any code you wish goes here><any code you wish goes here><any code you wish goes here>

}}}}

n You actually type in the three dots in your program.

n This catchcatchcatchcatch-block will catch any exception not yet caught.

n Use this as a default catchcatchcatchcatch-block after all other catchcatchcatchcatch-blocks.

38

Pitfall:
Catch the More Specific Exception First (2 of 3)

n This could be added after of the catchcatchcatchcatch-blocks in Display 16.4:

catch(NegativeNumber e)catch(NegativeNumber e)catch(NegativeNumber e)catch(NegativeNumber e)
{{{{

cout << "Cannot have a negative number of " cout << "Cannot have a negative number of " cout << "Cannot have a negative number of " cout << "Cannot have a negative number of "
<< e.get_message() << endl;<< e.get_message() << endl;<< e.get_message() << endl;<< e.get_message() << endl;

}}}}

catch(DivideByZero)catch(DivideByZero)catch(DivideByZero)catch(DivideByZero)

{{{{
cout << "Today is a good day to die.cout << "Today is a good day to die.cout << "Today is a good day to die.cout << "Today is a good day to die.\\\\n";n";n";n";

}}}}

catch(...)catch(...)catch(...)catch(...)
{{{{

cout << "Unexplained exception.cout << "Unexplained exception.cout << "Unexplained exception.cout << "Unexplained exception.\\\\n";n";n";n";
} } } }

n It only makes sense to place this default catchcatchcatchcatch-block at the end of
a list of catchcatchcatchcatch-blocks.

39

Pitfall:
Catch the More Specific Exception First (3 of 3)

n If we put the catch(catch(catch(catch(…)))) block in the middle:

catch(NegativeNumber e)catch(NegativeNumber e)catch(NegativeNumber e)catch(NegativeNumber e) NegativeNumber exceptions
{ { { { are still handled properly.

cout << "Cannot have a negative number of " cout << "Cannot have a negative number of " cout << "Cannot have a negative number of " cout << "Cannot have a negative number of "
<< e.get_message() << endl;<< e.get_message() << endl;<< e.get_message() << endl;<< e.get_message() << endl;

}}}}

catch(...)catch(...)catch(...)catch(...) All other exceptions are caught here.
{ { { {

cout << "Unexplained exception.cout << "Unexplained exception.cout << "Unexplained exception.cout << "Unexplained exception.\\\\n";n";n";n";
} } } }

catch(DivideByZero)catch(DivideByZero)catch(DivideByZero)catch(DivideByZero) DivideByZero exceptions
{ { { { are NEVER caught.

cout << "Today is a good day to die.cout << "Today is a good day to die.cout << "Today is a good day to die.cout << "Today is a good day to die.\\\\n";n";n";n";
}}}}

n No exception whose catchcatchcatchcatch-block is below catch(catch(catch(catch(…)))) will be
handled properly.

n Most compilers will "catch" this mistake. 40

Programming Tip:
Exception Classes Can Be Trivial

n Here is the exception class DivideByZero from Display 16.4:
class DivideByZeroclass DivideByZeroclass DivideByZeroclass DivideByZero

{ };{ };{ };{ };

n This exception has no member functions nor variables other than
the compiler generated members (the default constructor etc.)

n This class has nothing but its name, but that is useful enough.

n This is because nothing is needed to describe a divide by zero error
other than the fact that it occurred.

n Only the exception type is used, to get the execution stream to the
catch block.

n The exception value is not needed inside the catch block.
n There is no parameter needed and we do not provide one.
n As in functions, you do not have to supply a parameter for

exceptions.

41

Throwing an Exception in a Function(1 of 6)

n Sometimes it makes sense to let the caller of a function
handle the exception.

n One program that uses this function should die if a
divide by zero error occurs.

n Another program that uses this function should do
something else.

n The function cannot know what to do with the exception

in all cases, so it makes sense to let the caller handle

the exception.

n This is illustrated in Display 16.5, where we place the

throw inside the function and the try-block in the caller. 42

Throwing an Exception in a Function(2 of 6)

n In Display 16.5 the main function has a trytrytrytry-block but no
throw is visible there.

n The throw statement is in the function safe_dividesafe_dividesafe_dividesafe_divide, that is
called in the trytrytrytry-block.

if (bottom == 0) throw DivideByZero();if (bottom == 0) throw DivideByZero();if (bottom == 0) throw DivideByZero();if (bottom == 0) throw DivideByZero();

n The throw statement is not visible in the trytrytrytry-block.

n Nevertheless, the throw statement is in the execution

stream.

n Execution passes from the trytrytrytry-block via the function call

to safe_dividesafe_dividesafe_dividesafe_divide to the trytrytrytry-block.

8

43

Throwing an Exception in a Function(3 of 6)

n If a function does not catch an exception that it throws, the
function should warn programmers that it may throw an exception.

n If there are exceptions that are thrown, but not caught, then those
exceptions should be listed in a throwthrowthrowthrow-list, as in:

double safe_divide(int top, int bottom) double safe_divide(int top, int bottom) double safe_divide(int top, int bottom) double safe_divide(int top, int bottom) throwthrowthrowthrow(DivideByZero);(DivideByZero);(DivideByZero);(DivideByZero);

n The throwthrowthrowthrow-list should appear in both the function prototype and the
function definition.

n If more than one exception could be thrown, all the possible
exceptions should be listed in a comma separated list, as in

void some_function() void some_function() void some_function() void some_function() throwthrowthrowthrow (int, DivideByZero);(int, DivideByZero);(int, DivideByZero);(int, DivideByZero);

int g(double h) throw (a, b, c)
{ /* function body */ } 44

Throwing an Exception in a Function(4 of 6)

n Some compilers accept a throwthrowthrowthrow-list but ignore it.

n Other compilers terminate the program if an exception

not in the throwthrowthrowthrow-list is thrown.

n An ISO Standard compliant compiler produces an error

message if it finds an exception could be thrown that is

not in the throwthrowthrowthrow-list.

n Technically, if an exception is thrown but not caught,

then the function std::terminate() is called, which by

default, terminates the program.

45

Throwing an Exception in a Function(5 of 6)

n Summary(1):

n Exceptions that are thrown but not caught in a function should

appear in the throwthrowthrowthrow-list in both the definition and the prototype.

n Exceptions listed in the throwthrowthrowthrow-list that are thrown are sent to the

caller for handling.

n A function may have an empty throwthrowthrowthrow-list. Such a function should

not throw any exceptions that this function does not catch.

n A function may not have a throwthrowthrowthrow-list. All exceptions thrown there

are sent to the caller for handling.

46

Throwing an Exception in a Function(6 of 6)

n Summary(2)

n An exception that is thrown in a function that is not in the throwthrowthrowthrow-list

is a programming error. Possible behaviors are:

n The compiler may ignore the throwthrowthrowthrow-list, all exceptions are passed

to the caller.

n The program may terminate on throwing an unlisted exception.

n The compiler may detect that an unlisted exception can be thrown

so an error message may be generated.

n Read the manual or ask a local guru.

47

Unhandled Exception Propagation

n If an exception is thrown in a function without being handled there,
the exception is passed to the function's caller to be handled.

n If not handled there, the exception is passed to the caller of that
function to be handled, and so on until the main function reached.

n If the exception is not handled in the main function, the program
terminates with an unhandled exception error.

n Summary: Unhandled exceptions are passed up the chain of
function calls until a handler is found. If no handler is found, the
program terminates.

48

Pitfall: Throw List in Derived Classes

n If you override or redefine a member function in a
derived class, it is required to have the same throwthrowthrowthrow-list,
or a throwthrowthrowthrow-list that is a subset of the throwthrowthrowthrow-list in the
base class function.

n In short, you cannot place more restrictions on
exceptions that may be thrown in a redefined or
overridden function, but you can place fewer
restrictions on the function.

n Remember a base class object must be usable
anywhere a derived class object can be used.

9

49

Programming Techniques
for Exception Handling

n We have explained HOW exception handling

works.

n We have NOT given you any examples of how

to make realistic use of exception handling.

n When do you throw exceptions?

16.2

50

When to Throw an Exception (1 of 3)

n Two cases arise:

(1) You have a function where you want to throw an

exception. There you should have a throw-list that

lists all the exceptions that may be thrown.
void void void void funcfuncfuncfunc_A() throw (MyException)_A() throw (MyException)_A() throw (MyException)_A() throw (MyException)

{ ...{ ...{ ...{ ...

throw MyException(<argument_if_needed>);throw MyException(<argument_if_needed>);throw MyException(<argument_if_needed>);throw MyException(<argument_if_needed>);

............

}}}}

51

When to Throw an Exception (2 of 3)

(2) You have a function that calls some other function that throws
an exception you want to catch:
void funcB()void funcB()void funcB()void funcB()

{{{{
............

trytrytrytry

{{{{ throw MyException(<argument_if_needed>);throw MyException(<argument_if_needed>);throw MyException(<argument_if_needed>);throw MyException(<argument_if_needed>);
............

}}}}

catch(MyException e)catch(MyException e)catch(MyException e)catch(MyException e)

{{{{
<Handle_exception> <Handle_exception> <Handle_exception> <Handle_exception>

}}}}
............

}}}}
52

When to Throw an Exception (3 of 3)

n If a problem can be handled in some other way, do
not use exceptions.

n Reserve exceptions for cases where use of
exceptions is unavoidable.

When to throw an Exception
For the most part, throwthrowthrowthrow-statements should be used within functions
and listed in the throwthrowthrowthrow-list for the function. Moreover, they should be
reserved for situations in which the way the exceptional situation is
handled depends on how and where the function is used. If the way
that the exceptional condition is handled depends on how and where
the function is invoked, then the best thing to do is to let the program-
mer who invokes the function handle the exception. In all other situa-
tions it is almost always preferable to avoid throwing an exception.

53

Pitfall: Uncaught Exceptions

n Every exception thrown by your program
should be caught some place in your program.

n The (default) penalty for not catching an
exception that is thrown is termination of your
program.

n The std::terminate() function is called by
default, but you can change the default
behavior. How to do this is beyond the scope
of the text. 54

Pitfall: Nested TryTryTryTry----CatchCatchCatchCatch Blocks

n You can nest trytrytrytry----throwthrowthrowthrow----catchcatchcatchcatch sequence inside another trytrytrytry-
block, or inside a catchcatchcatchcatch-block for that matter.

n This may rarely be useful but if you are tempted to do this, look for
a nicer way to organize your program.

n It is almost always better to place the inner try-catch sequence
inside a function and call that from the try or catch block where
you are tempted to nest it. (It may be better to just eliminate the
inner try and move the catch to someplace in the catch blocks
below.)

n An exception thrown in an inner try block and not caught in the
catch block belonging to the inner try block is passed to the outer
try block and may be caught by one of its catch blocks.

10

55

Pitfall: Overuse of Exceptions (1 of 2)

n Exceptions are supposed to simplify programs.

n Unfortunately, bad programs can be written in any language and
any programming feature can be abused.

n You can write programs using exceptions where the flow of
control is so contorted that it is impossible to understand.

n In the early days of programming, unrestricted flow of control was
available using the gotogotogotogoto construct.

n There was a great controversy about this that was resolved: Most
programming experts agree that unrestricted control flow is a bad
programming practice.

56

Pitfall: Overuse of Exceptions (2 of 2)

n Conclusion:

n Use exceptions sparingly.

n If you are tempted to include a throwthrowthrowthrow statement, think
about how to write your program, function or class
definition without the throwthrowthrowthrow statement. If you think of
an alternative that produces reasonable code, you
probably do not want to include the throwthrowthrowthrow statement.

57

Exception Class Hierarchy

n It can be very useful to define a hierarchy of
exception classes. For example, you might have an
ArithmeticError exception class and define class
DivideByZero as a class derived from
ArithmeticError.

n Every catch block for ArithmeticError will catch
DivideByZero error.

n If you list ArithmeticError in the throwthrowthrowthrow-block you
have, in effect added DivideByZero to the throwthrowthrowthrow-
list, regardless of whether you have listed
DivideByZero by name.

58

Testing for Available Memory (1 of 2)

n In Chapter 14 we created new dynamic variables
with code such as
struct Nodestruct Nodestruct Nodestruct Node

{{{{ intintintint data;data;data;data;

Node *link;Node *link;Node *link;Node *link;

};};};};

typedef Node* NodePtr;typedef Node* NodePtr;typedef Node* NodePtr;typedef Node* NodePtr;

NodePtr ptr = new Node;NodePtr ptr = new Node;NodePtr ptr = new Node;NodePtr ptr = new Node;

n This works fine as long as sufficient unallocated
heap memory remains for a new Node object.

59

Testing for Available Memory (2 of 2)

n If there is insufficient memory to create a new Node, Standard
compliant compilers throw a predefined exception named
bad_allocbad_allocbad_allocbad_alloc. The exception, bad_allocbad_allocbad_allocbad_alloc, is defined in the
iostream header file, you do not need to define it.

n You can check for insufficient memory as follows:
trytrytrytry

{ { { { NodePtrNodePtrNodePtrNodePtr pointer = new Node;pointer = new Node;pointer = new Node;pointer = new Node;
<Use pointer and the new node here><Use pointer and the new node here><Use pointer and the new node here><Use pointer and the new node here>

}}}}

catch (bad_alloc)catch (bad_alloc)catch (bad_alloc)catch (bad_alloc)
{ { { { coutcoutcoutcout << "Ran out of heap memory<< "Ran out of heap memory<< "Ran out of heap memory<< "Ran out of heap memory\\\\n"; }n"; }n"; }n"; }

n What you actually do in the catchcatchcatchcatch-block will depend on your
programming task.

60

Rethrowing an Exception

It is legal to throw an exception within a
catch block. In rare cases you may wish to
catch an exception, take some action and
throw that exception again for further
handling by further up the chain of
exception handling blocks.

11

1 // Example or Exception Handling

2 // Demonstrating set_new_handler

3 #include <iostream>

4

5 using std::cout;

6 using std::cerr;

7

8 #include <new>

9 #include <cstdlib>

10

11 using std::set_new_handler;

12

13 void customNewHandler()

14 {

15 cerr << "customNewHandler was called";

16 abort();

17 }

18

19 int main()

21 { double *ptr[50];

22 set_new_handler(customNewHandler);

23

24 for (int i = 0; i < 50; i++) {

25 ptr[i] = new double[5000000];

26

27 cout << "Allocated 5000000 doubles in ptr["

28 << i << "]\n";

29 }

30

31 return 0;

32 }
62

Standard Library Exception
Hierarchy

n exceptions fall into categories
g hierarchy of exception classes
g base class exception (header <exception>)

0function what() issues appropriate error message

g derived classes: runtime_error and logic_error (header
<stdexcept>)

n class logic_error
g errors in program logic, can be prevented by writing proper code
g Derived classes:

0invalid_argument - invalid argument passed to function
0length_error - length larger than maximum size allowed was

used
0out_of_range - out of range subscript

63

Standard Library Exception
Hierarchy (II)

n class runtime_error
g errors detected at execution time
g Derived classes:

0overflow_error - arithmetic overflow
0underflow_error - arithmetic underflow

n other classes derived from exception
g exceptions thrown by C++ language features

0new - bad_alloc

0dynamic_cast - bad_cast

0typeid - bad_typeid

g put std::bad_exception in throw list
0unexpected() will throw bad_exception instead of calling function

set by set_unexpected

Chapter Summary
n Exception handling allows you to design and code the

normal case for your program separately from the code
that handles exceptional situations.

n An exception can be thrown in a trytrytrytry-block. Alternatively,
an exception can be thrown in a function definition that
does not include a trytrytrytry-block (or does not include a
catchcatchcatchcatch-block to catch that type of exception). In this case,
an invocation of the function can be placed in a trytrytrytry-block.

n An exception is caught in a catchcatchcatchcatch-block.
n A trytrytrytry-block may be followed by more than one catchcatchcatchcatch-

block. In this case, always list the catchcatchcatchcatch-block for a more
specific exception class then the catchcatchcatchcatch-block for a more
general exception.

n Do not overuse exceptions.

