UCLA STAT 10

Introduction to Statistical Reasoning

- Instructor: Ivo Dinov, Asst. Prof. in Statistics and Neurology
- Teaching Assistants:, Yan Xiong and Will Anderson UCLA Statistics

University of California, Los Angeles, Winter 2002
http://www.stat.ucla.edu/~dinov/

Data representations

- The histogram of observed data summarizes a large amount of information describing the process we have observed. Often more concise representations are needed.
- Measures of central tendency - average, median, mode.
- Measures of variability - Standard deviation (standard error, root-mean-square), range and quartile and inter-quartile range
- Inter-quartile range
- Energy of the data (sum-squared)
- Etc.

The average

- If we have to summarize a histogram, or any bar-plot for that matter, in only a few words what would these be?

Cross-sectional vs. Longitudinal Studies

- The avg. height of men appears to decrease with age. Should we conclude the avg. person's getting shorter with time?
- No, because this is a cross-sectional study - different subjects are compared to each other at one point in time.
- In longitudinal studies - subjects/units are followed over time and compared with themselves.
- Note that the people on the $20-30$ yrs range are completely different from the folks in the 60-70 yrs of age. There's evidence that with time men may be getting taller - an effect which is heavily confound with the effects of aging.

Average vs. Median

- Avg. weight for women 146 lb . Should we expect 50% below and 50% above the average?
- No, in fact 41% are above and 59% are below the avg
- The histogram balances when supported on the average.
- The median of a histogram is the value in the middle with 50% of the
observations above and 50\% below the median.

Standard Deviation (SD)

Normal Generation Movie, Quincunx

- The standard deviation is a measure of the spread of the data around its average. Most numbers in the data will be within $1 S D$ away from the average, and very few will be 2 SD's or more, away from the average.
- With the women's height example we saw, 6,566 women ages 18-74 were surveyed, avg. height was 63.5 in and the SD was 2.5 in .
- Rule of thumb for data spreading:
- Roughly 68% of all numbers from a list are within 1 SD of the average and the other $\sim 32 \%$ will be farther away. About 95% of the values will be within 2 SD's away from the average.

- Where the average (mean) $\mu=\frac{1}{N} \sum_{k=1}^{N} a_{k}$

$$
\mu=\frac{1}{N} \sum_{k=1}^{N} a_{k}
$$

- Example, $\{20,10,15,15\}, \quad \mu=\frac{1}{4}(20+10+15+15)=15$

Calculating the Standard Deviation

- $\mathrm{SD}=$ (almost) R.M.S. deviation from the average
- Let $\left\{a_{1}, a_{2}, a_{3}, \ldots, a_{N}\right\}$ are the observed values, then:
$S D\left(\left\{a_{1} \cdot a_{2}-a_{N}\right\}\right)=\sqrt{\frac{1}{N-1}=\frac{N}{N}=(a-\mu-\mu)^{2}}$

Calculating the Standard Deviation

- $S D=$ (almost) R.M.S. deviation from the average. - Let $\left\{\mathrm{a} 1, \mathrm{a} 2, \ldots, \mathrm{a}_{\mathrm{N}}\right\}$ are the observed values, then:

Note the difference between Our and the textbook definition of SD, see Ch. 26.
$S D\left(\left\{a_{1}, a_{2}, \ldots, a_{N}\right\}\right)=$

Root Mean Square (R.M.S.)

- Consider $\{0,5,-8,7,-3\}$, the mean is: 0.2 . But it's also the mean of $\{0.1,0.3,0,0.4,0.2\}$. Of course, the 2 sequences of 5 numbers are very very different (e.g. size, sign, integer vs. double, etc.) So, the mean does not really represent all the info about the data!
- R.M.S. $\left(\left\{a_{1}, a_{2}, a_{3}, \ldots, a_{n}\right\}\right)$ is:

$$
\text { R.M.S. }=\sqrt{\frac{1}{N} \sum_{k=1}^{N} a_{k}^{2}}
$$

- Example R.M.S. $\{0,5,-8,7,-3\}=5.4$, where as
- R.M.S. $\{0.1,0.3,0,0.4,0.2\}=0.24494897$.

Be careful in computing various data descriptors

Beware of inappropriate averaging

Five number summary

The five-number summery $=\left(\right.$ Min, Q_{1}, Med, Q_{3}, Max $)$

Inter-quartile Range

$$
\mathrm{YQR}=\mathrm{Q}_{3}-\mathrm{Q}_{1}
$$

The first quartile $\left(Q_{1}\right)$ is the median of all the observations whose position is strictly below the position of the median, and the third quartile $\left(Q_{3}\right)$ is the median of those above.

Comparing 3 plots of the same data

Stem-and-leaf of strength $\mathrm{N}=33$
Leaf Unit = 10

102100233
(8) 2155668899

1522000111112
6
5
5
225
$\begin{array}{ll}5 & 23 \\ \mathbf{2} & 23 \\ 2\end{array}$
24
2
24
25
252
259

Figure 2.4.5 Three graphs of the breaking-strength data for gear-teeth in positions $4 \& 10$ (Minitab output).

Mean from a frequency table

$\bar{x}=\frac{1}{n}$ Sum of $($ value \times frequency of occurrence $)=$
$\frac{1}{n}$ (Sum of all observations)

21 Stat 10, UCLA, Ino Dinov

TABLE 2.5.2
Frequency Table for the Occurrence of Fish Species in Ocean Strata

No. of strata in which species occur $\left(u_{j}\right)$	Frequency (No. of species) $\left(f_{j}\right)$	Percentage of species $\left(\frac{f_{i}}{n} \times 100\right)$	Cumulative Percentage
1	117	35.5	35.5
2	61	18.5	53.9
3	37	11.2	65.2
4	24	7.3	72.4
5	23	7.0	79.4
6	12	3.6	83.0
7	14	4.2	87.3
8	10	3.0	90.3
9	9	2.7	93.0
$10+$	23	7.0	100.0
	$\mathrm{n}=330$	100	
Source: Hacdrich and Merrett [1988]			
	22		Stat 10. UCLA, Ivo Dinov

Figure 2.5.1 Bar graph for species data.

[^0]
[^0]: From Chance Encounters by CJ. Wild and G.A.F. Seber, © John Wiley \& Sons,

