
1

STAT 10, UCLA, Ivo Dinov Slide 1

UCLA  STAT 10
Introduction to Statistical Reasoning

�Instructor:   Ivo Dinov, 
Asst. Prof. In Statistics and Neurology

�Teaching Assistants: Yan Xiong, Will Anderson

University of California, Los Angeles,  Winter 2002
http://www.stat.ucla.edu/~dinov/
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� For the sample mean calculated from a random sample, 
E(    )  = µ and SD(      ) =          , provided 

= (X1+X2+ … + Xn)/n, and Xk~N(µ, σµ, σµ, σµ, σ). Then

� ~ N(µ,      ). And variability from sample to sample 
in the sample-means is given by the variability of the 
individual observations divided by the square root of 
the sample-size. In a way, averaging decreases variability.

X n
σ

Recall we looked at the sampling distribution of

n
σσσσ

X 

X 
X 
X 
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Central Limit Effect –
Histograms of sample means
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Central Limit Effect -- Histograms of sample means
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Central Limit Effect –
Histograms of sample means
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Central Limit Effect -- Histograms of sample means
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Central Limit Effect –
Histograms of sample means

Sample means from sample size
n=1, n=2, 
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Central Limit Effect -- Histograms of sample means

n = 4

0 1 2 3
0.0
0.2
0.4
0.6
0.8
1.0

n = 10

0 1 2
0.0

0.4

0.8

1.2

Exponential Distribution
Sample sizes n=4, n=10

STAT 10, UCLA, Ivo DinovSlide 9

Central Limit Effect –
Histograms of sample means

Sample means from sample size
n=1, n=2, 

500 samples
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Central Limit Effect -- Histograms of sample means
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Central Limit Theorem:
When sampling from almost any distribution,

is approximately Normally distributed in large samples.X 

Central Limit Theorem – heuristic formulation

Show Sampling Distribution Simulation Applet:
file:///C:/Ivo.dir/UCLA_Classes/Winter2002/AdditionalInstructorAids/
SamplingDistributionApplet.html
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Let                              be a sequence of independent
observations from one specific random process. Let    
and                      and                        and both be 
finite (                           ). If                    , sample-avg,

Then      has a distribution which approaches 
N(µ, σ2/n), as            .

Central Limit Theorem –
theoretical formulation

{{{{ }}}},...,...,X,XX
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Review

� What does the central limit theorem say? Why is it 
useful? (If the sample sizes are large, the mean in Normally distributed, as a RV)

� In what way might you expect the central limit effect 
to differ between samples from a symmetric
distribution and samples from a very skewed 
distribution? (Larger samples for non-symmetric distributions to see CLT effects)

� What other important factor, apart from skewness, 
slows down the action of the central limit effect?

(Heavyness in the tails of the original distribution.)
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Review

� When you have data from a moderate to small sample 
and want to use a normal approximation to the 
distribution of in a calculation, what would you 
want to do before having any faith in the results? (30 or 
more for the sample-size, depending on the skewness of the distribution of X. Plot 
the data - non-symmetry and heavyness in the tails slows down the CLT effects).

� Take-home message: CLT is an application of 
statistics of paramount importance. Often, we are not 
sure of the distribution of an observable process. 
However, the CLT gives us a theoretical description 
of the distribution of the sample means as the sample-
size increases (N(µ, σ2/n)).

X 
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� For the sample mean calculated from a random 
sample, SD(      ) =      . This implies that the 
variability from sample to sample in the sample-
means is given by the variability of the individual 
observations divided by the square root of the 
sample-size. In a way, averaging decreases variability.

� Recall that for known SD(X)=σ, we can express the 
SD(     ) =       .  How about if SD(X) is unknown?!?X 

X n
σσσσ

The standard error of the mean – remember …

n
σσσσ
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The standard error of the mean

The standard error of the sample mean is an 
estimate of the SD of the sample mean

� i.e. a measure of the precision of the sample 
mean as an estimate of the population mean

�given by   SE(   )
size Sample
deviation standard Sample =

n
s

xS x =)E(

x 

� Note similarity with

� SD(     ) =       . X 
n

σσσσ
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TABLE 7.2.1 Cavendish's Determinations of the Mean Density 
of the Earth (g/cm3)

5.50 5.61 4.88 5.07 5.26 5.55 5.36 5.29 5.58 5.65
5.57 5.53 5.62 5.29 5.44 5.34 5.79 5.10 5.27 5.39
5.42 5.47 5.63 5.34 5.46 5.30 5.75 5.68 5.85

So urce : C avendis h [1798].

5.0 5.2 5.4 5.6 5.8

Two-standard-error interval
for true value

x

Measured density (g/cm  )3

Newton’s law of gravitation: F = G m1 m2 /r2, the attraction force
F is the ratio of the product (Gravitational const, mass of body1, mass
body2) and the distance between them, r. Goal is to estimate G!

Cavendish’s 1798 data on mean density of the 
Earth, g/cm3, relative to that of H2O

Total of 29 measurements obtained by 
measuring Earth’s attraction to masses
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TABLE 7.2.1 Cavendish's Determinations of the Mean Density 
of the Earth (g/cm3)

5.50 5.61 4.88 5.07 5.26 5.55 5.36 5.29 5.58 5.65
5.57 5.53 5.62 5.29 5.44 5.34 5.79 5.10 5.27 5.39
5.42 5.47 5.63 5.34 5.46 5.30 5.75 5.68 5.85

So urce : C avendis h [1798].

Cavendish’s 1798 data on mean density of the 
Earth, g/cm3, relative to that of H2O

Sample mean 

and sample SD =

Then the standard error for these data is:

3/  447931.5 cmgx ====

3/  2209457.0 cmg
X

S ====

04102858.0
29

2209457.0)( ============
n

S
XSE X
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TABLE 7.2.1 Cavendish's Determinations of the Mean Density 
of the Earth (g/cm3)

5.50 5.61 4.88 5.07 5.26 5.55 5.36 5.29 5.58 5.65
5.57 5.53 5.62 5.29 5.44 5.34 5.79 5.10 5.27 5.39
5.42 5.47 5.63 5.34 5.46 5.30 5.75 5.68 5.85

So urce : C avendis h [1798].

Cavendish’s 1798 data on mean density of the 
Earth, g/cm3, relative to that of H2O

Safely can assume the true mean density of the 
Earth is within 2 SE’s of the sample mean! 

3/ 04102858 0.2   144793.5    )(2    cmgxSEx ×±=×±
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Review

X 

� Why is the standard deviation of     , SD(    ) , not a 
useful measure of the precision of     as an estimator 
in practical applications?(SD(   ) =       and σ is unknown most time!)

� What measure of precision do we use in practice? (SE)

� How is SE(   ) related to SD(    )?

� When we use the formula SE(   ) = sX/     , what is sX
and how do you obtain it? (Sample SD(X))

X X 
X 

x X 

x n

n
σσσσ

�

=
−

−
=

n

i
xix

nXS
1

2)(    
1

1
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Review

� What can we say about the true value of µ and the 
interval        2 SE(   )  ? (95% sure)

� Increasing the precision of    as an estimate of µ is 
equivalent to doing what to se(   )? (decreasing)

x ± x 

x 
x 
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The sample proportion estimates the population 
proportion p.

Suppose, we poll college athletes to see what percentage 
are using performance inducing drugs. If 25% admit to 
using such drugs (in a single poll) can we trust the 
results? What is the variability of this proportion 
measure (over multiple surveys)? Could Football, Water 
Polo, Skiing and Chess players have the same drug 
usage rates?

ˆ p 

Sampling distribution of the sample 
proportion
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For large samples,  the distribution of ˆ P   is approximately Normal with

             mean =  p   and    standard deviation =  
p(1 − p)

n
 

Approximate Normality in large samples
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Y~Bin(n,p)
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Approximate Normality in large samples

Histogram of  Bin (200, p=0.4) probabilities with superimposed 
Normal curve  approximation. Recall that for Y~Bin(n,p). 
Y = # Heads in n-trials. Hence, the proportion of Heads is:
Z=Y/n. 

)1()(

)(

pnpYSD

npYE

Y

Y
−−−−========

========

σσσσ

µµµµ

n
ppYSD

n
ZSD

pYE
n

ZE

Z

Z
)1()(1)(

)(1)(

−−−−============

============

σσσσ

µµµµ

This gives us bounds on the variability of the sample proportion:

n
pppZSE

Z
)1(2)(2 −−−−±±±±====±±±±µµµµ

What is the variability of this proportion measure 
over multiple surveys?
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Approximate Normality in large samples
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Histogram of 
Bin (200, p=0.4)
probabilities with
superimposed 
Normal curve 
approximation.
Recall that for
Y~Bin(n,p)

The sample proportion Y/n can be approximated by 
normal distribution, by CLT, and this explains the tight 
fit between the observed histogram and a N(pn,            ))1( pnp −−−−

93.6)1( ====−−−− pnp0.80====np
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Standard error of the sample proportion:

se( ˆ p ) =
ˆ p (1− ˆ p )

n

Standard error of the sample proportion
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Review

� We use both     and    to describe a sample proportion. 
For what purposes do we use the former and for what 
purposes do we use the latter? (observed values vs. RV)

� What two models were discussed in connection with 
investigating the distribution of    ? What 
assumptions are made by each model? (Number of units having 
a property from a large population Y~ Bin(n,p), when sample <10% of popul.; 
Y/n~Normal(m,s), since it’s the avg. of all Head(1) and Tail(0) observations, when n-large).

� What is the standard deviation of a sample proportion 
obtained from a binomial experiment?

ˆ p ˆ p 

p̂

n
ppnYSD )1()/( −−−−====
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Review

� Why is the standard deviation of    not useful in 
practice as a measure of the precision of the estimate?

� How did we obtain a useful measure of precision, and 
what is it called? (SE(   ) )

� What can we say about the true value of p and the 
interval       2 SE(   )? (Safe bet!)

� Under what conditions is the formula

SE(   ) = applicable? (Large samples)

ˆ p 

ˆ p ± p̂

p̂ npp /)ˆ1(ˆ −

!unknownp  of  in  terms  ,)1()ˆ( −−−−
−−−−====
n

ppPSD

p̂
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Estimating a difference – proportions of 
people who believe police use racial profiling

“White”
estimate

“Black or Hispanic”
estimate

Truth Truth

= 0.52 - 0.29,
but what is the true difference ??

Estimated difference

????????

0.2 0.3 0.4 0.5 0.6 0.7
.52.29
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Is there racial profiling or are there
confounding explanatory effects?!?

� The book by Best (Damned Lies and Statistics: Untangling 
Numbers from the Media, Politicians and Activists, Joel Best) 
shows how we can test for racial bias in police arrests. Suppose
we find that among 100 white and 100 black youths, 10 and 17, 
respectively, have experienced arrest. This may look plainly 
discriminatory. But suppose we then find that of the 80 middle-
class white youths 4 have been arrested, and of the 50 middle-
class black youths 2 arrested, whereas the corresponding 
numbers of lower-class white and black youths arrested are, 
respectively, 6 of 20 and 15 of 50. These arrest rates correspond 
to 5 per 100 for white and 4 per 100 for black middle-class
youths, and 30 per 100 for both white and black lower-class
youths. Now, better analyzed, the data suggest effects of social 
class, not race as such.
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Standard error of a difference

Standard error for a difference between independent
estimates:

2)
2

ˆSE( + 2)
1
ˆSE( = )

2
ˆ - 

1
ˆSE(             or        

2)
2

SE(Est + 2)
1

SE(Est = )
2

Est - 
1

SE(Est

θθθθθθθθθθθθθθθθ
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� For random samples from a Normal distribution, 

is exactly distributed as Student(df = n - 1)
� but methods we shall base upon this distribution for T work 

well even for small samples sampled from distributions 
which are quite non-Normal.

� df is number of observations –1, degrees of freedom.

)(
)(

XSE
XT µµµµ−−−−====

Student’s t-distribution

Recall that for samples 
from N( µ , σ )

)1,0(~
/

)(
)(
)( N

n
X

XSD
XZ

σσσσ
µµµµµµµµ −−−−====−−−−====

Approx/Exact
Distributions
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Density curves for Student’s t

∞∞∞∞

0 2 4- 2- 4

df  =  ×
[i.e., Normal(0,1)]

df  =  5
df  =  2

Figure 7.6.1 Student(df) density curves for various df.
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� By     (prob), we mean the number t such that when  
T ~ Student(df), P(T ) = prob; that is, the tail area 
above t (that is to the right of  t on the graph) is prob.

≥

Notation

dft
dft

(prob)tdf

0

prob

z(prob)
0

prob

Normal(0,1) density Student(df) density

Figure 7.6.2 The z(prob) and t(prob) notations.
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(0.05)- t tdf df(0.05)
0

0.05 0.050.90

ure 7.6.3The central 90% of the Student(df) distribution.

STAT 10, UCLA, Ivo DinovSlide 38

TABLE 7.6.1  Extracts from the Student's t-Distribution Table
prob

df .20 .15 .10 .05  .025 .01 .005 .001 .0005 .0001
6 0.906 1.134 1.440 1.943 2.447 3.143 3.707 5.208 5.959 8.025
7 0.896 1.119 1.415 1.895 2.365 2.998 3.499 4.785 5.408 7.063
8 0.889 1.108 1.397 1.860 2.306 2.896 3.355 4.501 5.041 6.442
… … … … … … … … … … …
10 0.879 1.093 1.372 1.812 2.228 2.764 3.169 4.144 4.587 5.694

 … … … … … … … … … … …
15 0.866 1.074 1.341 1.753 2.131 2.602 2.947 3.733 4.073 4.880
… … … … … … … … … … …

0.842 1.036 1.282 1.645 1.960 2.326 2.576 3.090 3.291 3.719∞

Reading Student’s t table

t-value

Desired
df

Desired
upper-tail prob

(prob)tdf

0

prob

Student(df) density

Do we need an simulation of T and Z
scores? Use the Online compute-engine …
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Review

� Qualitatively, how does the Student (df) distribution 
differ from the standard Normal(0,1) distribution? 
What effect does increasing the value of df have on 
the shape of the distribution?  (σσσσ is replaced by SE)

� What is the relationship between the Student (df= ) 
distribution and the Normal(0,1) distribution? 
(Approximates N(0,1) as n�increases)

∞
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Review

� Why is T, the number of standard errors separating      
and µ , a more variable quantity than Z, the number 
of standard deviations separating     and µ ? (Since an 
additional source of variability is introduced in T, SE, not available in Z. E.g., P(-
2<=T<=2)=0.9144 < 0.954=P(-2<=Z<2), hence tails of T are wider. To get 95% 
confidence for T we need to go out to +/-2.365).

� For large samples the true value of µ lies inside the 
interval       2 se(   ) for a little more than 95% of all 
samples taken. For small samples from a normal 
distribution, is the proportion of samples for which 
the true value of µ lies within the 2-standard-error 
interval smaller or bigger than 95%? Why?(Smaller – wider tail.)

X 

X 

x ± x 
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Review

� For a small Normal sample, if you want an interval to 
contain the true value of  µ for 95 % of samples 
taken, should you take more or fewer than two-
standard errors on either side of     ? (more)

� Under what circumstances does mathematical theory 
show that the distribution of T=(   - µ )/SE(   ) is 
exactly Student (df=n-1)? (Normal samples)

� Why would methods derived from the theory be of 
little practical use if they stopped working whenever 
the data was not normally distributed? (In practice, we’re never 
sure of Normality of our sampling distribution).

x 

X X
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Summary
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Sample mean,      :
For  a random sample of size n from a distribution for which  

E(X) = µ and sd(X) = σ,   the sample mean        has :

�

� If we are sampling from a Normal distribution, then

�Central Limit Theorem: For almost any distribution,        
is approximately Normally distributed in large samples.  

nn
XDXXX σσσσµµµµ ================ )(S)(SD    ,)(E)(E

Normal. ~X

X 

X 

Sampling distribution of  

X 

X 

X 

(exactly)
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� Sample proportion,      : For a random sample of size n
from a population in which a proportion p have a 
characteristic of interest, we have the following results about 
the sample proportion with that characteristic:

�

� is approximately Normally distributed for large  n

(e.g., np(1-p)     10, though a more accurate rule is given in the next 
chapter)

n
ppPpP pp

)-1(=)ˆSD(=       ;)ˆ(E ˆˆ σµ ==

ˆ P 

ˆ P 

ˆ P Sampling distribution of the 
sample proportion

≥
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� The standard error, SE(    ), for an estimate     is: 
� an estimate of the std dev. of the sampling distribution
� a measure of the precision of      as an estimate of  θ

� For a mean

�The sample mean      is an unbiased estimate of the 
population mean µ

� SE

se( ˆ θ ) ˆ θ 

x 

n
sx X=)(

Standard error

ˆ θ ˆ θ 

ˆ θ 
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� Proportions
�The sample proportion        is an unbiased estimate of the 

population proportion p

�

� Standard error of a difference: For independent 
estimates,

ˆ p 

se( ˆ p ) =
ˆ p (1− ˆ p )

n

se( ˆ θ 1 − ˆ θ 2 ) = se( ˆ θ 1)
2 + se( ˆ θ 2 )2

Standard errors cont.
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TABLE 7.7.1 Some Parameters and Their Estimates

Population(s) or
Distributions(s) Sample data

Measure of
Parameters Estimates precision

Mean m  se  

Proportion p  se  

Difference in means µ 1-µ 2  se

Difference in proportions p 1-p 2  se

General case θ  se

x  
ˆ p  

x  1 − x  2
ˆ  p  1 − ˆ  p  2

ˆ θ 

(x  )
( ˆ  p  )
(x  1 − x  2 )
( ˆ  p  1 − ˆ  p  2 )
( ˆ  θ )
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� Is bell shaped and centered at zero like the 
Normal(0,1), but

� More variable (larger spread and fatter tails).

� As df becomes larger, the Student(df) distribution 
becomes more and more like the Normal(0,1) 
distribution.

� Student                 and Normal(0,1) are two ways of 
describing the same distribution.

(df = ∞)

Student’s t-distribution ….
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� For random samples from a Normal distribution, 

is exactly distributed as Student(df = n - 1), but 
methods we shall base upon this distribution for T
work well even for small samples sampled from 
distributions which are quite non-Normal.

� By     (prob), we mean the number t such that when  
T ~ Student(df), pr(T t) = prob; that is, the tail area 
above t (that is to the right of  t on the graph) is prob.

)(/)( XSEXT µµµµ−−−−====

≥

Student’s t-distribution cont.

dft


