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UCLA  STAT 251
Statistical Methods for the Life and 

Health Sciences

�Instructor:   Ivo Dinov, 
Asst. Prof. In Statistics and Neurology

University of California, Los Angeles,  Winter 2002
http://www.stat.ucla.edu/~dinov/
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ANOVA. The F-test.

�One-sample issues
�Two independent samples
�More than 2 samples
�Blocking, stratification and related

samples
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Paired Comparisons 

1. What is a paired-comparison experiment? (obs’d data are 
matched in pairs).

2. In a paired-comparison experiment, why is it wrong 
to treat the two sets of measurements as independent 
data sets? (data are usually taken from the same unit under diff. Treatments, so obs’s
should be related).

3. How do you analyze the data from a paired-
comparison experiment? (analyze the difference).

4. What situations is appropriate to use the paired-
comparison method to analyze the data? (pre- and post-
metrifonate study using FDG PET imaging).
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TABLE 10.2.1 Urinary Androsterone Levels(mg/24 hr)

Homosexual: 2.5, 1.6, 3.9, 3.4, 2.3, 1.6, 2.5, 3.4, 1.6, 4.3, 2.0,
1.8, 2.2, 3.1, 1.3

Heterosexual: 3.9, 4.0, 3.8, 3.9, 2.9, 3.2, 4.6, 4.3, 3.1, 2.7, 2.3

So urce : Margo les e  [1970].

Analysis of two independent samples
Urinary androsterone levels – data, dot-plots and 95% CI. Relations 

between hormonal levels and homosexuality, Margolese, 1970. 
Hormonal levels are lower for homosexuals. Samples are 
independent, as unrelated. Results, P-value of t-test 0.004 with a 
CI (µHet-µHom)=[0.4:1.7]. Normal hypothesis satisfied? Skewed?

Androsterone (mg/24 hrs)

1 2 3 4 5

Homosexuals

Heterosexuals
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Androsterone (mg/24 hrs)

1 2 3 4 5

Homosexuals

Heterosexuals

Figure 10.2.1 Dot plots of the androsterone data (with 95% CIs).

From Chance Encounters by C.J. Wild and G.A.F. Seber, © John Wiley & Sons, 2000.

Urinary androsterone levels cont.

Two Sample T-Test and Confidence Interval
Two sample T for androsterone

N Mean StDev SE Mean
hetero 11 3.518 0.721 0.22
homose 15 2.500 0.923 0.24
95% CI for mu (hetero) - mu (homose): ( 0.35, 1.69)
T-Test mu (hetero) = mu (homose) (vs not=):

T=3.16 P=0.0044 DF=23

P-value

Confidence interval

t-test statistic
Figure 10.2.3 Minitab 2-sample t-output for the androstenone data
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Comparing two means for independent samples

Suppose we have 2 samples/means/distributions as 
follows: {                  } and {                    }. We’ve 
seen before that to make inference about              we 
can use a T-test for H0: with 

And CI(        ) =

If the 2 samples are independent we use the SE formula

with                                .
This gives a conservative approach for hand calculation of an 

approximation to the what is known as the Welch procedure, 
which has a complicated exact formula.
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Means for independent samples –
equal or unequal variances?

Pooled T-test is used for samples with assumed equal 
variances. Under data Normal assumptions and equal 
variances of   

is exactly Student’s t distributed with

Here sp is called the pooled estimate of the variance, 
since it pools info from the 2 samples to form a 
combined estimate of the single variance σ1

2= σ2
2 =σ2. 

Another technique is to use the Welch unequal variance method.
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Comparing two means for independent samples

1. How sensitive is the two-sample t-test to non-Normality 
in the data? (The 2-sample T-tests and CI’s are even 
more robust than the 1-sample tests, against non-
Normality, particularly when the shapes of the 2 
distributions are similar and n1=n2=n, even for small n, 
remember df= n1+n2-2.

3. Are there nonparametric alternatives to the two-sample 
t-test? (Wilcoxon rank-sum-test, Mann-Witney test, equivalent tests, same P-
values.)

4. What difference is there between the quantities tested 
and estimated by the two-sample t-procedures and the 
nonparametric equivalent? (Non-parametric tests are based on 
ordering, not size, of the data and hence use median, not mean, 
for the average. The equality of 2 means is tested and CI(µ1

~- µ1
~).
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One-way ANOVA refers to the situation of having one 
factor (or categorical variable) which defines group 
membership – e.g., comparing 4 reading methods, effects 
of different reading methods on reading comprehension, 
data: 50  – 13/14 y/o students tested.

Hypotheses for the one-way analysis-of-variance F-test
Null hypothesis: All of the underlying true means are identical.
Alternative: Differences exist between some of the  true means.

We know how to analyze 1 & 2 sample data.
How about if we have than 2 samples –

One-way ANOVA,  F-test
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Comparing 4 reading methods, effects of different reading 
methods on reading comprehension, data: 50  – 13/14 y/o 
students tested.
-Mapping: using diagrams to relate main points in text;
-Scanning: reading the intro and skimming for an 
overview before reading details;
-Mapping and Scanning;
-Neither.
Table below shows increases in test scores, of 4 groups of 
students taking similar exams twice, w/ & w/o using a 
reading technique.
Research question: Are the results better for students 
using mapping, scanning or both?

Comparing 4 reading methods
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TABLE 10.3.1 Increase in Reading Age 

Both: 0.1 3.2 4.3 -0.5 1.9 3.3 2.5 3.6 0.4 2.3 -1.4 -0.7
-0.1 0.2 0.4 0.9 1.2 1.4 1.8 1.8 2.4 3.1

Map Only: 1.0 -0.5 1.0 0.6 0.6 1.0 1.0 -1.4 2.2 3.6 3.1 2.6
Scan Only: 1.0 3.3 1.4 -0.9 1.0 0.0 0.6
Neither: -0.3 -1.3 1.6 -0.4 -0.7 0.6 -1.8 -2.0 -0.7

Increase in reading age
-2 -1 0 1 2 3 4 5

Scan only

Map only

Map and scan

Neither

Figure 10.3.1 Increases in reading ages with individual 95% CIs.
From Chance Encounters by C.J. Wild and G.A.F. Seber, © John Wiley & Sons, 2000.

Observational
study
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Increase in reading age
-2 -1 0 1 2 3 4

Scan only

Map only

Map and scan

Neither

Figure 10.3.1 Increases in reading ages with individual 95% CIs.
From Chance Encounters by C.J. Wild and G.A.F. Seber, © John Wiley & Sons, 2000.

The F-test indicates that
there’s real evidence true

differences exist it does not
give indication of where the
differences are or how large

they are.

One-way Analysis of Variance
Analysis of Variance for Increase

Source DF SS MS F P
Grp 3 27.06 9.02 4.45 0.008
Error 46 93.35 2.03
Total 49 120.41

Individual 95% CIs For Mean
Based on Pooled StDev

Level N Mean StDev ------+---------+---------+---------+
MapScan 22 1.459 1.544 (------*-----)
MapOnly 12 1.233 1.441 (-------*--------)
ScanOnly 7 0.914 1.302 (----------*----------)
Neither 9 -0.556 1.135 (--------*---------)

------+---------+---------+---------+
Pooled StDev = 1.425 -1.0 0.0 1.0 2.0

F-statistic P-value

Anova Table

Figure 10.3.2 Minitab analysis of variance output for reading ages
Show SYSTAT: DATA: 

C:\Ivo.dir\Research\Data.dir\ReadingTechniquesStatData.sys
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Interpreting the P-value from the F-test 

(The null hypothesis is that all underlying true means are identical.)

� A large P-value indicates that the differences seen 
between the sample means could be explained simply 
in terms of sampling variation.

� A small P-value indicates evidence that real 
differences exist between at least some of the true 
means, but gives no indication of where the 
differences are or how big they are.

� To find out how big any differences are we need 
confidence intervals.
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Form of a typical ANOVA  table

� The F-test statistic, f0, applies when we have 
independent samples each from k Normal 
populations, N(µi, σ), note same variance is assumed.

TABLE 10.3.2 Typical Analysis-of-Variance Table for One-Way ANOVA

Sum of Mean sum
Source squares df of Squaresa F -statistic P -value

Between k -1 pr(F    f 0)

Within n tot  - k

Total n tot  - 1
aMean sum of squares = (sum of squares)/df

ni (x i . −x ..)2
�

(ni −1)si
2

�

(xij −x . .)2
��

f0 = sB
2 / sW

2sB
2

sW
2

≥
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Gp  1
Gp  2
Gp  3

Gp  1
Gp  2
Gp  3

Gp  1
Gp  2
Gp  3

Example 1

Example 2

Example 3

Where did the F-statistics came from?

� Let’s look at this example comparing groups. How do 
we obtain intuitive evidence against H0? Far separated 
sample means + differences of sample means are large 
compared to their internal (within) variability! Which of 
the following examples indicate group diff’s are “large”?
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More about the F-test

� s2
B is a measure of variability 

of sample means, how far apart
they are.
� s2

W reflects the avg. internal
Variability within the samples.

� The F-test statistic, f0, tests H0 by comparing the 
variability of the sample means (numerator) with the 
variability within the samples (denominator).

� Evidence against H0 is provided by values of  f0
which would be unusually large if H0 was true.
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What are xi, x.., x .j, etc.? 

J-index

I-index
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ANOVA – the WM, GM, CSF volumes
Manual vs. Automated extraction techniques.
� We have two ways of computing the WM, GM CSF 

volumes for MRI brain data:
�Manual method – extremely labor intensive
� Semi-automated – atlas based

� Ten individual’s MRI volumes were segmented into 
the three different tissue types using methods 1 & 2.

� Results are in: C:\Ivo.dir\Research\Data.dir\WM_GM_CSF_tissueMaps.dir

� SYSTAT: ATLAS_IVO_all.xls (all 3 tissue types)

� DIR: C:\Ivo.dir\Research\Data.dir\WM_GM_CSF_tissueMaps.dir
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x i,j,  1<=i<=nj;  1<j<=3

What are xi, x.., x .j, etc.? 
Do the WM, GM, CSF volumetric measures!

STAT 251, UCLA, Ivo DinovSlide 21

What are xi, x.., x .j, etc.? 
Sum of Squares for treatments (cities)
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What are xi, x.., x .j, etc.? 
Sum of squares for the Error
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What are xi, x.., x .j, etc.? 
F-test
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What are xi, x.., x .j, etc.? 
One-Way Design ANOVA Table
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F-test assumptions

1. Samples are independent, physically independent 
subjects, units, objects are being studies.

2. Sample Normal distributions, especially sensitive 
for small ni, number of observations, N(µi, σ).

3. Standard deviations should be equal within all 
samples, σ1= σ2= σ3=… σnk

= σ. (1/2 <= σk/σj<=2)

How to check/validate these assumptions for your data?
For the reading-score improvement data:
- independence is clear since different groups of students are used.
- Dot-plots of group data show no evidence of non-Normality.
- Sample SD’s are very similar, hence we assume population SD’s are 

similar.
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Bonferroni Correction

1. What if the number of comparisons, a positive 
integer number without decimals, is large? 
Bonferroni correction concerns the question if, in 
the case of more than one test in a particular study, 
the alpha level should be adjusted downward to 
consider chance capitalization/accumulation. 

2. The alpha level is the chance taken by researchers to 
make a Type I error. The Type I  (false-positive) 
error is the error of incorrectly declaring a 
difference, effect or relationship to be true due to 
chance producing a particular state of events. 
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Bonferroni Correction
1. Customarily the alpha level is set at 0.05, or, in no more than 

one in twenty statistical tests the test will show 'something' 
while in fact there is nothing. In the case of more than one 
statistical test the chance of finding at least one test 
statistically significant due to chance fluctuation, and to 
incorrectly declare a difference or relationship to be true, 
increases. 

2. In five tests the chance of finding at least one difference or 
relationship significant due to chance fluctuation equals 
0.22, or one in five. In ten tests this chance increases to 0.40, 
which is about one in two. Using the Bonferroni method the 
alpha level of each individual test is adjusted downwards to 
ensure that the overall risk for a number of tests remains 
0.05. Even if more than one test is done the risk of finding a 
difference or effect incorrectly significant continues to be 
0.05.
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Bonferroni Correction
1. Although the logic is beautiful, there is a serious drawback. If 

the chance of incorrectly producing a difference, making a 
Type I error, on an individual test is reduced, the chance of 
making a Type II error is increased, that no effect or difference 
is declared, while in fact there is an effect. Thus, by reducing
for individual tests the chance on type one errors, i.e. the 
chance of introducing ineffective medical treatments or 
ineffective improvements; the chance on a Type II errors is 
increased, i.e. the chance that effective treatments, effective 
educational methods, or improved production methods, are not 
discovered. So, when is Bonferroni correction used correctly 
and when is it used incorrectly? There are three basic scenarios.

2. Perneger, TV. What is wrong with Bonferroni adjustments. British Medical Journal 
1998;136:1236-1238. 

3. Sankoh AJ, Huque MF, Dubey SD. Some comments on frequently used multiple 
endpoint adjustments methods in clinical trials. Statistics in Medicine 1997;16:2529-
2542. 
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Nonparametric (distribution-free) methods

� less sensitive to outliers 

� do not assume any particular distribution for the 
original observations 

� do assume random samples from the populations of 
interest

� measure of center is the median rather than the mean

� tend to be somewhat less effective at detecting 
departures from a null hypothesis and tend to give 
wider confidence intervals
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Normal Theory Techniques –
One sample methods

Two-sided t-tests and t-intervals for a single mean  
are 
�quite robust against non-Normality
�can be sensitive to presence of outliers in small to 

moderate-sized samples

�One-sided tests are reasonably sensitive to 
skewness. 

�Normality can be checked
�Graphically:  Normal quantile–quantile (Q-Q) plots 
� formally, e.g.  the Kolmogoroff-Smirnof,        

Wilk-Shapiro tests. 
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Paired data

� We have to distinguish between independent and 
related samples because they require different 
methods of analysis.

� Paired data (Section 10.1.2) is an example of related data. 

� With paired data, we analyze the differences
� this converts the initial problem into a one-sample 

problem.

� The sign test and Wilcoxon rank-sum test are 
nonparametric alternatives to the one-sample or 
paired t-test.
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2-sample t-tests and intervals for differences 
between means  µµµµ1111−−−−µµµµ2222

Assume
� statistically independent random samples from the two 

populations of interest
�both samples come from Normal distributions

� Pooled method also assumes that  σ1=σ2
Welch method (unpooled) does not

Two-sample t-methods are
�remarkably robust against non-Normality
�can be sensitive to the presence of outliers in small to moderate-

sized samples
�One-sided tests are reasonably sensitive to skewness.

�The Wilcoxon or Mann-Whitney test is a nonparametric 
alternative to the two-sample t-test.
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More than two samples and the F-test 

� For testing whether more than two means are 
different we use the F-test. 

� The method of comparing several means is referred 
to as a one-way analysis of variance.

� The formal null hypothesis (H0) tested is that all  k
(k ≥ 2) underlying population means   µi are 
identical.

� The alternative hypothesis (H1) is that differences 
exist between at least some of the µi's.
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The F-test cont.

� The numerator of the F-statistic f0 reflects how far 
apart the sample means are.  The denominator 
reflects average variability within the samples

� Evidence against H0 is provided by
� sample means that are further apart than expected from the 

internal variability of the samples.
� large values of the F-statistic.

� A small P-value demonstrates evidence that 
differences exist between some of the true means
�To estimate the size of any differences we use confidence 

intervals
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Assumptions of the F-test cont.

� Assumptions of the F-test
� independent samples;
�Normality;
� equal population standard deviations.

� The test
� is robust to non-Normality
� is reasonably robust to differences in the standard deviations 

when there are equal numbers in each sample, but not so robust 
if the sample sizes are unequal

� can be used if the usual plots are satisfactory and the largest 
sample standard deviation is no larger than twice the smallest

� is not robust to any dependence between the samples.
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2-Way ANOVA analysis

� Contrasts

� Multiple comparisons for means

� Multiple comparisons for pair-wise 
comparisons

� Simultaneous confidence intervals

� Sample size computations
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2-Way ANOVA analysis

� Definition: In the one-way ANOVA layout, a linear 
function of the sample means µ1, µ2 , …, µn is 

θ = c1µ1+ c2µ2+ …+cnµn
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2-Way ANOVA analysis

� Sampling distribution of linear function of sample 
means: Let                                 be the means of 
independent random samples of sizes n1, n2, n3,…, nk, 
with mean  µ1, µ2 , …, µn and variances σ1

2, σ1
2,..., σk

2, 

Then let θ = c1µ1+ c2µ2+ …+cnµn

where c1, c2,…, ck, are known constants and

The sampling distribution of         is:

,,...,,, 321 kYYYY

,...ˆ 2211 kko YcYcYcc ++++=θ
θ̂
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2-Way ANOVA analysis

� Sampling distribution of linear function of sample means:

Mean:

Variance:

If target popul’s are Normal,    is Normal, too.

,...ˆ 2211 kko YcYcYcc ++++=θ

θ̂

θµθ =ˆ

k
kk

n
sc

n
sc

n
sc 22

2

2
2

2
2

1

2
1

2
12

ˆ ...+++=
θ
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2-Way ANOVA analysis

� Inference about  linear function of population means:

CI’s: 100(1-a)% CI(θ), when common variances, σ.

where: ,...ˆ 2211 kko YcYcYcc ++++=θ
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2-Way ANOVA analysis

� Inference about  linear function of population means:

Hypothesis Testing: Ho: θ=θo can be tested by:

)2/,(
ˆ

~
ˆ α
θσ
θθ

kN
o tt −

−=
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2-Way ANOVA analysis

� Example linear function of population means:

The following data come from a study investigating the 
fraction of antibiotics injected into the bloodstream 
which bind to serum proteins. (Bovine serum was used.)

27.829.2 32.8 25 24.2Chloramphenicol
19.121.6 17.4 18.3 19Erythromycin

7.85.8 6.2 11 8.3Streptomycin

31.427.3 32.6 30.8 34.8Tetracyclin

28.629.6 24.3 28.5 32Penicillin G
Sample meanBinding PercentageAntibiotic
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2-Way ANOVA analysis

� Example linear function of population means:

In the study, nT = 20 independent samples of bovine serum 
were used. These were assigned at random to one of 5 
antibiotic treatments in such a way that there would be   
n=4 samples for each antibiotic. This experimental 
design is called a completely randomized design (CRD).

The idea is to compare the variability among these 
treatment means: (28.6; 31.4; 7.8; 19.1; 27.8)
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2-Way ANOVA analysis

� Example linear function of population means:
For the binding fraction data, consider a test of the equality 

of the binding fractions of the first two antibiotics: 
Penicillin and Tetracyclin. This can be carried out by 
estimating the appropriate simple contrast:

θ=µ1− µ2 = (1)µ1+(−1)µ2+(0)µ3+(0)µ4+(0)µ5
θ=28.6 – 31.4;

161719Total
9.0513615Error

4137014814Treatments

FMean SquareSum Squared.f.Source

ANOVA
Table
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2-Way ANOVA analysis

� Example linear function of population means:

θ=µ1− µ2=(1)µ1+(−1)µ2+(0)µ3+(0)µ4+(0)µ5
θ=28.6 – 31.4;  θ^= –2.8; Testing Ho: θ=θo =0

161719Total
9.0513615Error

4137014814Treatments

FMean SquareSum Squared.f.Source
ANOVA   Table
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4
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2-Way ANOVA analysis

� Definition: In the one-way ANOVA layout, a linear 
function of the group means µ1, µ2 , …, µn of the form  
θ = c1µ1+ c2µ2+ …+cnµn

where      c1+c2+...+cn = 0 is called a contrast.

� Definition: ck’s are called coefficients in the contrast.

� Definition: Contrasts in which only two of the 
coefficients are nonzero (and are often –½; +½) are 
called simple contrasts.
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2-Way ANOVA analysis

�Definition: An estimator for a contrast of 
interest can be obtained by substituting 
treatment group sample means  for treatment 
population means µi in the contrast : 

�Example: 

iy

nn ycycyc +++= ...ˆ 2211θ

.0 for      ;ˆ 2121 =−−= µµθ yy
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Orthogonal contrasts

�Definition: Suppose we have 2 contrasts (n1=n2=…=nk):

The two contrasts θ1 and θ2 are mutually 
orthogonal if the products of their coefficients 
sum to zero:

�Consider several contrasts, say k of them:           
θ1, θ2,…, θk. The set is mutually orthogonal if all 
pairs are mutually orthogonal.

nn

nn
ddd

ccc
µµµθ

µµµθ
+++=

+++=
...

...

22112

22111

0...2211 =+++ nndcdcdc
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Orthogonal contrasts

�Examples : Which of these are orthogonal?

)0,0,1,1,0(   and  )0,0,0,1,1(
)1,1,0,0,0(   and  )0,0,2/1,2/1,1(

)0,1,1,0,0(   and  )0,0,0,1,1(

−−
−−−

−−
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Orthogonal contrasts - importance

�Why are orthogonal contrasts of interest?

�Let {θ1^, θ2^, …, θk^} be a set of (k-1) orthogonal 
contrasts (comparisons) between k smaple means 
and let SST be the treatment-sum-os-squares 
(between variability). Then 

SST = SS[θ1^] + SS[θ2^] +…+ SS[θk-1^]

�I.E. between-treatment-sum-of-squares is 
subdivided (decomposed) into (k-1) terms which 
each provide variability info about observed diff’s 
between 2 specific subgroups of treatment means.
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Orthogonal contrasts - importance

�SST = SS[θ1^] + SS[θ2^] +…+ SS[θk-1^]

�I.E. between-treatment-sum-of-squares is 
subdivided (decomposed) into (k-1) terms which 
each provide variability info about observed diff’s 
between 2 specific subgroups of treatment means.
�where
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Contrasts

�Sums of squares for contrasts

�Multiple Comparisons 
�Scheffe
�Bonferroni
�Tukey
Present from:  ANOVA_Ch9.pdf
C:\Ivo.dir\UCLA_Classes\Winter2002\Stat_M251\PDF_lectures
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2-Way ANOVA

�Factorial designs: study designs where responses are 
measured at different combinations of levels of one or more 
experimental factors.

�Ex. Treatments {A, B, C} with levels {a1, a2,…aa} 
{b1, b2,… bb} and {c1, c2,… cc}, respectively – axbxc
factorial experiment.

�Ex. {H=Hemisphere, T=TissueType, M=Method} for 
the human brain manual vs. automated 
delineations. H={L,R}; T={WM, GM, CSF}; 
M={Manual, Auto}.
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2-Way ANOVA

�3 types of Factorial Effects:simple,interaction,main.

�Ex. {H=Hemisphere, M=Method} for the human 
brain manual vs. automated delineations. 
H={L,R}; M={Manual, Auto}.

�Simple effects: Let µµµµij denote the expected 
response to treatment himj. Simple effect of H at 
level m1 of M is defined by: m[HM1]= µµµµ21 – µµµµ11. 
This is the amount of change in the expected 
response when the level of H is changed from   
h2 to h1, and the level of M is fixed at m1.
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2-Way ANOVA
�Interaction effects: µµµµ[HM]=1/2(µµµµ[HM2]-µµµµ[HM1]).

�Note: µµµµ[HM]==1/2(µµµµ[H2M]-µµµµ[H1M]).

�There’s no interaction between H & M ��

µµµµ[HM]=0. | µµµµ[HM]| measures the intensity-degree 
of interaction.

�Testing for interactions: Ho: µµµµ[HM]=0 vs. H1: 
µµµµ[HM]!=0  E.Q. µµµµ[HM]= ½µµµµ22-½µµµµ12-½µµµµ21+ ½µµµµ11; 

� This contrast is estimated by: 
� µµµµ^[HM]= ½Y –22  -½Y –12  -½Y–

21 + ½Y–
11;
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2-Way ANOVA
�Ex. {H=Hemi, M=Method} for the human brain manual vs. 

automated delineations. H={L,R}; M={Manual, Auto}.

�Simple effects: Let µµµµij denote the expected 
response to treatment himj. Simple effect of H at

µµµµ[HM2] = 
µµµµ22 – µµµµ12

µµµµ[HM1] = 
µµµµ21 – µµµµ11

Simple effects 
of H

µµµµ[H2M]=µµµµ22 – µµµµ21µµµµ22µµµµ21H2

µµµµ[H1M]=µµµµ12 – µµµµ11µµµµ12µµµµ11h1

µµµµ[HiM]m2m1Level of H

Simple Effects of M–Factor MLevel of –
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2-Way ANOVA
�Main effects: µµµµ[H] = ½(µµµµ[HM2]+µµµµ[HM1]) =    

=½µµµµ22–½µµµµ12+½µµµµ21– ½µµµµ11; 

� Similarly: µµµµ[M] = ½(µµµµ[H2M]+µµµµ[H1M]) =      
=½µµµµ22+½µµµµ12–½µµµµ21– ½µµµµ11; 

�µµµµ[H] is the avg. change in the expected response 
(population mean response) when the level of H 
goes from L�R.
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Orthogonal contrasts

�Definition: Suppose we have 2 contrasts: 

The two contrasts θ1 and θ2 are mutually 
orthogonal if the products of their coefficients 
sum to zero:

�Consider several contrasts, say k of them:           
θ1, θ2,…, θk. The set is mutually orthogonal if all 
pairs are mutually orthogonal.

nn

nn
ddd

ccc
µµµθ

µµµθ
+++=

+++=
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22111

0...2211 =+++ nndcdcdc
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Analysis of 2x2 Factorial Design
� First test if there is interaction between the 2 factors:

� If there’s statistically significant interaction �
examine separately the simple effects for each factor;
H0: µµµµ[HM]=0  vs. H1: µµµµ[HM] != 0, where the 
interaction effect is measured by the contrast:

µµµµ^[HM]= ½Y–
22  -½Y–

12  -½Y–
21 + ½Y–

11;
�If there is interaction present (effects of Hemi on 

the Methods are significant) � study the simple 
effects of the Hemi on each of the 2 Methods

µµµµ^[H1M]=Y–
12 – Y–

11;   µµµµ^[H2M]=Y–
22 – Y–

21;
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Analysis of 2x2 Factorial Design
� First test if there is interaction between the 2 factors:

� If there’s statistically significant interaction �
examine separately the simple effects for each factor;

� If there is no interaction make inference about each 
of the 2 main effects, using the following contrasts.

µµµµ^[H] = ½(µµµµ^[HM2]+µµµµ^[HM1]) = ½Y–
22–½Y–

12+½Y–
21– ½Y–

11; 

µµµµ^ [M]=½(µµµµ^[H2M]+µµµµ^[H1M]) = ½ Y–
22+½ Y–

12–½ Y–
21– ½ Y–

11; 
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Analysis of 2x2 Factorial Design
� How do we actually test these contrasts for significance?

� As we’ve seen:
� Two-sided

T-test

� where 
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Analysis of 2x2 Factorial Design
� How do we actually test these contrasts for significance?

� Two-sided T-test E.Q. to
� One-sided F-test
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ANOVA of 2x2 Factorial Design
� The significance of these contrasts? Use the F-test:

� Effects coding used for categorical variables in
model. Categorical values encountered during
processing are:

� METHOD (2 levels) 1, 2
� HEMISPH (2 levels) 1, 2
� Dep Var: VALUE N: 119

Analysis of Variance
Source Sum-of-Sq’s df Mean-Square F-ratio P

METHOD 2.97424E+08 1 2.97424E+08 0.39813 0.52931

HEMISPH 8.65479E+06 1 8.65479E+06 0.01159 0.91447

METH*HEMI 7.11598E+06 1 7.11598E+06 0.00953 0.92242

Error 8.59114E+10 115 7.47056E+08 Not-Signif.
� Main eff’s
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ANOVA of 2x2 Factorial Design
� The significance of these contrasts? Use the F-test:

� Effects coding used for categorical variables in
model. Categorical values encountered during
processing are:

� METHOD(2 levels);HEMISPH(2 levels); Dep Var: VALUE
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