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UCLA  STAT 251 / OBEE 216
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�Instructor:   Ivo Dinov, 
Asst. Prof. In Statistics and Neurology
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Chapter 2:  Probabilities, Binomial, 
Poisson, Normal distributions

�Variables are classified in various ways, such
as either qualitative (categorical) and
quantitative (numerical) or as continuous vs.
discrete and so on.

�The mean and the standard deviation, which
are used summaries for distributions.

�Two special discrete distributions: the
Binomial and Poisson.

�One special continuous distribution called
the Normal distribution, both in standard and
nonstandard forms. The z score is introduced.
�We describe how to approximate the binomial
by the normal using the continuity correction.
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Let's Make a Deal Paradox –
aka, Monty Hall 3-door problem

� This paradox is related to a popular television show 
in the 1970's. In the show, a contestant was given a 
choice of three doors/cards of which one contained a 
prize (diamond). The other two doors contained gag 
gifts like a chicken or a donkey (clubs). 

STAT 251, UCLA, Ivo DinovSlide 4

Let's Make a Deal Paradox.

� After the contestant chose an initial door, the host of 
the show then revealed an empty door among the two 
unchosen doors, and asks the contestant if he or she 
would like to switch to the other unchosen door. The 
question is should the contestant switch. Do the odds 
of winning increase by switching to the remaining 
door? 1.Pick

One
card

2.Show one
Club Card

3. Change 
1st pick?

STAT 251, UCLA, Ivo DinovSlide 5

Let's Make a Deal Paradox.

� The intuition of most people tells them that each of 
the doors, the chosen door and the unchosen door, are 
equally likely to contain the prize so that there is a 
50-50 chance of winning with either selection? This, 
however, is not the case. 

� The probability of winning by using the switching 
technique is 2/3, while the odds of winning by not 
switching is 1/3. The easiest way to explain this is as 
follows:
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Let's Make a Deal Paradox.

� The probability of picking the wrong door in the 
initial stage of the game is 2/3. 

� If the contestant picks the wrong door initially, the 
host must reveal the remaining empty door in the 
second stage of the game. Thus, if the contestant 
switches after picking the wrong door initially, the 
contestant will win the prize. 

� The probability of winning by switching then reduces 
to the probability of picking the wrong door in the 
initial stage which is clearly 2/3. 
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Let's Make a Deal Paradox.

� Demo: AdditionalAids.dir/StatGames.exe

�Uncertainty�Pick a door
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Figure 4.1.1 Proportion of heads versus number of tosses
for John Kerrich's coin tossing experiment.

From Chance Encounters by C.J. Wild and G.A.F. Seber, © John Wiley & Sons, 2000.

Long run behavior of coin tossing
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Definitions …

� The law of averages about the behavior of coin tosses 
– the relative proportion (relative frequency) of heads-to-tails 
in a coin toss experiment becomes more and more stable as 
the number of tosses increases. The law of averages applies to 
relative frequencies not absolute counts of #H and #T.

� Two widely held misconceptions about what the law 
of averages about coin tosses:
�Differences between the actual numbers of heads & tails 

becomes more and more variable with increase of the 
number of tosses – a seq. of 10 heads doesn’t increase the 
chance of a tail on the next trial.

�Coin toss results are fair, but behavior is still unpredictable.

STAT 251, UCLA, Ivo DinovSlide 10

Types of Probability

� Probability models have two essential components (sample space, 
the space of all possible outcomes from an experiment; and a list 
of probabilities for each event in the sample space). Where do the 
outcomes and the probabilities come from?

� Probabilities from models – say mathematical/physical description 
of the sample space and the chance of each event. Construct a fair die tossing 
game.

� Probabilities from data – data observations determine our 
probability distribution. Say we toss a coin 100 times and the 
observed Head/Tail counts are used as probabilities.

� Subjective Probabilities – combining data and psychological 
factors to design a reasonable probability table (e.g., gambling, 
stock market).
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Sample Spaces and Probabilities

� When the relative frequency of an event in the past is used to 
estimate the probability that it will occur in the future, what 
assumption is being made? 
� The underlying process is stable over time;
� Our relative frequencies must be taken from large numbers for us to 

have confidence in them as probabilities.

� All statisticians agree about how probabilities are to be 
combined and manipulated (in math terms), however, not all 
agree what probabilities should be associated with a particular 
real-world event.

� When a weather forecaster says that there is a 70% chance of 
rain tomorrow, what do you think this statement means? (Based 
on our past knowledge, according to the barometric pressure, temperature, 
etc. of the conditions we expect tomorrow, 70% of the time it did rain 
under such conditions.)
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Sample spaces and events

� A sample space, S, for a random experiment is the set 
of all  possible outcomes of the experiment.

� An event is a collection of outcomes.

� An event occurs if any outcome making up that event 
occurs.
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� The complement of an event A, denoted      ,
occurs if  and only if A does not occur.

A

A A

(a) Sample space con-
taining event A

(b) Event A shaded (c)  A shaded

A

Figure 4.4.1 An event  A  in the sample space S.

S

The complement of an event
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� “A or B” contains all outcomes in A or B (or both).

� “A and B” contains all outcomes which are in both A
and B.

Combining events – all statisticians agree on

A B A B A B A B

(a) Events A and B (b)  “A or B”  shaded (c)  “A and B”  shaded (d) Mutually exclusive
events

Figure 4.4.2 Two events.
From Chance Encounters by C.J. Wild and G.A.F. Seber, © John Wiley & Sons, 2000.

Mutually exclusive events cannot occur at the same time.
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Probability distributions

� Probabilities always lie between 0 and 1 and they 
sum up to 1 (across all simple events) .

� pr(A) can be obtained by adding up the probabilities 
of all the outcomes in  A.

∑=
A  in   

  E
)()(

event
outcome

EprApr

STAT 251, UCLA, Ivo DinovSlide 16

Review

� Law of averages for the coin-toss example.

� Sample spaces, outcomes, events, complements.

� Probabilities are always in the range [0 : 1]

� pr(A) can be obtained by adding up the probabilities 
of all the outcomes in  A.

∑=
A  in   

  E
)()(

event
outcome

EprApr
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Properties of probability distributions

� A sequence of number {p1, p2, p3, …, pn } is a probability 
distribution for a sample space S = {s1, s2, s3, …, sn}, if  
pr(sk) = pk, for each 1<=k<=n. The two essential 
properties of a probability distribution p1, p2, … , pn? 

� How do we get the probability of  an event from the 
probabilities of outcomes that make up that event?

� If all outcomes are distinct & equally likely, how do we calculate 
pr(A) ? If A = {a1, a2, a3, …, a9} and pr(a1)=pr(a2)=…=pr(a9 )=p;
then

pr(A) = 9 x pr(a1) = 9p.

1   ;0 =≥ ∑
k kk

pp
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Example of probability distributions

� Tossing a coin twice. Sample space S={HH, HT, TH, 
TT}, for a fair coin each outcome is equally likely, so 
the probabilities of the 4 possible outcomes should be 
identical, p. Since, p(HH)=p(HT)=p(TH)=p(TT)=p and

� p = ¼ = 0.25.

1  ;0 =≥ ∑
k kk

pp
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A BFor mutually exclusive events,
pr(A or B)  =  pr(A) + pr(B)

Rules for manipulating
Probability Distributions
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� If  A and  B are mutually exclusive, what is the 
probability that both occur? (0) What is the probability 
that at least one occurs?  (sum of probabilities)

� If we have two or more  mutually exclusive events, 
how do we find the probability that at least one of them 
occurs? (sum of probabilities)

� Why is it sometimes easier to compute pr(A) from
pr(A)  =   1 - pr( )? (The complement of the even may be easer to find 

or may have a known probability. E.g., a random number between 1 and 10 is drawn. 
Let A ={a number less than or equal to 9 appears}. Find pr(A) = 1 – pr(    )). 
probability of     is  pr({10 appears}) = 1/10 = 0.1. Also Monty Hall 3 door example!

A 

Review

A 
A 
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Melanoma – type of skin cancer –
an example of laws of conditional probabilities

TABLE 4.6.1:  400 Melanoma Patients by Type and Site

Head and Row
Type Neck Trunk Extremities Totals
Hutchinson's 
melanomic freckle 22 2 10 34
Superficial 16 54 115 185
Nodular 19 33 73 125
Indeterminant 11 17 28 56
Column Totals 68 106 226 400

 S ite

Contingency table based on Melanoma histological type and its location
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The conditional probability of A occurring given that 
B occurs is  given by

pr(A | B) =
pr(A and B)

pr(B)
 

Conditional Probability

Suppose we select one out of the 400 patients in the study and we 
want to find the probability that the cancer is on the extremities
given that it is of type nodular: P = 73/125 = P(C. on Extremities | Nodular)

patientsnodular  #
sextremitieon  cancer   with  patientsnodular  #
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Review

1. Proportions (partial description of a real population) and 
probabilities (giving the chance of something happening in a random 

experiment) may be identical – under the experiment choose-a-
unit-at-random

2. Properties of probabilities.

))pr(|pr( = ))pr(|pr( = ) and pr( AABBBABA
 )Apr(-1= )pr(A

1   ;0iesprobabilit define}{
1

====≥≥≥≥⇔⇔⇔⇔ ∑∑∑∑
==== k kk

N

kk
ppp
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A tree diagram for computing 
conditional probabilities

Suppose we draw 2 balls at random one at a time 
without replacement from an urn containing 4 black
and 3 white balls, otherwise identical. What is the 
probability that the second ball is black? Sample Spc?

P({2-nd ball is black}) = 
P({2-nd is black} &{1-st is black})  + 
P({2-nd is black} &{1-st is white})  = 

4/7 x 3/6  +  4/6 x 3/7  = 4/7.

Mutually
exclusive
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B1

W1

B2

W2

First
Draw

Second
Draw Path

1

2

B2

W2

3

4

A tree 
diagram
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Conditional probabilities and 2-way tables

� Many problems involving conditional probabilities 
can be solved by constructing two-way tables

� This includes reversing the order of conditioning

P(A & B) = P(A | B) x P(B) =  P(B | A) x P(A)
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Method

Outcome Failed
Steril. IUD Total

Didn’t
Total .38 .03 1.00

? ? ?
0  .38 ?.06  .03

pr(Steril.) = .38 pr(IUD) = .03

pr(Failed and Oral) =
pr(Failed | Oral)  pr(Oral)

[ = 5% of 32%]

Oral

.32
?

.05  .32
Barrier

.24
?

.14  .24
Sperm.

.03
?

.26  .03

pr(Barrier) = .24

pr(Failed and IUD) =
pr(Failed | IUD)  pr(IUD)

[ = 6% of 3%]

Proportional usage of oral contraceptives
and their rates of failure

We need to complete the two-way contingency table of proportions
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Method

Outcome Failed
Steril. IUD Total

Didn’t
Total .38 .03 1.00

? ? ?
0  .38 ?.06  .03

pr(Steril.) = .38 pr(IUD) = .03

pr(Failed and Oral) =
pr(Failed | Oral)  pr(Oral)

[ = 5% of 32%]

Oral

.32
?

.05  .32
Barrier

.24
?

.14  .24
Sperm.

.03
?

.26  .03

pr(Barrier) = .24

pr(Failed and IUD) =
pr(Failed | IUD)  pr(IUD)

[ = 6% of 3%]

Oral contraceptives cont.

TABLE 4.6.4  Table Constructed from the Data in Example 4.6.8

Steril.  Oral Barrier IUD Sperm. Total
Outcome Failed 0 .0160 .0336 .0018 .0078 .0592

Didn't .3800 .3040 .2064 .0282 .0222 .9408

Total .3800 .3200 .2400 .0300 .0300 1.0000

 Method
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� In pr(A | B), how should the symbol “ | ” is read 
given that.   

� How do we interpret the fact that: The event  A  
always occurs when  B occurs? What can you say 
about  pr(A | B)?

� When drawing a probability tree for a particular 
problem, how do you know what events to use for 
the first fan of branches and which events to use for 
the subsequent branching? (at each branching stage condition on 
all the info available up to here. E.g., at first branching use all simple events, no 
prior is available. At 3-rd branching condition of the previous 2 events, etc.).

Remarks …

A B
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TABLE 4.6.5    Number of Individuals
Having a Given Mean Absorbance Ratio 
(MAR) in the ELISA for HIV Antibodies

 MAR Healthy Donor HIV patients 
<2 202 0

2  -  2.99 73 2

3  -  3.99 15 7
4  -  4.99 3 7
5  -  5.99 2 15
6  -11.99 2 36

12+ 0 21
Total 297 88

Adapted from Weiss et al.[1985]

} }275 2

False-
positives

False-
Negatives
(FNE)

Test cut-off

Power of
a test is:
1-P(FNE)=
1-P(Neg|HIV)

~ 0.976
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Test result

Disease
status

HIV
Positive Negative Total

Not HIV
Total ? ? 1.00

? .93    .99 .99
.98    .01 .01? pr(HIV) = .01

pr(HIV and Positive) =
pr(Positive|HIV)    pr(HIV)

[ = 98% of 1%]

pr(Not HIV and Negative) =
pr(Negative|Not HIV)    pr(Not HIV)

[ = 93% of 99%]

pr(Not HIV) = .99

Figure 4.6.6 Putting HIV information into the table.
From Chance Encounters by C.J. Wild and G.A.F. Seber, © John Wiley & Sons, 2000.

HIV cont.
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Test result

Disease
status

HIV
Positive Negative Total

Not HIV
Total ? ? 1.00

? .93    .99 .99
.98    .01 .01? pr(HIV) = .01

pr(HIV and Positive) =
pr(Positive|HIV)    pr(HIV)

[ = 98% of 1%]

pr(Not HIV and Negative) =
pr(Negative|Not HIV)    pr(Not HIV)

[ = 93% of 99%]

pr(Not HIV) = .99

HIV – reconstructing the contingency table

TABLE 4.6.6  Proportions by Disease Status 
and Test Result

Positive Negative Total
Disease HIV .0098 .0002 .01  
Status Not HIV .0693 .9207 .99  

Total .0791 .9209 1.00

Test Result
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Proportions of HIV infections by country

TABLE 4.6.7     Proportions Infected with HIV

No. AIDS  Population 
Country Cases (millions) pr(HIV) pr(HIV | Positive)
United States 218,301 252.7 0.00864 0.109
Canada 6,116 26.7 0.00229 0.031
Australia 3,238 16.8 0.00193 0.026
New Zealand 323 3.4 0.00095 0.013
United Kingdom 5,451 57.3 0.00095 0.013
Ireland 142 3.6 0.00039 0.005

Having | Test
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� Events A and B are statistically independent if 
knowing whether B has occurred gives no new 
information about the chances of A occurring,

i.e.  if     pr(A | B) = pr(A)

� Similarly, P(B | A) = P(B), since 

P(B|A)=P(B & A)/P(A) = P(A|B)P(B)/P(A) = P(B)

� If A and B are statistically independent, then

)pr()pr( = ) and  pr( BABA ×

Statistical independence
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Rh+
K+ K- Total

Rh-
Total .08 .92 1.00

.0152 .1748 .19

.0648 .81.7452Rh+
K+ K- Total

Rh-
Total .08 .92 1.00

? ? .19
? .81?

pr(K+) = .08

pr(RH+) = .81
Table 4.7.1 Blood Type Data

.92    .19

.92   .81
.08   .81

.08   .19

Example using independence
There are many genetically based blood group systems. Two of these are:
Rh blood type system (Rh+ and Rh-) and the Kell system (K+ and K-).
For Europeans the following proportions are experimentally obtained.

How can we fill in the inside of the two-way contingency table?
It is known that anyone’s blood type in one system is independent
of their type in another system.  

P(Rh+  and K+) = P(Rh+) x P(K+)= 0.81 x 0.08 = 0.0648
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TABLE 4.7.2 Frequencies Assumed by the Prosecution

Yellow car Girl with blond hair

Man with mustache Black man with beard

Girl with ponytail Interracial couple in car1
10

1
1 0 0 0

1
10

1
10
1
4

1
3

People vs. Collins

� The first occasion where a conviction was made in an American court of law, 
largely on statistical evidence, 1964. A woman was mugged  and the offender 
was described as a wearing dark cloths, with blond hair in a pony tail who 
got into a yellow car driven by a black male accomplice with mustache and 
beard. The suspect brought to trial were picked out in a line-up and fit all of 
the descriptions. Using the product rule for probabilities an expert witness 
computed the chance that a random couple meets these characteristics, as 
1:12,000,000.



7

STAT 251, UCLA, Ivo DinovSlide 37

Summary

� What does it mean for two events A and B to be 
statistically independent? 

� Why is the working rule under independence, 
P(A and  B) = P(A) P(B) , just a special case of the 
multiplication rule P(A &  B) = P(A | B) P(B) ?

� Mutual independence of events A1, A2, A3, …, An if and 
only if P(A1 & A2 & … & An) = P(A1)P(A2)…P(An)

� What do we mean when we say two human 
characteristics are positively associated?  negatively 
associated? (blond hair – blue eyes, pos.;  black hair – blue eyes, neg.assoc.)
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Review

� What happens to the calculated  P(A and  B)  if we 
treat positively associated events as independent?  if 
we treat negatively associated events as independent?
(Example, let B={A + {b}}, A & B are pos-assoc’d, 
P(A&B)=P(A)[P(A)+P({b})], under indep. assump’s. However, 
P(A&B)=P(B|A)P(A)=1 x P(A) >> P(A)[P(A)+P({b})], underestimating
the real chance of events. If A & B are neg-assoc’d � A & comp(B) are 
pos-assoc’d. In general, this may lead to answers that are grossly too small 
or too large …)

� Why do people often treat events as independent?   
When can we trust their answers?(Easy computations! Not 

always!) 
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Supplement on Probabilities

� (ProbabilitiesPDF_Poisson_Ch2AppendB.pdf)

� Random variables, p. 4

� PDF, Expectation, Variance

� Binomial distribution

� Poisson distribution

� Normal Distribution – follows here!
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200 400 600 800
 Carbohydrate (mg/day)

0

.002

0 600 800
225 375

.000

.004

(a)  Standardized histogram

Shaded area = .483
(Corresponds to 48.3%
            of observations)

(b)  Area between a = 225
                and b = 375 shaded

.002

.000

.004

Dietary intake of carbohydrate (mg/day) for 5929 people 
from a variety of work environments. Standardized 
histogram plot is unimodal but skewed to the right (high 
values). Vertical scale is (relative freq.)/(interval width) = 
fj/mn. The proportion of the data in [a : b] is the area
under the standardized histogram on the range [a: b].

m
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(d)  Area between a = 225
                and b = 375 shaded(c)  With approximating curve

Shaded area = .486
(cf.  area = .483
         for histogram).002

.000

.004

.002

.000

.004

Carbohydrate (mg/day)
200 400 600 8000 0 600 800

225 375

Superposition of a smooth curve (density function) on the 
standardized histogram (left panel). Area under the 
density curve on [a: b] = [225: 375] is analytically 
computed to be: 0.486 (right panel), which is close to the 
empirically obtained estimate of the area under the 
histogram on the same interval: 0.483 (left panel).
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For a standardized

histogram:

� The vertical scale is
Relative_frequency / Interval_width

� Total area under histogram = 1

� Proportion of the data between a and b
is the area under histogram between a and b

.002

.000

.004

Carbohydrate (mg/day)
200 400 6000

Standardized histograms
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Probability and areas

For a continuous X

� the probability a random observation falls between a
and b = area under the density curve between a and b.

(d)  Area between a = 225
                and b = 375 shaded

Shaded area = .486
(cf.  area = .483
         for histogram).002

.000

.004

0 600 800
225 375
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100 200 300 400 500 600100 200 300 400 500 600

(a)  Dot plots of 6 sets of 15 random observations

Sampling from the distribution

6 sets of
samples of
15 obs’s

Note the fair amount of intra- and inter-
group variability. What does that mean?

Is that normal or expected?
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300 observations 300 observations

100 200 300 400 500 600100 200 300 400 500 600

300 observations 300 observations

100 200 300 400 500 600100 200 300 400 500 600

30 class intervals 70 class intervals

(b)  Histograms with density curve superimposed

From Chance Encounters by C.J. Wild and G.A.F. Seber, © John Wiley & Sons, 2000.
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100 200 300 400 500 600100 200 300 400 500 600100 200 300 400 500 600

500,000 observations 5 million observations

100 200 300 400 500 600100 200 300 400 500 600

5000 observations 50,000 observations

(b)  Histograms with density curve superimposed

From Chance Encounters by C.J. Wild and G.A.F. Seber, © John Wiley & Sons, 2000.
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X

Visualizing the population mean

The population mean is the imaginary value 
of X where the density curve balances
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Recall a continuous variable is one where the domain has 
no gaps in between the values the variable can take.

In calculations involving a continuous random variable
we do not have to worry about whether interval 
endpoints are included or excluded.

Interval endpoints and continuous variables
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Review

� How does a standardized histogram differ from a 
relative-frequency histogram? raw histogram? (fj/mn)

� What graphic feature conveys the proportion of the data
falling into a class interval for a standardized histogram? 
for a relative-frequency histogram? 
(area=width . height = m fj/mn= fj/n)

� What are the two fundamental ways in which random 
observations arise? (Natural phenomena, sampling experiments – choose a student at random 
and use the lottery method to record characteristics, scientific experiments - blood pressure measure)

� How does a density curve describe probabilities? 
(The probability that a random obs. falls in [a:b] is the area under the PDF on the same interval.)
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Review

� What is the total area under both a standardized 
histogram and a probability density curve? (1)

� When can histograms of data from a random process 
be relied on to closely resemble the density curve for 
that process? (large sample size, small histogram bin-size)

� What characteristic of the density curve does the 
mean correspond to? (imaginary value of X, where the density curve balances)
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Review

� Does it matter whether interval endpoints are 
included or excluded when we calculate probabilities 
for a continuous random variable from the area? (No)

� Why? (Area[a:b] == Area(a:b))

� Are discrete variables the same or different in this 
regard, interval endpoint not effecting the area? (Different)
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4035 45
0.0

0.1

0.2

150 160 170 180 190 200
.00

.02

.04

.06

(a)  Chest measurements of Quetelet’s Scottish soldiers (in.)

(b)  Heights of the 4294 men in the workforce database  (cm)

= 39.8 in.,      = 2.05 in.

= 174 cm,      = 6.57 cm

Normal density curve has

Normal density curve has

Two standardized histograms with 
approximating Normal density curve
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� Is symmetric about the mean! Bell-shaped and 
unimodal.

� Mean = Median!

50% 50%

Mean

2.2

The Normal distribution density curve

N(µ,µ,µ,µ, 
  

 σσσσ)
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Effects of µµµµ and σσσσ

140 160 180

shifts the curve along the axis

200

2 =174

2 = 61 =

(a)  Changing

1 = 160

160 180 200140

1 = 6

2 = 12

2 =1701 =

increases the spread and flattens the curve

(b)  Increasing

Mean is a measure of …
central tendency

Standard deviation is 
a measure of …

variability/spread
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Understanding the standard deviation: σσσσ

(c)  Probabilities and numbers of standard deviations

Shaded area = 0.683 Shaded area = 0.954 Shaded area = 0.997

    68% chance of falling
between             and

− +

+
     95% chance of falling
between              and

+2

+2

3+

     99.7% chance of falling
between              and 3+

− 2 − 3

− 3− − 2

Probabilities/areas and numbers of standard deviations
for the Normal distribution
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x

Area = pr (X     x )

x

Area = pr (X     x )

OR

Probabilities supplied by computer programs –
Cumulative (lower-tail) probabilities

Areas in [0:Z] of the Std.Normal Distribution
Are obtained by STATA command    ztable
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Probabilities supplied by computer programs –
Cumulative (lower-tail) probabilities

Problem:To find P(X<=180), when µ=174 and σ=6.57
Convert to Standard units: Y = (X- µ)/ σ = 6/6.57 = 0.91
Look-up the Normal Distribution Table: 0.3186
Final cumulative (lower-tail) result: 0.5+ 0.3186= 0.819

Area = pr (X     x )

OR
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Basic method for obtaining probabilities

� Sketch a Normal curve, marking the mean and other 
values of interest.

� Shade the area under the curve that gives the desired 
probability.

� Devise a way of getting the desired area from lower-
tail areas.

� Obtain component lower-tail probabilities from a 
computer program
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180160 =174160 =174180=174

pr(X    180) pr(X    160) pr(160 < X    180) = difference

Shaded
area

(a)  Computing   pr(160 < X     180)

Shaded
area

Shaded
area

Programs supply We want

and

pr(160 < X    180)  =  pr(X   180)     pr(X   160)
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Programs supply

pr(X    25)

25 =27.2

We want

pr(X > 25)

25 =27.2

= 0.2874= ??

Since total area under curve = 1,    pr(X > 25) = 1 - pr(X     25)

Obtaining an upper-tail probability

pr(X > 25)

Generally,    pr(X > x)  =  1  -  pr(X     x)
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Review

� What features of the Normal curve do µ and σ
visually correspond to? (point-of-balance; width/spread)

� What is the probability that a random observation 
from a normal distribution is smaller than the mean? 
(0.5) larger than the mean? (0.5) exactly equal to the 
mean? (0.0) Why? 
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Review

� Approximately, what is the probability that a random 
observation from a normal distribution falls within 1 
standard deviation (SD) of the mean? (0.68) 2 SD's? (0.95)

3 SD's? (0.997)

� Computer programs may provide cumulative or 
partial probabilities for the normal distribution. What 
is a the difference between these? Can we get one 
from the other?
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Percent 1% 5% 10% 20% 30% 70% 80% 90% 95% 99%
Propn 0.01 0.05 0.1 0.2 0.3 0.7 0.8 0.9 0.95 0.99
Percentile

(cm) 148.3 152.5 154.8 157.5 159.4 166.0 167.9 170.6 172.9 177.1
(ft'in") 4'10" 5'0" 5'0" 5'2" 5'2" 5'5" 5'6" 5'7" 5'8” 5'9"

 (+ frac) 3/8" 7/8" 3/4" 3/8" 1/8" 1/8" 1/8" 3/4"

(c)  Further percentiles of women’s heights

prob = 0.8

=162.7

prob = p

(a)  p-Quantile

x  = ??p

(b)  80th percentile (0.8-quantile)
of women’s heights

Programs supply  x p

Program returns 167.9.
Thus 80% lie below 167.9.

Normal(   = 162.7,    = 6.2)

(or quantile)

x   = ??0.8

x-value for which  pr(X    x  ) = pp

The inverse problem – Percentiles/quantiles

80% of people have 
height below the 
80th percentile. 
This is EQ to 
saying there’s 
80% chance that a 
random 
observation from 
the distribution 
will fall below the 
80th percentile.

The inverse problem is what is the height for the 80th percentile/quantile? So 
far we studied given the height value what’s the corresponding percentile?
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???

What does this say about the lower tail?
“What value gives

the top 25%?”

Obtain from program

0.75

prob

0.25

prob = 0.25

0.25

???

Obtaining an inverse upper-tail probability

[ Program returns 166.88]

=162.7=162.7

1   prob
  = 0.75

The inverse problem – upper-tail
percentiles/quantiles
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Review

� What is meant by the 60th percentile of heights? 

� What is the difference between a percentile and a 
quantile? (percentile used in expressing results in %, whereas quantiles used 
to express results in term of probabilities)

� The lower quartile, median and upper quartile of a 
distribution correspond to special percentiles. What 
are they?  express in terms of quantiles. (25%, 50%, 75%)

� Quantiles are sometimes called inverse cumulative 
probabilities. Why?
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Standard Normal Curve 

� The standard normal curve is described by the equation:

π2

2

2x

ey
−

=

Where remember, the natural number e ~ 2.7182…
We say: X~Normal(µ,µ,µ,µ, 

  

 σσσσ), or simply X~N(µ,µ,µ,µ, 
  

 σσσσ)
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Standard Normal Approximation 

� The standard normal curve can be used to estimate the percentage of 
entries in an interval for any process. Here is the protocol for this 
approximation:
� Convert the interval (we need the assess the percentage of entries in) to 

standard units. We saw the algorithm already.
� Find the corresponding area under the normal curve (from tables or online 

databases);

12         18        22

Data

What percentage of the 
density scale histogram
is shown on this graph?

Transform to Std.Units

Compute %

Report back %
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General Normal Curve 

� The general normal curve is defined by:
� Where µ is the average of (the symmetric) 

normal curve, and σ is the standard
deviation (spread of the distribution).

� Why worry about a standard and general normal curves?
� How to convert between the two curves? 

2

22

2)(

2πσ

σ
µ−−

=

x

ey
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Areas under Standard Normal Curve –
Normal Approximation

� Protocol: 
� Convert the interval (we need to assess the percentage of entries in) 

to Standard units. Actually convert the end points in Standard units.
�In general, the transformation  X  � (X-µ)/σ, standardizes the 

observed value X, where µ and σ are the average and the 
standard deviation of the distribution X is drawn from.

� Find the corresponding area under the normal curve (from tables or 
online databases);
�Sketch the normal curve and shade the area of interest
�Separate your area into individually computable sections
�Check the Normal Table and extract the areas of every sub-

section
�Add/compute the areas of all 

sub-sections to get the total area.
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0.50.25 0.25

162.7a = ?? b = ??

0.75

162.7 b = ??

What does that say about the lower tails?

What values contain the central 50%?

The central
50%

Obtain  b
from program

0.5

162.7a = ?? b = ??

162.7a = ??
Obtain  a

from program

0.25

Obtaining central range for symmetric distributions
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� The z-score of x is the number of standard deviations x
is from the mean. (Body-Mass-Index, BMI)

The z-score

TABLE 6.3.1  Examples of z -Scores

X Interpretation 
        Male BMI values (kg/m 2)

25 (25-27.3)/4.1 = -0.56 25 kg/m 2 is 0.56 sd's below the mean 
35 (35-27.3)/4.1 = 1.88 35 kg/m 2 is 1.88 sd's above the mean

       Female heights  (cm)
155 (155-162.7)/6.2 = -1.24 155cm is 1.24 sd's below the mean   
180 (180-162.7)/6.2 = 2.79 180cm is 2.79 sd's above the mean   

Male BMI-values: µ =27.3, σ =4.1       Females heights: µ=162.7, σ=6.2

z -score = (x  - µµµµ )/σσσσ    

� Which ones of these are unusually large/small/away from the mean?
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Standard Normal distribution:    

mean(µ) = 0, SD(σ)= 1

The standard Normal distribution
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z = ??-z
0

z = ??-z
0

90% 90%5% 5%

z = ??-z
0

95%

What does that say about the lower tail?

Obtain z from program

What values contain the central 90%?

The central 90%

[Program returns 1.6449]

Working in standard units
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z = ??-z
0

z = ??-z
0

90% 90%5% 5%

z = ??-z
0

95%

What does that say about the lower tail?

Obtain z from program

What values contain the central 90%?

The central 90%

[Program returns 1.6449]

Review, Mon., Oct. 22, 2001
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TABLE 6.3.2 Central Ranges

Male BMI values Female heights

Percentage z µµµµ  - z σσσσ µµµµ     + z σσσσ µµµµ     - z σσσσ µµµµ  + z σσσσ
80% 1.2816 22.05 32.55 154.8 170.6
90% 1.6449 20.56 34.04 152.5 172.9
95% 1.9600 19.26 35.34 150.5 174.9
99% 2.5758 16.74 37.86 146.7 178.7

99.9% 3.2905 13.81 40.79 142.3 183.1

Male  B MI-values : µ=27.3, σ=4.1

Females  heights : µ=162.7, σ=6.2

Working in standard units (# of SD’s)

Standardizing
Inverting µµµµσσσσ

σσσσµµµµ
++++====

−−−−====
ZX
XZ /)(
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TABLE 6.3.3    Using z -score tables
 
As an example, we shall  find pr(Z    1.1357)  using part of the table given in 
Appendix A4 (reproduced below).

Step 1: Correct the z -value to two decimal places, that is, use z = 1.14.
Step 2:  Look down the z  column until you find 1.1.  This tells you which row to

look in. 
Step 3: The second decimal place, here 4, tells you which column to look in.
Step 4: The entry in the table corresponding to that row and column is 

pr(Z    1.14) = 0.873
 

z 0 1 2 3 4 5 6 7 8 9
1.0 .841 .844 .846 .848 .851 .853 .855 .858 .860 .862
1.1 .864 .867 .869 .871 .873 .875 .877 .879 .881 .883
1.2 .885 .887 .889 .891 .893 .894 .896 .898 .900 .901
1.3 .903 .905 .907 .908 .910 .911 .913 .915 .916 .918
1.4 .919 .921 .922 .924 .925 .926 .928 .929 .931 .932

≤

≤
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Quincunx (see QuincunxApplet.html)
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Continuous Variables and Density Curves

� There are no gaps between the values a continuous 
random variable can take.

� Random observations arise in two main ways: (i) by 
sampling populations; and (ii) by observing 
processes.
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The density curve

� The probability distribution of a continuous variable 
is represented by a density curve.
� Probabilities are represented by areas under the curve, 

�the probability that a random observation falls between a and b
equal to the area under the density curve between a and b.

� The total area under the curve equals 1.
� The population (or distribution) mean µX = E(X), is where 

the density curve balances.
�When we calculate probabilities for a continuous random 

variable, it does not matter whether interval endpoints are 
included or excluded.
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For any random variable X

� E(aX +b) = a E(X) +b and   SD(aX +b) = | a | SD(X)
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The Normal distribution

X ~ Normal(µx = µ, σx = σ)

Features of the Normal density curve:

� The curve is a symmetric bell-shape centered at µ.

� The standard deviation σ governs the spread.
� 68.3% of the probability lies within 1 standard deviation of 

the mean
� 95.4% within 2 standard deviations
� 99.7% within 3 standard deviations
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Probabilities

� Computer programs provide lower-tail (or 
cumulative) probabilities of the form pr(X ≤ x)
�We give the program the x-value; it gives us the 

probability.

� Computer programs also provide inverse lower-tail 
probabilities (or quantiles)
�We give the program the probability; it gives us the x-

value.

� When calculating probabilities, we shade the desired 
area under the curve and then devise a way of 
obtaining it via lower-tail probabilities.
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Standard Units

The z-score of a value a is ….

� the number of standard deviations a is away from the 
mean

� positive if a is above the mean and negative if a is 
below the mean.

The standard Normal distribution has µ = 0 and σ = 0.

� We usually use Z to represent a random variable with 
a standard Normal distribution.
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Ranges, extremes and z-scores

Central ranges:
� P(-z ≤ Z ≤ z) is the same as the probability that  a random 

observation from an arbitrary Normal distribution falls 
within z SD's either side of the mean.

Extremes:
� P(Z ≥ z) is the same as the probability that a random 

observation from an arbitrary Normal distribution falls 
more than z standard deviations above the mean.

� P(Z ≤ -z) is the same as the probability that a random 
observation from an arbitrary Normal distribution falls 
more than z standard deviations below the mean.
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Combining Random Quantities

Variation and independence:

� No two animals, organisms, natural or man-made 
objects are ever identical.

� There is always variation. The only question is 
whether it is large enough to have a practical impact 
on what you are trying to achieve.

� Variation in component parts leads to even greater 
variation in the whole.
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Independence

We model variables as being independent ….

� if we think they relate to physically independent 
processes

� and if we have no data that suggests they are related.

Both sums and differences of independent random 
variables are more variable than any of the 
component random variables
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Formulas

� For a constant number a, E(aX) = aE(X)
and SD(aX) = |a| SD(X).

� Means of sums and differences of random variables 
act in an obvious way
� the mean of the sum is the sum of the means
� the mean of the difference is the difference in the means 

� For independent random variables, (cf. Pythagorean theorem),

[ASIDE: Sums and differences of independent Normally distributed random 
variables are also Normally distributed]

)()()(

)(S)(S)(S)(S

2121

2

2

2

12121

XEXEXXE

XDXDXXDXXD

++++====++++

++++====−−−−====++++
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Areas under Standard Normal Curve –
Normal Approximation

� Protocol: 
� Convert the interval (we need to assess the percentage of entries in) 

to Standard units. Actually convert the end points in Standard units.
�In general, the transformation  X  � (X-µ)/σ, standardizes the 

observed value X, where µ and σ are the average and the 
standard deviation of the distribution X is drawn from.

� Find the corresponding area under the normal curve (from tables or 
online databases);
�Sketch the normal curve and shade the area of interest
�Separate your area into individually computable sections
�Check the Normal Table and extract the areas of every sub-

section
�Add/compute the areas of all 

sub-sections to get the total area.
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Areas under Standard Normal Curve –
Normal Approximation, Scottish Army Recruits

� The mean height is 64 in and the standard deviation is 2 in. 
� Only recruits shorter than 65.5 in will be trained for tank operation.

What percentage of the incoming recruits will be trained to operate 
armored combat vehicles (tanks)?

� Recruits within ½ standard deviations of the mean will have no 
restrictions on duties. About what percentage of the recruits will have 
no restrictions on training/duties?

60     62     64    65.5 66   68

X ���� (X-64)/2
65 ���� (65-64)/2 = ½
63 ���� (63-64)/2 = -½

Percentage is   38.30%60     62  63   64  65  66   68

X ���� (X-64)/2
65.5 ���� (65.5-64)/2 = ¾
Percentage is   77.34%
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Percentiles for Standard Normal Curve 

� When the histogram of the observed process follows the normal 
curve Normal Tables (of any type, as described before) may be 
used to estimate percentiles. The N-th percentile of a distribution 
is P is N% of the population observations are less than or equal 
to P.

� Example, suppose the Math-part SAT scores of newly admitted 
freshmen at UCLA averaged 535 (out of [200:800]) and the SD
was 100. Estimate the 95 percentile for the score distribution.

� Solution:
95%

Z=?

-z          z=?

90%
5%5%

95%
91.091.70

90.111.65

AreaZ
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Percentiles for Standard Normal Curve 

� Example, suppose the Math-part SAT scores of newly admitted freshmen at 
UCLA averaged 535 (out of [200:800]) and the SD was 100. Estimate the 95 
percentile for the score distribution.

� Solution: 

� Z=1.65 (std. Units) � 700 (data units), since

X � (X – µ)/σ, converts data to standard units and

X � σ X + µ, converts standard to data units!

σ = 100;    µ =535,  100 x 1.65 + 535 = 700.

95%

Z=?

-z          z=?

90%
5%5%

95%
91.091.70

90.111.65

AreaZ
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Summary 

1. The Standard Normal curve is symmetric w.r.t. the origin (0,0) and 
the total area under the curve is 100% (1 unit)

2. Std units indicate how many SD’s is  a value below (-)/above (+) the 
mean

3. Many histograms have roughly the shape of the normal curve (bell-
shape)

4. If a list of numbers follows the normal curve the percentage of 
entries falling within each interval is estimated by: 1. Converting 
the interval to StdUnits and, 2. Computing the corresponding area 
under the normal curve (Normal approximation)

5. A histogram which follows the normal curve may be reconstructed 
just from (µ,σ2), mean and variance=std_dev2

6. Any histogram can be summarized using percentiles
7. E(aX+b)=aE(X)+b,        Var(aX+b)=a2Var(X), where E(Y) the the 

mean of Y and Var(Y) is the square of the StdDev(Y),
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Example – work out in your notebooks 

1. Compute the chance a random observation from a distribution 
(symmetric, bell-shaped, unimodal) with m=75 and SD=12 falls 
within the range [53 : 71].

53        71 75  87

91

ab b

Check Work
Should it be

<50% or >50%?
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Example – work out in your notebooks 

1. Compute the chance a random observation from a distribution (symmetric, bell-
shaped, unimodal) with m=75 and SD=12 falls within the range [53 : 71].

2. (53-75)/12 = -11/6=-1.83 Std unit

3. (71-75)/12=-0.333(3) Std units

4. Area[53:71] = 

5. (SN_area[-1.83:1.83] –SN_area[-0.33:0.33])/2

6. =  (93%  - 25%)/2  = 34%

7. Compute the 90th percentile for the same data:

8. b+a+b=100%   a=80%      � A=0.8

9. a+b=90%         b=10%           Z=1.3 SU

10. 90% P = σ1.3 + µ =12x1.3+75=90.6

53        71 75  87

91

ab b

Check Work
Should it be

<50% or >50%?

STAT 251, UCLA, Ivo DinovSlide 95

General Normal Curve 

� The general normal curve is defined by:
� Where µ is the average of (the symmetric) 

normal curve, and σ is the standard
deviation (spread of the distribution).

� Why worry about a standard and general normal curves?
� How to convert between the two curves? 

2

22

2)(

2πσ

σ
µ−−

=

x

ey
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Areas under Standard Normal Curve 

� Many histograms are similar in shape to the standard normal curve. For 
example, persons height. The height of all incoming female army recruits 
is measured for custom training and assignment purposes (e.g., very tall 
people are inappropriate for constricted space positions, and very short 
people may be disadvantages in certain other situations). The mean 
height is computed to be 64 in and the standard deviation is 2 in. Only 
recruits shorter than 65.5 in will be trained for tank operation and recruits 
within ½ standard deviations of the mean will have no restrictions on 
duties.
� What percentage of the incoming recruits will be trained to operate 

armored combat vehicles (tanks)?

� About what percentage of the recruits will have no restrictions on 
training/duties?
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Standard Normal Curve – Table differences

� There are different tables and computer packages for representing the area under 
the standard normal curve. But the results are always interchangeable.

68.271.0

38.290.50

AreaZ

Area under Normal curve on [-z : z]

-z    0      z

84.131.0

69.150.50

AreaZ

Area under Normal curve on [-infinity : z]

0    z

15.871.0

30.850.50

AreaZArea under Normal 
curve on [z: infinity]

0    z STAT 251, UCLA, Ivo DinovSlide 98

Standard Normal Curve – Table differences

� There are different tables and computer packages for representing the area under 
the standard normal curve. But the results are always interchangeable.

68.271.0

38.290.50

AreaZ

Area under Normal curve on [-z : z]

-z    0      z

84.131.0

69.150.50

AreaZ

Area under Normal curve on [-infinity : z]

0    z

15.871.0

30.850.50

AreaZArea under Normal 
curve on [0 : z]

0    z
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Summary of ideas

� The probabilities people quote come from 3 main sources:
� (i) Models (idealizations such as the notion of equally 

likely outcomes which suggest probabilities by symmetry).
� (ii) Data (e.g.relative frequencies with which the event has 

occurred in the past).
� (iii) subjective feelings representing a degree of belief

� A simple probability model consists of a sample 
space and a probability distribution.

� A sample space, S, for a random experiment is the set 
of all  possible outcomes of the experiment.
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Summary of ideas cont.

� A list of numbers  p1, p2, … is a probability 
distribution for S = {s1, s2, s3, …}, provided 
� all of the  pi's lie between 0 and 1,  and 
� they add to 1.

� According to the probability model, pi is the 
probability that outcome si occurs.

� We write pi = P(si).
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Summary of ideas cont.

� An event is a collection of outcomes

� An event occurs if any outcome making up that event 
occurs

� The probability of event A can be obtained by adding 
up the probabilities of all the outcomes in  A

� If all outcomes are equally likely,

pr(A) =
number of outcomes in A
total number of outcomes

STAT 251, UCLA, Ivo DinovSlide 102

� The complement of an event A, denoted     ,  occurs if A does 
not occur

� It is useful to represent events diagrammatically using Venn 
diagrams

� A union of events, A or B contains all outcomes in A or B
(including those in both).  It occurs if at least one of A or B
occurs 

� An intersection of events, A and B contains all outcomes 
which are in both A and B.  It occurs only if both  A and B
occur

� Mutually exclusive events cannot occur at the same time

A Summary of ideas cont.

A 
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� The conditional probability of A occurring given that B occurs is  
given by

� Events A and B are statistically independent if knowing whether 
B has occurred gives no new information about the chances of A
occurring, i.e. if P(A | B) = P(A)     � P(B|A)=P(B).

� If events are physically independent, then, under any sensible 
probability model, they are also statistically independent

� Assuming that events are independent when in reality they are 
not can often lead to answers that are grossly too big or grossly 
too small

pr(A | B) =  pr(A and B)
pr(B)

Summary of ideas cont.
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� For discrete sample spaces, pr(A) can be obtained by 
adding the probabilities of all outcomes in A

� For equally likely outcomes in a finite sample space

pr(A) =
number of outcomes in A
total number of outcomes

Formula Summary
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� pr(S) = 1

� pr(    ) = 1 - pr(A)

� If A and B are mutually exclusive events, then   
pr(A or B) = pr(A) + pr(B) 

(here “or” is used in the inclusive sense)

� If A1, A2, ...,Ak are mutually exclusive events, then

pr(A1 or A2 or … or Ak ) = pr(A1)+pr(A2)+…+pr(Ak)

A

Formula summary cont.
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Conditional probability

� Definition:

� Multiplication formula:

pr(A and B) = pr(B|A)pr(A) = pr(A|B)pr(B)

pr(A | B) =  
pr(A and B)

pr(B)

Formula summary cont.
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Multiplication Rule under independence:

� If A and B are independent events, then

pr(A and B) = pr(A) pr(B)

� If A1, A2, … , An are mutually independent, 

pr(A1 and A2 and ... and An) = pr(A1) pr(A2) … pr(An) 

Formula summary cont.


