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Three-dimensional cluster analysis offers a method for the prediction of
functional residue clusters in proteins. This method requires a representa-
tive structure and a multiple sequence alignment as input data. Individ-
ual residues are represented in terms of regional alignments that re¯ect
both their structural environment and their evolutionary variation, as
de®ned by the alignment of homologous sequences. From the overall
(global) and the residue-speci®c (regional) alignments, we calculate the
global and regional similarity matrices, containing scores for all pairwise
sequence comparisons in the respective alignments. Comparing the
matrices yields two scores for each residue. The regional conservation
score (CR(x)) de®nes the conservation of each residue x and its neighbors
in 3D space relative to the protein as a whole. The similarity deviation
score (S(x)) detects residue clusters with sequence similarities that deviate
from the similarities suggested by the full-length sequences. We evalu-
ated 3D cluster analysis on a set of 35 families of proteins with available
cocrystal structures, showing small ligand interfaces, nucleic acid inter-
faces and two types of protein-protein interfaces (transient and stable).
We present two examples in detail: fructose-1,6-bisphosphate aldolase
and the mitogen-activated protein kinase ERK2. We found that the
regional conservation score (CR(x)) identi®es functional residue clusters
better than a scoring scheme that does not take 3D information into
account. CR(x) is particularly useful for the prediction of poorly con-
served, transient protein-protein interfaces. Many of the proteins studied
contained residue clusters with elevated similarity deviation scores.
These residue clusters correlate with speci®city-conferring regions: 3D
cluster analysis therefore represents an easily applied method for the pre-
diction of functionally relevant spatial clusters of residues in proteins.
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Introduction

The prediction of functionally relevant residues
in proteins can lead to the assignment of new func-
tions and elucidate the mechanism by which pro-
teins carry out known functions. Various methods
have been applied to this important problem.
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Some of the predictions are based on biophysical
properties of individual residues (Jones &
Thornton, 1997a,b; Tsai et al., 1997; Xu et al., 1997),
others are based on harvesting evolutionary infor-
mation inherent in sets of homologous sequences.
Of those methods harvesting the evolutionary
information, the most direct approach (Bucher &
Bairoch, 1994; Henikoff & Henikoff, 1991) assigns
sequence motifs directly to particular functions. In
a more elaborate approach (Casari et al., 1995), vec-
torial analysis of sequence pro®les is used to ident-
ify functionally important residues. In a third
method, evolutionary tracing (Lichtarge et al., 1996,
1997), information inherent in a phylogenetic tree
is added to the analysis of conserved sequences,
often revealing more subtle aspects of protein func-
tion. Starting with a multiple sequence alignment,
# 2001 Academic Press
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a representative structure, and a phylogenetic tree,
this method evaluates the conservation at each
position in the alignment for different sequence
similarity cut-offs. In its original implementation,
residues are classi®ed as variable, conserved or
group-speci®c, that is speci®c to one branch of the
phylogenetic tree. This analysis can be further
expanded by the use of amino acid substitution
matrices to evaluate conservation (Landgraf et al.,
1999). In either case, a representative structure is
used to visualize the distribution of scores at the
end of the analysis.

Here, we present 3D cluster analysis, a further
extension of evolutionary tracing (Lichtarge et al.,
1997) with two goals. The ®rst goal is to improve
the sensitivity with which functional residue clus-
ters can be identi®ed. The availability of a repre-
sentative structure provides a source of signi®cant
additional information, which can improve the sen-
sitivity of detection. In addition to projecting the
®nal scores onto a reference structure, 3D cluster
analysis makes the structural information an inte-
gral part of the analysis. The second goal is to
identify functionally relevant residue clusters
within a protein without reliance on a phylogenetic
tree as input data. The grouping of sequences in a
phylogenetic tree often re¯ects similarity in func-
tion, a fact that is exploited in evolutionary tracing.
However, we speculate that a protein possesses
regions or residue clusters for which the phyloge-
netic tree does not adequately re¯ect relationships
of sequence similarity and function. We foresee
several scenarios in which such a deviation might
occur. For a protein with multiple functional resi-
due clusters, the grouping of sequence in the
apparent phylogenetic tree can represent the aver-
age of several conserved functions. In addition, the
similarity relationships of a highly conserved resi-
due cluster could dominate the phylogenetic tree
and overshadow the grouping suggested by a less-
conserved residue cluster associated with a differ-
ent function. The detection of such clusters, associ-
ated with secondary functions of the protein,
would not be possible by conventional evolution-
ary tracing. Here, we propose a score, termed simi-
larity deviation score (S(x)), which detects residue
clusters that exhibit deviations in their regional
sequence similarity relationships. The detection of
such residue clusters should facilitate the assign-
ment of functions that are not adequately rep-
resented in the grouping of the ``apparent
phylogenetic tree''.

Three-dimensional cluster analysis places struc-
tural information at the core of the analysis and
evaluates conservation in terms of spatially
de®ned residue clusters within a protein. This
method requires a representative structure and
multiple sequence alignment but no phylogenetic
tree as input. Our analysis shows that function-
ally relevant residue clusters that exhibit a low
degree of conservation can be detected with
enhanced sensitivity when we use regional con-
servation scores as opposed to a scoring scheme
that does not take 3D information into account.
We also ®nd cases of residue clusters that,
when compared between different sequences,
show similarity relationships that deviate from
the similarity relationships observed for the pro-
tein as a whole. Comparison with biochemical
data suggests that these residue clusters confer
speci®city to catalytic reactions or protein inter-
actions.

We evaluate 3D cluster analysis on a set of 35
protein families, for which a cocrystal structure of
a representative member identi®es functionally rel-
evant interfaces. We ®rst analyze what percentage
of known interface residues can be identi®ed by
3D cluster analysis. We then evaluate the predic-
tions made by 3D cluster analysis against the
known biochemical properties of two families of
proteins in detail. The ®rst family is extracellular
signal-regulated kinase (ERK) 2. The ERK1/ERK2
mitogen-activated protein (MAP) kinases (MAPKs)
represent one of four known MAP kinase path-
ways in mammalian cells, where they transduce
signals in response to various growth factors
(Blenis, 1993; Blumer & Johnson, 1994; Davis, 1993;
Schlessinger, 1994). ERK2 is activated through
phosphorylation by upstream kinases (MAPKKs)
such as MEK1/MEK2 (Crews et al., 1992; Mansour
et al., 1994) and is subject to deactivation by phos-
phatases (Anderson et al., 1990; Boulton & Cobb,
1991; Zheng & Guan, 1993). MAPKKs show strong
speci®city in their interaction with MAPKs and the
nature of this speci®city has been an area of intense
investigation.

The second family of proteins to which we apply
3D cluster analysis are type I fructose-1,6-bispho-
sphate aldolases (aldolases). Type I aldolases cata-
lyze the Schiff base-mediated, reversible cleavage
of fructose 1,6,-bisphosphate (FBP) or fructose
1-phosphate (F-1-P) to dihydroxyacetone phos-
phate (DHAP) and glyceraldehyde 3-phosphate or
glyceraldehyde, respectively (for a general review,
see Horecker et al., 1972). The functional unit of
aldolase is a tetramer and the active sites in each
monomer are found at the core of the monomer
(b/a)8 barrel (Cooper et al., 1996; Dalby et al., 1999;
Gamblin et al., 1990; Sygusch et al., 1987). Mamma-
lian class I aldolases exist in three isoforms with
different tissue distribution (type A, muscle; B,
liver; C, brain) and catalytic preference for FBP
over F-1-P. The liver (B) isoform stands out, in that
it utilizes both substrates equally well (Penhoet
et al., 1966, 1969), a re¯ection of the utilization of
exogenous fructose by the liver enzyme. In
addition to its catalytic activity, aldolase has been
reported to interact with the cytoskeleton. The
metabolically controlled interaction of aldolase
with F and G actin has been shown to mediate the
association of the insulin-responsive glucose trans-
porter (Glut-4) with the cytoskeleton, thereby regu-
lating the levels of glucose transporter molecules
on the cell surface (Clarke & Masters, 1975; Clarke
& Morton, 1976, 1982; Clarke et al., 1984; Walsh
et al., 1981).
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Results

For a protein family, 3D cluster analysis evalu-
ates the residue conservation at each position of a
reference structure. The conservation is evaluated
for the 3D region surrounding residue x as de®ned
by the spatial neighbors of x in the reference struc-
ture. The regional conservation is calculated and
assigned to residue x. Also, the similarity deviation
score is calculated. This is the extent to which the
sequence similarity relationships for this residue
cluster deviate from that of the protein as a whole.
Three-dimensional cluster analysis includes the fol-
lowing basic steps, as outlined in Figure 1.

(1) Selection of a reference structure for the
family of proteins under investigation and identi®-
cation of sequences with high sequence similarity
(judged by E-score) to the reference protein.

(2) Creation of a (global) multiple sequence
alignment based on the full-length sequence of the
reference protein.

(3) Identi®cation of structural neighbors for each
residue x in the reference structure with Ca atoms
1

N

3
2

X

1
2
3

N
...

X

10 A
o

I

II

η(x)

...A

A(x)

1

Figure 1. Basic steps in 3D cluster analysis. The extraction
structure links structural information to the sequence alignm
dues within a given radius (e.g. 10 AÊ ) are identi®ed. (II) T
extracted from the global alignment A. These blocks are j
(III) Two similarity matrices of dimension N � N are gen
relationship of all full-length sequences and a regional sim
sequences in the regional alignment, A(x).
within a set radius (default 10 AÊ , Step I in
Figure 1). An option is to evaluate only surface-
exposed residues as neighbors.

(4) Extraction of regional alignments from the
global alignment. One regional alignment for each
residue in the reference structure, containing its
structural neighbors (Step II in Figure 1). The
length of the alignment is equal to the number of
neighbors for this residue.

(5) Calculation of global and regional similarity
matrices, containing the pairwise sequence simi-
larity scores for all sequences within the respective
alignments (Step III in Figure 1).

(6) Calculation of the regional conservation score
(CR(x)) for each residue x in the reference structure,
representing the difference in conservation
between the structural neighbors of residue x ver-
sus the protein as a whole.

(7) Calculation of the similarity deviation score
(S(x)) re¯ecting the degree of correlation between
the regional and global similarity matrix. A high
S(x) score indicates a strong deviation between the
similarity relationships within the regional
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of regional alignments for each residue in the reference
ent. (I) For each residue x, all structurally adjacent resi-
he identi®ed positions (highlighted as gray blocks) are
oined to form a regional alignment with N sequences.
erated, a global similarity matrix (M) representing the
ilarity matrix (M(x)) representing the relationship of all
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Figure 2. The distributions of CR(x) and S(x) scores
are distinct from the distributions of scores based on
reshuf¯ed alignments. (a) Distribution of the raw CR

0 (x)
(&) and S0(x) scores (*) and the respective scores
derived from randomly assembled neighborhoods
(mean of random S0(x) (^), CR

0 (x) (*). Standard devi-
ation of random neighborhood scores is indicated as
error bars). The raw CR

0 (x) and S0(x) scores were con-
verted to Z-scores, using the mean and standard devi-
ation for a random neighborhood containing an equal
number of residues. The raw data shown were obtained
for aldolase. (b) and (c) Distribution of regional conser-
vation Z-scores (CR

0 (x), (b) and similarity deviation
Z-scores (S(x), (c) (gray area graph) compared to the dis-
tribution of the respective scores obtained from

1490 Prediction of Functional Sites in Proteins
alignment of the structural neighbors of residue x
and the similarity relationships obtained for the
full-length sequences.

(8) Visualization of the distribution of regional
conservation and similarity deviation scores based
on the reference structure.

Determining background thresholds for CR(x)
and S(x) Z-scores

We applied 3D cluster analysis to 35 protein
families. The protein families selected represent
four classes of proteins: proteins with small ligand-
binding sites, RNA-binding proteins, DNA-binding
proteins and protein complexes. Protein complexes
were further classi®ed as stable (e.g. the aldolase
tetramer) or transient (e.g. the Ras-Gap complex).
Figure 2(a) shows the raw CR

0 (x) and S0(x) scores
for the aldolase protein family as a function of the
number of neighboring residues within a 10 AÊ

radius of each evaluated residue. We compare the
raw scores to the mean and standard deviation
(error bars in Figure 2(a)) of control scores
obtained for an equal number of randomly
selected, non-neighboring residues within the refer-
ence structure. The raw CR

0 (x) scores cluster
around 0.5, the expected value for comparable con-
servation within the regional and local similarity
matrix. For the raw S0(x) score, values gradually
approach zero with an increasing number of evalu-
ated residues, because the difference between the
regional and the global similarity matrix
diminishes. However, as is the case for the CR

0 (x)
scores, the data obtained for ``true'' structure-based
neighbors show a broader distribution than the
standard deviation of scores obtained for randomly
selected ``neighbors''.

Based on the comparison of the raw CR
0 (x) and

S0(x) scores and the distribution of scores from ran-
domly assembled residue ``neighborhoods'', we
calculated Z-scores (CR(x)) and S(x)). Figure 2(b)
and (c) show the distribution of Z-scores for all
protein families evaluated. To determine the
threshold above which a Z-score can be considered
to indicate a true regional conservation or regional
deviation of sequence similarity, we generated a
second set of Z-scores based on randomly
reshuf¯ed alignments (rS(x) and rCR(x)). For both,
the S(x) and CR(x) scores, the distribution of scores
obtained from the reshuf¯ed alignments are dis-
tinct, although a substantially larger separation
exists in the case of the CR(x) score (Figure 2(b)).
We took the percentage of rS(x) and rCR(x) scores
above a speci®c cut-off to be an indicator of the
reshuf¯ed alignments (rCR (x) and rS(x), continuous
line). The distribution of Z-scores from all residues in all
35 protein families is shown. The Z-scores (background
thresholds) at which the distribution of scores from
reshuf¯ed alignments has less than 1 or 10 % of residues
above the threshold is indicated in both cases.
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number of anticipated false positives, and
extracted the Z-score above which less than 1 %
and 10 %, respectively, of scores can be observed
for rS(x) and rCR(x). We refer to these Z-scores as
the 1 % and 10 % background thresholds. For the
rCR(x) score, the background thresholds were 1.8
and ÿ0.4, respectively (Figure 2(b)). At these
Z-scores, 18 % and 51 %, respectively, of the CR(x)
scores are above the threshold. In the case of the
rS(x) score (Figure 2(c)), the 1 % and 10 % back-
ground thresholds were 3.8 and 1.0 with 7 % and
31 %, respectively, of the S(x) scores above the
threshold. This difference in the extent to which
the CR(x) and S(x) vary from the rS(x) and rCR(x)
scores is also apparent when raw scores (equival-
ent to the aldolase data in Figure 2(a)) are plotted
separately for each protein family (data not
shown). The distribution seen for the CR

0 (x) scores
of aldolase in Figure 2(a) are representative of
most protein families analyzed. However, the
extent to which the raw S(x) scores show a broader
distribution than the standard deviation of scores
for random neighbors differs signi®cantly between
protein families.

Testing the ability of 3D cluster analysis to
detect interfaces

Next we evaluated the ability of the 3D cluster
analysis to identify known clusters of functional
residues. For this, we tabulated the extent to which
residue positions known to be in interfaces receive
Z-scores above the background thresholds deter-
mined above. Residues involved in interfaces with
small ligands, nucleic acids or other proteins were
identi®ed from cocrystal structures. This class of
residues represents only a subset of functionally
relevant residues and is limited to those residues
making direct ligand contact, but has the advan-
tage of a clear standard for evaluation, namely the
percentage of buried surface area upon complex
formation. Table 1 lists the number of residues in
Table 1. The 3D cluster analysis identi®es the majority of res

Catalytic sites (small
molecule complexes)

Protein-DNA/RNA
complexes

15 examples 6 examples
214 residues 68 residues

Score 1% 10% 1% 10%

CR(x) 50 (1) 83 (2) 31 (0) 62 (4)
CP(x) 66 (19) 90 (55) 62 (16) 77 (47)
S(x) 27 (0) 62 (9) 11 (0) 22 (7)

CR(x) 63 (0) 88 (19) 39 (0) 66 (19)
CP(x) 54 (20) 86 (50) 50 (21) 66 (60)
S(x) 32 (0) 70 (18) 2 (0) 22 (4)

The four categories of interfaces are listed together with the num
dues in this category. For each category we list the percentage of in
olds (1 or 10 %) indicated in Figure 2(b) and (c). For comparison,
threshold, calculated for this particular interface and based on reshu
for two different E-score thresholds.
the various types of interfaces and the extent to
which these residues were identi®ed by 3D cluster
analysis. To evaluate the extent to which the incor-
poration of 3D information bene®ts the prediction
of functional residues, we contrast the results
obtained for the regional conservation score (3D
information included) with a positional conserva-
tion score (Cp(x), no 3D information included),
described in Materials and Methods. In brief, this
score measures the conservation at each position in
an alignment without consideration of neighboring
residues in the structure. No randomization
scheme equivalent to that used for the generation
of the CR(x) Z-score is available for the CP(x) score.
In order to ®nd a comparable background
threshold for the CP(x) score, we created a histo-
gram of CP(x) scores for each protein family and
determined the score above which the percentage
of residues with scores above the thresholds is
equivalent to the percentage of residues above the
CR(x) background threshold. The absolute value of
the background threshold for the Cp(x) score will
therefore differ for each example, depending on
the degree of overall sequence conservation within
each protein family.

Table 1 compares for four types of interfaces
and two E-score thresholds the percentage of
known interface residues above background
thresholds for the three scores (CR(x), S(x)
and Cp(x)). The results are compared with those
obtained on the basis of reshuf¯ed alignments
(shown in parentheses) to obtain a measure for
the percentage of anticipated false positives. Sev-
eral features emerge from this comparison. The
CR(x) scores identify, on average, 36 % of inter-
face residues at the most stringent background
threshold (<1 % expected from reshuf¯ed align-
ments) and 67 % at a less stringent background
threshold, anticipating less than 10 % of the high
scores to occur at random. The identi®cation of
interface residues increases as the sequence
diversity increases (E-score 10ÿ50 versus 10ÿ20), in
idues in interfaces

Protein-protein complexes

Stable Transient
12 examples 13 examples
381 residues 208 residues

1% 10% 1% 10% E-score

27 (1) 64 (6) 17 (0) 53 (0) 10ÿ50

36 (18) 58 (51) 46 (15) 61 (50) 10ÿ50

5 (1) 30 (15) 15 (2) 52 (4) 10ÿ50

28 (1) 63 (10) 31 (1) 72 (6) 10ÿ20

32 (20) 59 (54) 16 (17) 51 (45) 10ÿ20

7 (1) 25 (19) 7 (0) 38 (22) 10ÿ20

ber of example proteins and the total number of interface resi-
terface residues with scores above the two background thresh-
the percentage of residues with scores above the background
f¯ed alignments, is given in parentheses. Results are presented



Figure 3. The regional conserva-
tion score identi®es two distinct
interfaces on ERK2 and bene®ts
from the inclusion of more distant
homologs. The regional conserva-
tion scores (CR(x)) and positional
conservation scores (CP(x)) ((c) and
(d)) are superimposed on the struc-
ture of rat ERK2. Scores above the
1 % Z-score threshold (or Cp(x)
score equivalent) are presented in
red. All scores below the 10 %
background threshold are colored
in dark blue. All remaining resi-
dues are colored on a spectral scale
from orange to light blue with
decreasing scores. (a) and (c) Show
the ``front'' of ERK2, containing the
key catalytic region (cat), the P1
site (P1), ATP-binding pocket
(ATP) and the dual phosphoryl-
ation site (T183, Y185). The key fea-
ture on the backside of the protein
((b) and (d)) is the L16 loop (shown
in ribbon representation). Key resi-
dues of the common docking
domain are indicated. The regional
conservation score identi®es a con-
served residue cluster on the front
of ERK2 and the improved signal
to noise ratio allows one to de®ne
the outlines of a conserved residue
cluster on the backside of ERK2
more clearly. (e) and (f) Backside of

ERK2 with superimposed (e) Cp(x) and (f) CR(x) (f) scores, calculated with an E-score threshold of 10ÿ20. In contrast
to the positional conservation score, the inclusion of more distant homologs improves the identi®cation of the back-
side interface on ERK2 by the CR(x) score.

1492 Prediction of Functional Sites in Proteins
some categories at the expense of accuracy,
especially at the less-stringent background
threshold. The interface categories show marked
differences with regard to the percentage of
recovered residues and the percentage of false
positives. A high recovery with low error rates
can be achieved using the 10 % background
threshold and a stringent E-score threshold
(10ÿ50) in the case of catalytic sites, protein-
nucleic acid interfaces, and even stable protein-
protein interfaces. Notably, the prediction of
transient protein-protein interfaces bene®ts the
most from the inclusion of more distant
sequence homologs. At a background threshold,
allowing for up to 10 % false positives and an
E-score threshold of 10ÿ20, 72 % of the transient
protein interface residues can be recovered with
a background of only 6 % from reshuf¯ed align-
ments.

Comparison of the predictive value of the
different scores

A comparison of the CR(x) and Cp(x) score
shows that the Cp(x) score identi®es a large num-
ber of the interface residues, especially in the cata-
lytic sites. However, the information value of this
score for the prediction of functional residue clus-
ters is diminished by a high rate of false positives.
A comparison with the scores obtained from
reshuf¯ed alignments suggests that the Cp(x) score
can be used successfully for active sites and highly
conserved residues in protein-DNA interfaces but
is unlikely to provide good predictions in the case
of less conserved protein-protein interfaces. In con-
trast to the CR(x) score, the addition of more dis-
tant sequence homologs diminishes the predictive
power of the Cp(x) score. In short, the CR(x) score
is generally more effective than the Cp(x) score in
®nding clusters of functional residues.

At the outset of this analysis, we asked whether
regional differences in sequence similarity relation-
ships exist. The tabulated results for the S(x) score
show that a signi®cantly higher percentage of
interface residues has S(x) scores above the back-
ground threshold compared to the percentage
obtained from reshuf¯ed alignments. As is the case
for the CR(x) score, marked differences exist
between the four categories. In the case of the S(x)
score, we observe the largest percentage for active
sites and transient interfaces. The percentages
obtained for protein-nucleic acid and stable



Figure 4. The similarity deviation
score identi®es three distinct resi-
due clusters in ERK2. (a) On the
front, the speci®city conferring P1
site and the ATP binding pocket
receive high scores. (b) On the
backside, the S(x) scores outlines a
narrow cluster of residues, centered
on the common docking (CD)
domain. (c) Ribbon diagram of the
N-terminal domain of ERK2 with
superimposed similarity deviation
scores and key residues within the
ATP-binding site. (d) Top view of
the C-terminal domain with super-
imposed similarity deviation scores.
A cluster of high scores is located
in the center of a bundle of helices
forming the core and backside of
ERK2. (The coloring scheme is as
described for Figure 3).
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protein-protein interfaces are signi®cantly lower. In
the case of catalytic sites and transient interfaces,
the best ratio of identi®ed residues compared to
anticipated false positives is obtained for the more
stringent E-score threshold (10ÿ50). However, the
S(x) score may highlight functional regions of pro-
teins other than interfaces. To evaluate the predic-
tion of other functional residue clusters requires
further study of the biochemistry for each protein
family. We selected two protein families, to investi-
gate the predictive power of 3D cluster analysis in
more detail.

The 3D cluster analysis of the MAP
kinase ERK2

The reference structure for this analysis is that of
rat ERK2 (Gamblin et al., 1990). A FASTA search
with the sequence of rat ERK2 identi®ed 147
sequences with an E-score below 10ÿ50. The 147
homologous sequences are primarily composed of
close ERK homologs, homologs of the related P38
MAPK and a series of MAPKs from higher plants
(Figure 5). Figure 3 shows the regional conserva-
tion (CR(x), Figure 3(a) and (b)) and positional con-
servation score (CP(x), Figure 3(c) and (d)).
Conserved features on the front of the larger
C-terminal lobe (right side of Figure 3(a) and (c)),
such as the phosphorylation lip with Thr183 and
Tyr185, the catalytic region (residues 147 to 152),
and the substrate speci®city-conferring P1 site
(residues 186 to 192), are readily detectable in both
scoring schemes. However, residues with high pos-
itional conservation scores are more scattered,
especially on the ``backside''(Figure 3(d)). In con-
trast, the regional conservation score (Figure 3(b))
clearly identi®es the outlines of a conserved resi-
due cluster, centered on the poorly conserved L16
loop (shown in ribbon representation). This L16
loop contains the recently identi®ed common
docking (CD) domain (Tanoue et al., 2000). At an
E-score threshold of 10ÿ20, the regional conserva-
tion score de®nes the outlines of a contiguous resi-
due cluster even more clearly (Figure 3(f)). In
contrast, the signal on the backside is all but lost
when we use the positional conservation score
(Figure 3(e)) at this E-score threshold. This obser-
vation con®rms our earlier ®nding that the CR(x)
score, in contrast to the CP(x) score, bene®ts from
the inclusion of distant homologs.

Due to the inclusion of neighboring residues into
the regional alignments, ``signal spill-over'' could
occur from an adjacent residue cluster with high
scores. To con®rm that the elevated conservation
scores on the backside of ERK2 is not the result of
signal spill-over from high-scoring residues on the
front of ERK2, we included only neighbors with a
minimum surface exposure of 3 AÊ 2 in the analysis.
This approach removes residues in the core of
ERK2 that could facilitate signal spill over from the
front of the molecule. Compared to the calculation
without a limit for minimum surface exposure,
only small changes could be observed on the back-
side of ERK2, con®rming that the identi®ed residue
cluster is indeed an independent residue cluster.

A comparison of the regional conservation scores
(Figure 3) and similarity deviation scores (Figure 4)
shows considerable overlap with respect to the
broadly de®ned residue clusters but differences in
the emphasis of subsections. On the front of ERK2
(Figure 4(a)), the catalytic region and phosphoryl-
ation lip have been de-emphasized by the S(x)
score, while the highest scores can be seen for
the speci®city-conferring P1 region and the ATP-
binding pocket. The P1 site confers speci®city for
substrates with proline adjacent to the phosphoryl-
ation site (position P � 1). On the backside, a nar-
rowly de®ned cluster of residues shows high S(x)
scores (Figure 4(b)). This residue cluster consists of
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the CD domain containing L16 loop and its
immediate surrounding.

The N-terminal domain of ERK2 primarily scores
based on its S(x) score. Further analysis of the
N-terminal domain of ERK2, shown in ribbon rep-
resentation in Figure 4(c), identi®es the N-terminal
b-sheet as the source of elevated S(x) scores. This
b-sheet matches the PROSITE pro®le for ATP bind-
ing sites in protein kinases (PS00107). Mutational
analysis implicates Lys52 in ATP-binding
(Robinson et al., 1996). We extracted all high-
scoring residues from this residue cluster (residues
23 to 41, 49 to 55 and 102) and compared the ``glo-
bal phylogram'', based on the full-length sequence,
with a ``cluster-speci®c phylogram'', based on the
comparison of residues from this residue cluster
alone (Figure 5). The global phylogram clusters all
ERK homologs, while homologs of the mammalian
P38 MAPK, and plant MAPKs are clearly set apart.
In contrast, the cluster-speci®c phylogram groups
ERK and P38 homologs together and sets plant
MAPKs aside. The ATP binding of ERK2 site is
therefore one example of a functionally relevant
residue cluster that exhibits sequence similarity
relationships that deviate form those derived from
the full-length sequence.

The 3D cluster analysis of aldolase

As a second example for a detailed evaluation of
3D cluster analysis predictions, we chose type I
fructose-bisphosphate aldolase (aldolase). The
reference structure for this analysis was that of one
subunit of the rabbit muscle aldolase tetramer
(Blom & Sygusch, 1997). A FASTA search with an
E-score threshold of 10ÿ50 provided 109 homolo-
gous sequences, representing all three mammalian
isoforms as well as plant, Drosophila and several
parasite aldolase sequences. The results of the 3D
cluster analysis of aldolase are summarized in
Figure 6. Compared to ERK2, positions with high
positional conservation scores are even more scat-
tered throughout the structure (Figure 6(a)).
Although key residues show high Cp(x) scores, the



Figure 6. The 3D cluster analysis
of aldolase identi®es oligomer
interfaces and a speci®city-confer-
ring residue cluster. (a) and (b) The
use of regional conservation scores
improves the signal to noise ratio
compared to positional conserva-
tion scores. Scores are superim-
posed on the structure of the
monomer of rabbit muscle aldolase
(the coloring scheme is as described
for Figure 3). (a) Positional conser-
vation scoring results in scattered
high scores. (b) Regional conserva-
tion scores identify the catalytic
core region (Schiff base forming
Lys229 in CPK) and marginally
conserved interfaces. The identi®ed
oligomer interfaces are marked by
positions 128 and 256 (shown as
CPK). Mutations in these positions
are known to disrupt tetramer for-
mation. (c) The CPK representation
of the regional conservation scores
emphasizes the clear outlines of the
distinct oligomer interfaces. The
orientation of aldolase is similar to
that of subunit D in the aldolase
tetramer, but is slightly rotated to
present a better frontal view of
both interfaces. (d) Structure of the
aldolase tetramer with highlighted
interfaces (CPK), as de®ned by
the regional conservation scores,
and location of interface-disrupting
mutations in position 256
(magenta) and 128 (cyan). (e) CPK
presentation of aldolase monomer
with superimposed CR(x) scores
showing the backside view relative
to (c). In addition to portions of the
A:B (C:D) interface around residue
128 and the highly conserved
entrance to the active site (center),
a marginally conserved region to

the right contains the residues implicated in the interaction of aldolase with actin (AS, outlined in white). (f) The
similarity deviation scores identify portions of the active site and a residue cluster near the C terminus. Mutations in
positions 337 (CPK) are associated with a loss of liver isoform speci®city.
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scatter of the signal makes it dif®cult to identify
additional functional residue clusters.

A signi®cant improvement in the signal to noise
ratio can be achieved when CR(x) scores are evalu-
ated instead of CP(x) scores. The area showing the
highest CR(x) scores is located in the core of the b/
a-barrel and includes all key residues known to be
involved in catalysis (Figure 6(b), Schiff base form-
ing Lys229 in CPK representation). The reduced
scattering of signal facilitates the identi®cation of
contiguous residue clusters with low to intermedi-
ate conservation scores. Two such residue clusters
are found at the periphery. Both clusters are associ-
ated with naturally occurring mutations in pos-
itions 256 and 128, known to interfere with the
association of aldolase monomers to functional tet-
ramers (Beernink & Tolan, 1994; Rellos et al., 2000).
A space-®lling representation of the aldolase
monomer with superimposed CR(x) scores
(Figure 6(c)) clearly outlines two surface patches.
Figure 6(d) shows the aldolase tetramer (Blom &
Sygusch, 1997), a dimer of dimers with two types
of dimer interfaces, and highlights the peripheral
residues identi®ed by the CR(x) score. The ®rst
interface (subunits A:D and B:C) contains the natu-
rally occurring mutation at position 256 (magenta
CPK) (Rellos et al., 2000). Peripheral residues with
CR(x) scores above the 10 % background threshold
are shown as CPK and colored yellow for the A:D
interface. The second interface (red CPKs), between
subunits A:B and C:D, is associated with the
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mutation in position 128 (cyan CPK) (Beernink &
Tolan, 1994).

A moderately conserved non-catalytic residue
cluster is located on the backside of the aldolase
monomer, relative to the orientation shown in
Figure 6(c). The CPK representation (Figure 6(e))
identi®es the entrance to the highly conserved
active site at the center and the location of residue
128 to the left marks the outer border of the A:B
(C:D) interface. To the right of the active site
entrance, the white outline (marked AS) identi®es
a residue cluster with moderate conservation. Pep-
tide mapping studies suggest that this region is
involved in the transient, regulatory interaction of
aldolase with actin. The corresponding region
could not be identi®ed through the use of pos-
itional conservation scores (data not shown).

In contrast to ERK2, the similarity deviation
scores for aldolase emphasize primarily a residue
cluster that differs from those identi®ed by their
conservation score (Figure 6(f)). While some over-
lap exists in sections of the catalytic core,
additional high scores can be found near the
C-terminal section of aldolase (residues 26 to 32, 72
to 75, 268 to 272, 279 to 289, 297 to 307, 331 to
338), centered on the helix located underneath the
¯exible C terminus of aldolase. This residue cluster
is associated with a naturally occurring mutation
in position 337 (shown in CPK). This mutation has
been identi®ed in patients with hereditary fructose
intolerance and abolishes the equal utilization of
F-1-P and FBP (Rellos et al., 1999), unique to the
liver isoform of aldolase. Figure 7 shows a com-
parison of the global phylogram and the cluster-
speci®c phylogram based on the highest-scoring
residues in this C-terminal residue cluster
(Figure 7). The global phylogram separates the
three mammalian aldolases (split further into
muscle (A), liver (B) and brain (C) isoforms), plant
aldolases (separated into cytosolic and chloroplast
forms) as well as Drosophila and several parasite
aldolase sequences. The cluster-speci®c phylogram
reproduces the same groups of sequences. How-
ever, in contrast to the global phylogram, the
mammalian liver (B) isoforms are now grouped
with cytosolic plant aldolases.

Discussion

In order to evaluate the predictive power of 3D
cluster analysis we used two different tests. First,
we measured the ability of 3D cluster analysis to
identify functionally relevant interfaces, as de®ned
by cocrystal structures, in 35 protein families. We
also used this ®rst level of analysis to establish
absolute cut-off values (background thresholds) for
the Z-scores, describing regional conservation
(CR(x)) and regional changes in sequence similarity
relationships (S(x)). Second, we used two proteins
to analyze in detail the biochemical relevance of all
predicted functional residue clusters. In both tests
we evaluated the ability of 3D cluster analysis to
achieve our two main goals. First, to improve the
accuracy of functional residue cluster prediction,
especially for moderately conserved protein-
protein interfaces; second, to evaluate whether resi-
due clusters with divergent sequence similarity
relationships exist and if they can be correlated
with biological functions.

Identification of functional residue clusters
based on regional conservation scores

With respect to the detection of known interface
residues by 3D cluster analysis, an average of 67 %
of residues (63 % for protein-protein interfaces) can
be identi®ed by their regional conservation scores
(CR(x)) at a background threshold that produces an
average of 8 % false positives (37 % detected with a
false positive rate of <1 %) (Table 1). Therefore, the
majority of interface residues can be predicted with
relatively great accuracy. Whilst higher success
rates could be achieved for active-site residues,
which generally show high sequence conservation,
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protein-protein interfaces are more dif®cult to
detect based on sequence conservation patterns. A
recent analysis of the level of sequence conserva-
tion in stable oligomer interfaces showed that con-
servation at stable interfaces is higher than the
conservation observed for randomly selected sur-
face residue patches, but the conservation signal is
generally weak (Jones et al., 2000). One would
expect an even lower level of sequence conserva-
tion for transient protein-protein interfaces, where
the interactions are weaker, and residues have to
ful®l the requirement for two types of environ-
ments. Residues in transient interfaces have indeed
the lowest detection rate at an E-score threshold of
10ÿ50. However, a striking feature of 3D cluster
analysis is its ability to harvest the information
inherent in a large number of more distant homo-
logs, especially for transient interfaces. At an
E-score threshold of 10ÿ20, 72 % of transient inter-
face residues could be detected based on their
CR(x) score, with only 6 % anticipated false posi-
tives. The same trend, although less pronounced
and calculated for a smaller number of examples,
is evident for protein-nucleic acid interfaces.
Hence, the additional information provided by the
up-front inclusion of 3D information allows 3D
cluster analysis to make effective use of infor-
mation inherent in a diverse set of homologous
sequences. A comparison of the anticipated rate of
false positives for the positional and regional con-
servation score indicates that CR(x) is less vulner-
able than CP(x) to errors resulting from the use of
``less than optimal'' alignments. This effect is note-
worthy, since multiple sequence alignments are a
key element of most evolution-based methods and
it explains the bene®cial contribution of diverse
sequences to 3D cluster analysis.

In the case of ERK2, the improved detection
of transient interfaces is evident for the backside
residue cluster surrounding the CD domain
(Figure 3(b)). The addition of divergent sequences
did improve the extent to which this residue clus-
ter is set apart from its surroundings (Figure 3(f)).
In contrast, this addition resulted in a reduction of
the signal from the positional conservation score
(Figure 3(e)). The residue cluster on the backside of
ERK2 is centered around and underneath the L16
loop. This loop is of variable length between differ-
ent MAPKs and shows little conservation by itself,
except for a pattern of conserved acidic residues
(Asp316 and Asp319 in ERK2) identifying the CD
domain (Tanoue et al., 2000). This CD domain
serves as a docking site for multiple proteins,
including MEK1, MAPK phosphatases (MKPs) and
MAPK substrates, and enhances the ef®ciency of
the respective interaction. The speci®city with
which different MAPKs interact with their signal-
ing partners is still an area of intense investigation.
The outline of the conserved residue cluster on the
backside of ERK2 is consistent with biochemical
data. These data suggest that portions of both the
N and C-terminal lobe of ERK2 are involved in the
interactions between ERK and MEK (Wilsbacher
et al., 1999) or the regulatory phosphatase MKP-3
(Nichols et al., 2000).

The example of the oligomer interfaces in aldo-
lase emphasizes another important feature of the
CR(x) score: its ability to give information on resi-
dues under the surface. In contrast to the Cp(x)
score, residues above the CR(x) background
threshold that are not part of the direct interface
are distributed primarily in the immediate sur-
rounding of the identi®ed interface (Figure 6(b)).
Since the calculation of CR(x) scores includes non-
surface residues, the underlying layer of residues is
also evaluated. This broader de®nition of subunit
interfaces is supported by the location of naturally
occurring mutations, known to interfere with tetra-
mer formation. In addition to residue 128, which
takes part in direct interface contacts, two
mutations, in position, 256 and 142 (not labeled),
are known to affect oligomer formation directly (as
opposed to destabilization of the monomer) (Rellos
et al., 2000). Both residues are buried and do not
make direct interface contacts but are part of the
residue cluster identi®ed by 3D cluster analysis.

Sequence clusters with deviating sequence
similarity relationships. The S(x) score

At the outset of this analysis, we asked whether
proteins could possess residue clusters for which
the global sequence similarity relationships might
not adequately re¯ect evolutionary and functional
relationships. This question is of particular import-
ance when global phylogenetic trees are used for
the prediction of functional or speci®city-
conferring regions in a protein. Our analysis of
similarity deviation scores (S(x)) indicates that such
residue clusters do exist and, furthermore, suggests
that elevated S(x) scores may indicate regions
controlling the speci®city of protein functions.

The evaluation of prede®ned interfaces for their
S(x) score shows the highest occurrence of high
S(x) scores in active sites, closely followed by tran-
sient protein-protein interfaces. A case by case
evaluation of residue clusters with high S(x) scores
provides more insight into the nature of these clus-
ters. In the case of ERK2, the S(x) score emphasized
a portion of the active site ( the P1 region) known
to confer substrate speci®city (Figure 4(a)). A
narrow stretch of residues on the backside outlines
the CD domain in the L16 loop. The transient inter-
actions of MAPKs with their upstream and down-
stream partners are known to be highly speci®c,
although the nature of this speci®city is still poorly
understood. The prediction based on the S(x) score
may aid in reconciling the requirement for speci-
®city with the universal nature of the CD motif. A
top view in ribbon presentation (Figure 4(d)) illus-
trates the presence of a four-helix bundle with elev-
ated S(x) scores that makes up the back and core of
the C-terminal domain of ERK2. It is tempting to
speculate that these residues form a cluster that
may be involved in transmitting signal from the
binding events at the CD site to the catalytic region
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on the front of the protein in a manner that deter-
mines the speci®city of the outcome. However, no
mutational data are available at this point to evalu-
ate this hypothesis.

The only region in ERK2 that stands out primar-
ily on the basis of its S(x) score is the ATP-binding
pocket (Figure 4(a) and (c)). As illustrated in
Figure 5, the high S(x) score is a re¯ection of a
change in sequence similarities between ERK2 and
P38 homologs and plant MAPKs, respectively. The
change in the grouping pattern would in fact indi-
cate that this residue cluster represents a strong
signature element of mammalian MAPKs. Hence,
the identi®cation of key residue clusters for the
purpose of classi®cation of proteins with unknown
function may be another application of similarity
deviation scores.

In the case of aldolase, the S(x) score identi®es a
residue cluster that (except for a small active-site
component) does not coincide with any of the pre-
de®ned interface categories we evaluated on the
above set of 35 protein families. The comparison of
the cluster-speci®c and global phylogram impli-
cates this residue cluster in liver isoform speci®city.
The regrouping of the liver isoform aldolases with
plant cytosolic aldolases in the cluster-speci®c phy-
logram is consistent with this assumption. Like the
mammalian liver isoform, the cytosolic aldolase
from maize preferably catalyzes the cleavage of
F-1-P over FBP. Point mutations in the C-terminal
tail of maize aldolase have been shown to contrib-
ute to this substrate speci®city (Berthiaume et al.,
1991). Portions of the extreme C terminus of mam-
malian aldolases have likewise been implicated in
the modulation of enzyme speci®city (Sygusch
et al., 1987). However, the strongest support for the
hypothesis that the identi®ed residue cluster is
involved in B-isoform speci®city, comes from a
naturally occurring mutation in human liver aldo-
lase (A337V, CPK in Figure 6(f)), located in the
center of the cluster. This mutation, found in
patients with hereditary fructose intolerance,
abolishes equal utilization of F-1-P and FBP by the
liver enzymes (Rellos et al., 1999) and causes a
de®ciency in the utilization of exogenous fructose.
This residue cluster does not stand out based on
domain organization or conservation patterns (in
contrast to the P1 site or backside interface of
ERK2). Aldolase therefore provides an example of
how the S(x) score extends the prediction of func-
tionally relevant residue clusters.

Although we do not include mechanistic
assumptions in the calculation of S(x) scores, we
ask what is the origin of clusters with high simi-
larity deviation scores. Clusters with high S(x)
scores are, by de®nition, characterized by devi-
ations from the averaged sequence similarities of
the full-length sequence. We speculate that recom-
bination events that exchange sections of homolo-
gous but functionally divergent proteins result in
deviations from average sequence similarities.
Alternatively, differences in the rates of evolution
within the protein sequence and between branches
of the phylogenetic tree may account for the
observed deviations. A recent study, applying a
covarion model to elongation factors, correlates
regions in the protein that exhibit divergent rates
of evolution among branches of the phylogenetic
tree with differences in speci®city (Gaucher et al.,
2001). Here, we evaluate the S(x) score as a new
predictive parameter, and the observed link
between functional residue clusters and high S(x)
scores suggests that the underlying mechanism
contributes to the acquisition of speci®city in cata-
lytic and binding events.

Limitations of 3D cluster analysis

Several limitations have to be kept in mind
when 3D cluster analysis is applied to homologous
sequences. First, 3D cluster analysis identi®es func-
tionally relevant residue clusters. Thus, the scores
assigned to each residue do not necessarily re¯ect
the relative importance of that residue compared
to its immediate neighbors. Examples of this limi-
tation are provided by the conserved positions in
the CD domain of ERK2 or the interface point
mutants in aldolase. In both cases, the regional
conservation score is required to outline the resi-
due cluster of interest. In a next step, the positional
conservation scores provide a more accurate
measure of the relative importance of individual
residues.

A second limitation arises from the assumption
of structural similarity within the set of homo-
logous proteins. This assumption is based on the
high level of sequence similarity at the E-score
threshold chosen for our analysis and affects the
extent to which more diverse sequences can be
included or structures of distant homologs can be
used as a reference. To evaluate the effect of vari-
ations in the reference structure, we carried out
two tests. Using the same set of aligned sequences,
we evaluated the ERK2 sequence alignment based
on the structure of the closely related P38 MAPK
(Wang et al., 1998) (rmsd 1.94 AÊ ). In a second test,
we analyzed the aldolase sequence alignment
using the monomer structure of the human muscle
aldolase as a reference structure (Gamblin et al.,
1991) instead of one subunit of the rabbit muscle
tetramer (rmsd 0.22 AÊ ). In both cases we obtained
the same results with respect to the outlines of the
predicted residue clusters, with minor variations
for the contribution of individual residues (data
not shown). This ®nding re¯ects the fact that the
probe radius of 10 AÊ , de®ning the neighborhood of
each residue, acts as a buffer towards minor struc-
tural deviations. The probe radius is important
with respect to the inclusion of more divergent
sequences, determined by the E-score threshold.
We chose two E-scores (10ÿ50 and 10ÿ20) at which
structural similarity is a relatively safe assumption.
However, data sets with a small number of highly
homologous sequences may contain insuf®cient
sequence diversity to carry out a successful anal-
ysis. Insuf®cient sequence diversity precludes the
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calculation of Z-scores (see Materials and Methods)
or results in a high percentage of anticipated false
positives. A further lowering of the E-score or a
widening of the probe radius can improve detec-
tion in some cases. However, if these parameters
are changed, it is crucial that the validity of a pre-
dicted residue cluster is evaluated on the basis of a
reshuf¯ed alignment model.

In summary, we present a method for the pre-
diction of functionally signi®cant residue clusters
in proteins. This method relies on a representative
structure and a multiple sequence alignment as
input data. Three-dimensional cluster analysis
emphasizes the importance of spatially contiguous
residue clusters as the sites of functionality within
proteins. The inclusion of structural information at
the start of the analysis signi®cantly enhances the
detection of interfaces that are marked by moder-
ate conservation. This enhancement is particularly
pronounced for transient protein-protein interfaces.
Functional residue clusters include all residues that
contribute to the maintenance of a functional inter-
face. This broader interface de®nition includes resi-
dues that participate directly in protein-protein
contacts and others beneath the site that are crucial
for the maintenance of the interface.

Our evaluation of changes in regional sequence
similarity relationships indicates that a protein
with multiple conserved functions may contain
residue clusters in which the sequence grouping
derived from the full-length sequence does not
adequately re¯ect all aspects of the functional relat-
edness of the different sequences. We introduce a
similarity deviation score to de®ne residue clusters
where such deviations exist. This score highlights
residue clusters important in conferring speci®city
within a set of homologous but functionally diver-
gent proteins.

Materials and Methods

Three-dimensional cluster analysis

For each protein family, we select a representative
structure, evaluate surface exposure with CCP4-AREAI-
MOL (version 2.15) (CCP4, 1994) (optional), and identify
homologous sequences by a FASTA search (Pearson &
Lipman, 1988). Sequences below a set expectation value
are aligned using ClustalW (version 1.8, Thompson et al.,
1994) to generate a preliminary multiple sequence align-
ment, which may contain gaps in the sequence represent-
ing the reference structure. Next, we remove all positions
in the preliminary alignment for which the reference
sequence contains a gap. This creates the global, struc-
ture-matched alignment denoted by A. A is an N � P
matrix (equation (1)) representing the alignment of all
sequences N in all positions P, where P denotes both the
length of the alignment and the number of residues in
the reference structure:

A � �An;p� n 2 �1 . . . N�; p 2 �1 . . . P� �1�
The structural environment of a residue is represented
by its neighbors in 3D space and is evaluated as outlined
in Figure 1. For each residue x in the reference structure,
all residues with Ca atoms within a set radius (default
10 AÊ ) are considered neighbors (Z(x)) (Step I in Figure 1).
The similarity relationships of the structural environment
of residue x is represented by the alignment of all pos-
itions that are considered structural neighbors of x (Step
II in Figure 1). We refer to this alignment as the regional
alignment at residue x, denoted A(x). A(x) is a subset of
the global alignment, A (equation (2)). All subsequent
calculations are based on the comparison of the level of
sequence similarity between the regional and global
alignment and the results are assigned to residue x:

A�x� � �An;p� n 2 �1 . . . N�; p 2 �Z�x�� �2�
Next, we construct a similarity matrix for each alignment
(Step III in Figure 1). The global similarity matrix (M) is
an N � N matrix containing N2 sequence similarity
terms, denoted m (equation (3)), where each similarity
term (mn,n0) is a measure of sequence similarity between
sequence n and n0 in the global alignment (equation (5)).
A total of P regional similarity matrices (M(x)) are con-
structed on the basis of the regional alignments, one for
each residue in the reference structure:

M � �mn;n0 �
M�x� � �mn;n0 �x��

n 2 �1 . . . N�;n0 2 �1 . . . N�
n 2 �1 . . . N�;n0 2 �1 . . . N� �3�

As described by Landgraf et al. (1999), the global simi-
larity terms (mn,n0) are calculated on the basis of the
similarity of the full-length sequences in the global align-
ment A (equation (4)), where S(An,p,An0p) denotes the sub-
stitution score for the replacement of the residue in
position p of sequence n with the residue in position p
and sequence n0. The substitution score is taken from a
positive BLOSUM 62 matrix (Henikoff & Henikoff,
1992). The positive matrix was obtained by subtraction
of the lowest (negative) score in the standard BLOSUM
62 matrix from all matrix entries. Values for mn,n0 can
range from 0 to 1. The alignment of a sequence to itself
would produce a score of zero. The regional similarity
terms mn,n0(x) are calculated accordingly, using the
sequences from the regional alignment A(x):

mn;n0 � 1

P

XP

p�1

s�An;p;An;p� ÿ s�An;p;An0;p�
s�An;p;An;p� �4�

For each residue in the reference structure, two scores
are calculated. The raw regional conservation score CR

0 (x)
is a measure for the conservation of the structural neigh-
borhood of residue x, compared to the protein as a
whole. CR

0 (x) is a measure for differences in magnitude
between the M and M(x) matrices. For ease of represen-
tation the CR

0 (x) score was converted to a score from 0 to
1 (initially ÿ1 to 1). Low CR

0 (x) scores indicate that the
structural neighborhood of residue x shows a higher con-
servation than the protein as a whole:

C0R �x� �
1�

X
n;n0

Mn;n0 ÿM�x�n;n0
N2

 !
2

�5�

Whilst the CR
0 (x) score captures differences in the magni-

tude of the two matrices, the second score, termed the
similarity deviation score, captures differences that are
the result of rearrangements of high and low scores
within a matrix. The raw similarity deviation score S0(x)
(equation (9)) captures this difference by evaluating the
correlation between the global and regional similarity
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matrix. Scores for S0(x) can range from 0 to 1 (equation
(9)) where r denotes the correlation coef®cient of the two
matrices (equation (8)), ranging from ÿ1 to 1, and M
denotes the mean value for each matrix (equation (7)).
The scaling of the S0(x) score from 0 to 1 was done to
facilitate the analysis of raw similarity deviation scores
for selected data sets:

�M �

X
n;n0

Mn;n0

N2
�7�

r �

X
n;n0
�Mn;n0 ÿ �M��Mn;n0 �x� ÿM�x��������������������������������������������������������������������������������X

n;n0
�Mn;n0 ÿ �M�2

X
n;n0
�Mn;n0 �x� ÿM�x��2

r �8�

S0�x� � 1ÿ r
2

�9�

To envisage the meaning of the S0(x) score, consider the
following example. Given a set of three sequences n1, n2

and n3 that are related in such a way that sequence n1 is
closer to n2 than n3, it follows that mn1,n2 < mn1,n3. How-
ever, the local similarity terms might indicate that for the
structural neighborhood of residue x, n1 shows higher
similarity to n3 than n2, i.e. m(x)n1,n2 > m(x)n1,n3. This shift
in sequence similarity relationships is re¯ected in a
rearrangement of similarity terms in the regional com-
pared to the global similarity matrix. Depending on the
average conservation at this residue cluster, there may
not be any net change in the value of CR

0 (x) but the lack
of correlation is re¯ected in the S0(x) score. For actual
data sets, the differences between the regional and global
similarity matrices are often the result of both types of
changes.

Finally, the raw similarity deviation scores (S0(x)) were
converted to Z-scores (S(x)). This was done by compari-
son with scores (S) obtained from a regional alignment
of randomly picked positions, equal in number to the
number of positions in A(x). S and s(S) denote the
sample mean and standard deviation obtained for scores
obtained from 50 independently generated random
regional alignments (equation (10)). Random neighbors
were chosen equally from the global alignment without
regard to their location in the structure but had to adhere
to the same optional surface area requirement used for
the selection of neighbors in A(x). The CR

0 (x) score was
converted to a Z-score (CR(x)) similarly. The conversion
of both scores to Z-scores standardizes the data sets,
which have marked differences in the intrinsic levels of
sequence conservation and permits the establishment of
absolute Z-score cut-off values (background threshold)
for all proteins. Unless otherwise stated, all evaluations
in this analysis are based on Z-scores (CR(x) and S(x)):

S�x� � S0�x� ÿ �S

s�S� �10�

The two regional scores, describing the properties of the
structural neighborhood of residue x, are complemented
by a positional conservation score CP(x) (equation (11)).
The positional conservation score does not take the struc-
tural environment of residue x into account and merely
describes the degree of conservation at position x within
the global alignment. With a decreasing probe radius,
the CR

0 (x) score will converge towards CP(x):
CP�x� � 1

N2 ÿN

X
n;n0
n6�n

� s�An;x;An;x� ÿ s�An;x;An0;x�
s�An;x;An;x� x 2 �1 . . . P�

�11�

The resulting scores for all residues were visualized
using the reference structure. Clusters of residues with
high S(x) scores were further analyzed to evaluate the
nature of the shifts in sequence similarity relationships.
To this end, high-scoring residues with a Ca distance of
less than 6 AÊ to each other were represented as an
ungapped alignment. The value of 6 AÊ was determined
empirically as optimal for most proteins to enforce a
clustering of spatially adjacent residues whilst prevent-
ing complete fusion of all residues into one uninforma-
tive cluster. The sequence similarity relationships of the
residues within the extracted residue clusters were eval-
uated with ClustalW. For clusters of suf®cient size, phy-
lograms were generated with TreeView for visualization
purposes.

Evaluation of 35 protein families by 3D
cluster analysis

The criteria for the selection of proteins for this anal-
ysis were the availability of a crystal structure of a com-
plex, identifying the interface between two proteins or
the protein and one of its ligands, and the availability of
a suf®cient number of homologous sequences. Antibody-
antigen complexes were not used for the analysis. Hom-
ologous sequence for each protein family were compiled
at E-score thresholds of 10ÿ50 and 10ÿ20, resulting in data
sets ranging from 31 to 630 sequences. Data sets that
did not have suf®cient sequence diversity to calculate
Z-scores at the default probe radius of 10 AÊ were elimi-
nated. Highly redundant data sets result in the selection
of randomly assembled neighborhoods consisting only
of fully conserved neighbors with a standard deviation
of zero, thus preventing the calculation of Z-scores
(equation (10)). The following structures were used for
the analysis: 1ad0, 1bfn, 1mem, 1eai, 1d7r, 1e61, 1ogs,
1am4, 1blx, 1buh, 1®n, 1ak4, 2pcc, 1efp, 1itb, 1c1j, 1wq1,
1dfj, 1 vol, 1a7k, 1avx, 2uug, 1gdt, 1uaa, 1ser, 1axr and
1ncf.

For the evaluation of interface residues, the exposed
surface area for each residue was calculated separately
for the protein chain under analysis and the appropriate
complex structure using AREAIMOL. In cases where a
protein has more than one type of interface, e.g. a small
ligand-binding site and an oligomer interface, the inter-
faces were considered independently. Residues were
considered interface residues if the exposed surface area
was reduced by more than 30 % upon complex for-
mation. For protein-protein complexes, the proteins were
evaluated independently if they met the above criterion.
The scores obtained for each protein family were com-
pared with those obtained from a reshuf¯ed alignment.
For the reshuf¯ing, each sequence in the alignment was
reshuf¯ed independently, maintaining the relative amino
acid composition of each sequence.
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