
Stat 100a, Introduction to Probability.
Outline for the day:
1. Harman/Negreanu and running it twice. 
2. Uniform random variables. 
3. Exponential random variables.
4. Normal random variables. 
5. Functions of independent random variables. 
6. Moment generating functions of rvs. 
7. Survivor functions. 
8. Pareto rvs. 
9. Covariance and correlation. 

• Bring a PENCIL and CALCULATOR and any books or notes you want to the 
exams. 

• The midterm is Tue Nov 7 and will be on everything through today. 
• There is no lecture Thu Nov 2 because of faculty retreat and also no lecture 

Thu Nov 9. 
• For gradegrubbing, see syllabus. If you would like a question 
reevaluated, submit your work and a WRITTEN explanation of why you think you 
deserve more points and how many more points you think you deserve to your TA. 
The TA will then give it to me, and I will consider it, 
and then give it back to the TA to give back to you. 



1. Harman vs. Negreanu, and running it twice.   
Harman has 10♠ 7♠ .    Negreanu has K♥ Q♥ .  The flop is 10◆ 7♣ K◆ .  
Harman’s all-in. $156,100 pot.  P(Negreanu wins) = 28.69%.  P(Harman wins) = 71.31%. 
Let X = amount Harman has after the hand.
If they run it once, E(X) = $0 x 29%   +   $156,100 x 71.31% = $111,314.90.

If they run it twice, what is E(X)? 
There’s some probability p1 that Harman wins both times ==> X = $156,100.
There’s some probability p2 that they each win one ==>  X = $78,050.
There’s some probability p3 that Negreanu wins both ==> X = $0.
E(X) = $156,100 x p1 +  $78,050 x p2 + $0 x p3.
If the different runs were independent, then p1 = P(Harman wins 1st run & 2nd run)
would = P(Harman wins 1st run) x P(Harman wins 2nd run) = 71.31% x 71.31% ~ 50.85%.
But, they’re not quite independent!  Very hard to compute p1 and p2.

However, you don’t need p1 and p2  !
X = the amount Harman gets from the 1st run + amount she gets from 2nd run, so

E(X) = E(amount Harman gets from 1st run) + E(amount she gets from 2nd run)
= $78,050 x P(Harman wins 1st run) + $0 x P(Harman loses first run)
+  $78,050 x P(Harman wins 2nd run) + $0 x P(Harman loses 2nd run)

= $78,050 x 71.31% + $0 x 28.69% + $78,050 x 71.31% + $0 x 28.69%   = $111,314.90.



HAND RECAP  Harman 10♠ 7♠ Negreanu K♥ Q♥ The flop is 10◆ 7♣ K◆ .  

Harman’s all-in. $156,100 pot.P(Negreanu wins) = 28.69%. P(Harman wins) = 71.31%. 
---------------------------------------------------------------------------

The standard deviation (SD) changes a lot! Say they run it once. (see p127.)

V(X) = E(X2) - µ2.   
µ = $111,314.9,  so  µ2 ~ $12.3 billion. 

E(X2) = ($156,1002)(71.31%) + (02)(28.69%) = $17.3 billion. 
V(X) = $17.3 billion - $12.3 bill. = $5.09 billion. SD s = sqrt($5.09 billion)~$71,400.

So if they run it once, Harman expects to get back about $111,314.9 +/- $71,400.

If they run it twice? Hard to compute, but approximately, if each run were 
independent, then V(X1+X2) = V(X1) + V(X2), 

so if X1 = amount she gets back on 1st run, and X2 = amount she gets from 2nd run, 
then V(X1+X2) ~ V(X1) + V(X2) ~ $1.25 billion + $1.25 billion = $2.5 billion,

The standard deviation s = sqrt($2.5 billion) ~ $50,000.

So if they run it twice, Harman expects to get back about $111,314.9 +/- $50,000.



2. Uniform example.

Recall for a continuous random variable X,
the pdf f(y) is a function where ∫ab f(y)dy = P{X is in (a,b)},
E(X) = µ = ∫-∞∞ y f(y)dy, 
and s2 = Var(X) = E(X2) - µ2.  sd(X) = s. 
If X is a continuous rv, then P(X ≤ a) = P(X < a), because P(X = a) = ∫aa f(y)dy = 0. 
If X is uniform(a,b), then f(y) = 1/(b-a) for y in (a,b), and y = 0 otherwise. 

For example, suppose X and Y are independent uniform random variables on
(0,1), and Z = min(X,Y). a) Find the pdf of Z. b) Find E(Z). c) Find SD(Z).

a. For c in (0,1), P(Z > c) = P(X > c & Y > c) = P(X > c) P(Y > c) = (1-c)2 = 1 – 2c + c2.
So, P(Z ≤ c) = 1 – (1 – 2c + c2) = 2c - c2.
Thus, ∫0c f(c)dc = 2c - c2. So f(c) = the derivative of 2c – c2 = 2 – 2c, for c in (0,1).
Obviously, f(c) = 0 for all other c.
b. E(Z) = ∫-∞∞ y f(y)dy = ∫01 c (2-2c) dc = ∫01 2c – 2c2 dc = c2 – 2c3/3]c=0

1 

= 1 – 2/3 – (0 – 0) = 1/3.
c. E(Z2) = ∫-∞∞ y2 f(y)dy = ∫01 c2 (2-2c) dc = ∫01 2c2 – 2c3 dc = 2c3/3 – 2c4/4]c=0

1 

= 2/3 – 1/2 – (0 – 0) = 1/6.
So, s2 = Var(Z) = E(Z2) – [E(Z)]2 = 1/6 – (1/3)2 = 1/18. 
SD(Z) = s = √(1/18) ~ 0.2357. 



3. Exponential distribution, ch 6.4.

Useful for modeling waiting times til something happens (like the 

geometric).

pdf of an exponential random variable is f(y) = λ exp(- λ y), for y ≥ 0, 
and f(y) = 0 otherwise.
The cdf is F(y) = 1 - exp(- λ y), for y≥0.
If X is exponential with parameter λ, then E(X) = SD(X) = 1/λ

If the total numbers of events in any disjoint time spans are independent, 
then these totals are Poisson random variables. If in addition the events 
are occurring at a constant rate λ, then the times between events, or 
interevent times, are exponential random variables with mean 1/λ.

Example. Suppose you play 20 hands an hour, with each hand lasting 
exactly 3 minutes, and let X be the time in hours until the end of the first 
hand in which you are dealt pocket aces. Use the exponential 
distribution to approximate P(X ≤ 2) and compare with the exact 
solution using the geometric distribution.



Answer.  Each hand takes 1/20 hours, and the probability of being dealt 
pocket aces on a particular hand is 1/221, so the rate λ = 1 in 221 hands
= 1/(221/20) hours ~ 0.0905 per hour. 
Using the exponential model, P(X ≤ 2 hours) = 1 - exp(-2λ) ~ 16.556%. 
This is an approximation, however, since by assumption X is not continuous 
but must be an integer multiple of 3 minutes. 
Let Y = the number of hands you play until you are dealt pocket aces. Using 
the geometric distribution, P(X ≤ 2 hours) = P(Y ≤ 40 hands) 
= 1 - (220/221)40 ~ 16.590%.

The survivor function for an exponential random variable is particularly 
simple: P(X > c) = ∫c∞ f(y)dy = ∫c∞ λ exp(-λ y)dy = -exp(-λ y)]c

∞ = exp(-λ c). 

Like geometric random variables, exponential random variables have the 
memorylessness property: if X is exponential, then for any non-negative 
values a and b, P(X > a+b | X > a) = P(X > b).  (See p115).
Thus, with an exponential (or geometric) random variable, if after a certain 
time you still have not observed the event you are waiting for, then the 
distribution of the future, additional waiting time until you observe the event 
is the same as the distribution of the unconditional time to observe the event 
to begin with.



4. Normal random variables. 
So far we have seen two continuous random variables, the uniform 
and the exponential.

Normal.  pp 115-117. mean = µ, SD = s, f(y) = 1/√(2πs2) e-(y-µ)2/2s2. 
Symmetric around µ, 
50% of the values are within 0.674 SDs of µ,
68.27% of the values are within 1 SD of µ, and 
95% are within 1.96 SDs of µ.

* Standard Normal. Normal with µ = 0, s = 1. See pp 117-118.



Standard normal density:
68.27% between -1.0 and 1.0
95% between -1.96 and 1.96



5. Functions of independent random variables.

If X and Y are independent random variables, then 

E[f(X) g(Y)] = E[f(X)] E[g(Y)], for any functions f and g.

See Exercise 7.12. This is useful for problem 5.4 for instance. 



6. Moment generating functions of some random variables.
Bernoulli(p). øX(t) = pet + q.
Binomial(n,p). øX(t) = (pet + q)n.
Geometric(p). øX(t) = pet/(1 - qet).
Neg. binomial (r,p). øX(t) = [pet/(1 – qet)]r.
Poisson(l). øX(t) = e{let-l}.
Uniform (a,b). øX(t) = (etb – eta)/[t(b-a)].
Exponential (l). øX(t) = l/(l-t).
Normal.  øX(t) = e{tµ + t2s2/2}.



7. Survivor functions. 

Recall the cdf F(b) = P(X ≤ b).
The survivor function is S(b) = P(X > b) = 1 – F(b).
Some random variables have really simple survivor functions and it can be convenient to 
work with them.
If X is geometric, then S(b) = P(X > b) = qb, for b = 0,1,2,....
For instance, let b=2. X > 2 means the 1st two were misses, 
i.e. P(X>2) = q2.
For exponential X, F(b) = 1 - exp(-λb), so S(b) = exp(-λb).

An interesting fact is that, if X takes only values in {0,1,2,3,...}, 
then E(X) = S(0) + S(1) + S(2) + ....
Proof. 
S(0) = P(X=1) + P(X=2) + P(X=3) + P(X=4) + ....
S(1) = P(X=2) + P(X=3) + P(X=4) + ....
S(2) = P(X=3) + P(X=4) + ....
S(3) = P(X=4) + ....
Add these up and you get 
0 P(X=0) + 1P(X=1) + 2P(X=2) + 3P(X=3) + 4P(X=4) + ...
= ∑ kP(X=k) = E(X).



8. Pareto random variables, ch6.6

Pareto random variables are an example of heavy-tailed random variables, 

which means they have very, very large outliers much more frequently 

than other distributions like the normal or exponential.

For a Pareto random variable, the pdf is f(y) = (b/a) (a/y)b+1, and the cdf is 

F(y) = 1 - (a/y)b,

for y>a, where a>0 is the lower truncation point, and b>0 is a parameter 

called the fractal dimension. 



9. Covariance and correlation. 
For any random variables X and Y,
var(X+Y) = E[(X+Y)]2 – [E(X) + E(Y)]2

= E(X2) – [E(X)]2 + E(Y2) – [E(Y)]2 + 2E(XY) – 2E(X)E(Y)
= var(X) + var(Y) + 2[E(XY) – E(X)E(Y)].

cov(X,Y) = E(XY) – E(X)E(Y) is called the covariance between X and Y,
cor(X,Y) = cov(X,Y) / [SD(X) SD(Y)] is called the correlation bet. X and Y.
If X and Y are ind., then E(XY) = E(X)E(Y), 

so cov(X,Y) = 0, and var(X+Y) = var(X) + var(Y).
Just as E(aX + b) = aE(X) + b, for any real numbers a and b,
cov(aX + b,Y) = E[(aX+b)Y] – E(aX+b)E(Y) 

= aE(XY) + bE(Y) – [aE(X)E(Y) + bE(Y)] = a cov(X,Y). 
Ex. 7.1.3 is worth reading. 
X = the # of 1st card, and Y = X if 2nd is red, -X if black. 
E(X)E(Y) = (8)(0). 
P(X = 2 and Y = 2) = 1/13 * ½ = 1/26, for instance, and same with any other 

combination, 
so E(XY) = 1/26 [(2)(2)+(2)(-2)+(3)(3)+(3)(-3) + ... + (14)(14) + (14)(-14)] 

= 0.
So X and Y are uncorrelated, i.e. cor(X,Y) = 0.
But X and Y are not independent. 

P(X=2 and Y=14) = 0, but P(X=2)P(Y=14) = (1/13)(1/26). 


