Stat 100a, Introduction to Probability.
Outline for the day.

1. Hand in hw2.

2. Bivariate normal.

3. More about covariance and correlation.
4. Example problems.

Bring a PEN or PENCIL and CALCULATOR and any books or notes you

want to the exams.

* No class Thu Nov 11 Veteran's Day, and Thu Nov25 Thanksgiving.

+  Next midterm is Tue Nov16 in class.

+  HW2 s due today, Tue Nov9, and can submitted as pdf via CCLE.

+  HWBSis on the course website.

+  Please write your ID number at the top of your hw and leave all
answers as decimals, not fractions.

+  Tue Nov23, lecture will be on zoom, and no office hour that day. Use
the zoom link
https://ucla.zoom.us/j/91509411456 ?pwd=aXNUMmhYREIBUzljeXdP
MHEXxSkIjZz09

Meeting ID: 915 0941 1456. Password: 235711

http://www.stat.ucla.edu/~frederic/100A/F21 .



Bivariate normal.

For example, let X = N(0,1). Let € = N(0, 0.22) and independent of X.Let Y =3 +0.5 X + ¢.
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Bivariate normal.
If (X,Y) are bivariate normal with E(X) = 100, var(X) = 25, E(Y) = 200, var(Y) =49, p =0.8,
What is the distribution of Y given X = 105? What is P(Y > 213.83 | X = 105)?

Given X = 105, Y is normal. Write Y = 3, + 3,X + € where € is normal with mean 0, ind. of X.
Recall B, = p 6,/0, =0.8 x 7/5=1.12.

SoY=,+1.12X +¢.

To get B, note 200 = E(Y) =B, + 1.12 E(X) + E(e) =, + 1.12 (100). S0 200 = 3, + 112. B, = 88.
SoY =88+ 1.12 X + ¢, where ¢ is normal with mean 0 and ind. of X.

What is var(g)?

49 = var(Y) = var(88 + 1.12 X + g) = 1.122 var(X) + var(e) + 2(1.12) cov(X,g)

=1.122 (25) + var(e) + 0. So var(g) =49 - 1.122 (25) = 17.64 and sd(¢) = V17.64=42.
SoY=88+1.12 X + ¢, where ¢ is N(0, 4.22) and ind. of X.

Given X =105,Y =88 + 1.12(105) + £ =205.6 + £, 50 YIX=105 ~ N(205.6, 4.22).

Now how many sds above the mean is 213.83? (213.83 — 205.6)/4.2 = 1.96,
so P(Y>213.83 | X=105) = P(normal is > 1.96 sds above its mean) = 2.5%.



Density

0.3

0.2

0.1

0.0

Bivariate normal.
Now how many sds above the mean is 213.83? (213.83 — 205.6)/4.2 = 1.96,
so P(Y>213.83 | X=105) = P(normal is > 1.96 sds above its mean) = 2.5%.
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Correlation and covariance.

For any random variables X and Y, recall

var(X+Y) = var(X) + var(Y) + 2cov(X,Y).

cov(X,Y) = E(XY) — E(X)E(Y) is the covariance between X and Y,
cor(X,Y) = cov(X,Y) / [SD(X) SD(Y)] is the correlation bet. X and Y.

For any real numbers a and b, E(aX + b) = aE(X) + b, and
cov(aX +b,Y) =a cov(X,Y).

var(aX+b) = cov(aX+b, aX+b) = a?var(X).

No such simple statement is true for correlation.

If p=cor(X,Y), we always have -1 < p<1.

p = -1 iff. the points (X,Y) all fall exactly on a line sloping downward, and
p = 1 iff. the points (X,Y) all fall exactly on a line sloping upward.

p =0 means the best fitting line to (X,Y) is horizontal.

p=044 p=-044.




Correlation and covariance.

Note also that cov(X,X) = var(X). Why?
cov(X,Y) = E(XY) - E(X)E(Y)

So cov(X,X) = E(X X) - u2.

And Var(X) = E(X?) - u>.
So Cov(X,X) = Var(X).



Example problems.

X is a continuous random variable with cdf F(y) =1 - y'!, for y in (1,%0), and F(y) = 0 otherwise.
a. What is the pdf of X?

b. What is f(1)?

c. What is E(X)?

a.f(y)=F'(y)=d/dy (1 - y')=y?2, foryin (1,°), and f(y) = 0 otherwise.

To be a pdf, f(y) must be nonnegative for all y and integrate to 1.
f(y)=0forally,and [ * f(y)dy = [*y?dy =-y'],”=0+1=1.So, fis indeed a pdf.

b.f(1)=12=1.

c. EX)=[_ "y f(y)dy =["y y*dy = [” y'dy = In() — In(1) =c°. This can happen.



X is a continuous random variable with cdf F(y) = 1 - y2, for y in (1,%0), and F(y) = 0 otherwise.
a. What is the pdf of X?

b. What is f(1)? Is this a problem?

c. What is E(X)?

d. Whatis P(2 < X <3)?

e. What is P(2 < X < 3)?

a.f(y)=F ' (y) =d/dy (1 - y?) =2y, fory in (1,%), and f(y) = 0 otherwise.

To be a pdf, f(y) must be nonnegative for all y and integrate to 1.
f(y)= 0 forally,and [_* f(y)dy = [* 2y~ dy =-y?] *=0+ 1= 1. So, f is indeed a pdf.

b. f(1) = 2. This does not mean P(X=1) is 2. It is not a problem.
c.EX) = [ "y fy)dy =2[*y y’dy =2[*y?dy =-2y"'] *=0+2=2.
d.PQ2=X=<3)= f23 f(y)dy = 2f23 y3dy =-y? ]23 =-1/9+ 1/4 ~0.139.

Alternatively, PR < X <3)=F(3)-F2)=1-19-1+ 1/4~0.139.
e. Same thing.



Suppose X is uniform(0,1), Y is exponential with E(Y)=2, and X and Y are independent. What is
cov(3X+Y, 4X-Y)?

cov(3X+Y,4X-Y) = 12 cov(X,X) — 3cov(X,Y) + 4cov(Y,X) — cov(Y,Y)
=12 var(X) — 0 + 0 — var(Y).

For exponential, E(Y) = 1/A and var(Y) = 1/A%, so A=1/2 and var(Y) = 4.
What about var(X)?
E(X?) = [y*f(y)dy
= ! y2dy because f(y) = 1 for uniform(0,1) for y in (0,1),
=y/3 o'
=1/3.
var(X) = E(X?) - u*>=1/3-% = 1/12.

cov(3X+Y, 4X-Y) = 12 (1/12) — 4
= 3.



Moment generating function of a uniform random variable.

If X is uniform(a,b), then it has density f(x) = 1/(b-a) between a and b,
and f(x) = 0 for all other x.
ox(t) = E(e™)
= [,bex f(x) dx
= [,b e 1/(b-a) dx
= 1/(b-a) [,P e dx
= 1/(b-a) e™/t],> dx
= (e —2)/[t(b-a)].



Review list.

1)
2)
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4)
5)
6)
7)
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10)
11)
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13)
14)
15)
16)
17)
18)
19)
20)
21)

Basic principles of counting.

Axioms of probability, and addition rule.

Permutations & combinations.

Conditional probability.

Independence.

Multiplication rules. P(AB) =P(A) P(BIA) [=P(A)P(B) ifind.]
Odds ratios.

Discrete RVs and probability mass function (pmf).

Expected value.

Pot odds calculations.

Luck and skill.

Variance and SD.

E(aX+b) and E(X+Y).

Bayes’s rule.

Markov and Chebyshev inequalities.

Bernoulli, binomial, geometric, Poisson, and negative binomial rvs.
Moment generating functions.

pdf, cdf, uniform, exponential, normal and Pareto rvs. F'(y) = f(y).
Survivor functions.

Covariance and correlation.

Bivariate normal.

‘We have basically done all of chapters 1-7.1. Ignore 6.7 and most of 6.3 on optimal play.



