Stat 100a: Introduction to Probability.

Outline for the day:

- 1. CLT.
- 2. CIs.
- 3. Sample size calculations.
- 4. Gold vs. Farha.
- 5. P(flop an ace high flush), P(flop a straight flush), etc.
- 6. Time til suited king.
- 7. Hellmuth vs. Farha, P(flush | suited cards).

Midterm is on chapters 1-7.5, except chapter 6.7 which we are skipping and the bulk of 6.3 about optimal play in the case of uniform hands, which we are also skipping.

1. The Central Limit Theorem (CLT), ch 7.4.

Sample mean $\overline{X_n} = \sum X_i / n$

iid: independent and identically distributed. Suppose X_1, X_2 , etc. are iid with expected value μ and sd σ ,

$$\overline{X_n} \longrightarrow \mu :$$

$$(\overline{X_n} - \mu) \xrightarrow{i} (\sigma/\sqrt{n}) \longrightarrow Standard Normal.$$

Useful for tracking results.

Truth: -49 to 51, exp. value $\mu = 1.0$

Truth: uniform on -49 to 51. $\mu = 1.0$ Estimated using $\overline{X_n}$ +/- 1.96 σ/\sqrt{n} = .95 +/- 0.28 in this example

day

<u>Central Limit Theorem (CLT):</u> if $X_1, X_2, ..., X_n$ are iid with mean μ SD σ , then $(\overline{X_n} - \mu) \div (\sigma/\sqrt{n}) \longrightarrow$ Standard Normal. (mean 0, SD 1).

In other words, X_n has mean μ and a standard deviation of $\sigma \div \sqrt{n}$.

Two interesting things about this:

(i) As $n \rightarrow \infty$, $X_n \rightarrow normal$. Even if X_i are far from normal. e.g. average number of pairs per hand, out of n hands. X_i are 0-1 (Bernoulli). $\mu = p = P(pair) = 3/51 = 5.88\%$. $\sigma = \sqrt{(pq)} = \sqrt{(5.88\% \times 94.12\%)} = 23.525\%$. (ii) We can use this to find a range where $\overline{X_n}$ is likely to be. About 95% of the time, a std normal random variable is within -1.96 to +1.96. So 95% of the time, $(\overline{X_n} - \mu) \div (\sigma/\sqrt{n})$ is within -1.96 to +1.96. So 95% of the time, $(\overline{X_n} - \mu)$ is within -1.96 (σ/\sqrt{n}) to +1.96 (σ/\sqrt{n}) . So 95% of the time, $\overline{X_n}$ is within μ - 1.96 (σ/\sqrt{n}) to μ + 1.96 (σ/\sqrt{n}). That is, 95% of the time, $\overline{X_n}$ is in the interval μ +/- 1.96 (σ/\sqrt{n}). $= 5.88\% + - 1.96(23.525\%)/\sqrt{n}$. For n = 1000, this is 5.88% + - 1.458%. For n = 1,000,000 get 5.88% + -0.0461%.

Another CLT Example

<u>Central Limit Theorem (CLT)</u>: if $X_1, X_2, ..., X_n$ are iid with mean μ & SD σ , then $(\overline{X_n} - \mu) \div (\sigma/\sqrt{n}) \longrightarrow$ Standard Normal. (mean 0, SD 1). In other words, $\overline{X_n}$ is like a draw from a normal distribution with mean μ and standard deviation of $\sigma \div \sqrt{n}$.

That is, 95% of the time, $\overline{X_n}$ is in the interval μ +/- 1.96 (σ/\sqrt{n}).

- Q. Suppose you average \$5 profit per hour, with a SD of \$60 per hour. If you play 1600 hours, let Y be your average profit over those 1600 hours. What is range where Y is 95% likely to fall?
- A. We want μ +/- 1.96 (σ/\sqrt{n}), where μ = \$5, σ = \$60, and n=1600. So the answer is

 $5 + - 1.96 \times 60 / \sqrt{1600}$

= \$5 +/- \$2.94, or the range [\$2.06, \$7.94].

2. Confidence Intervals (CIs) for μ , ch 7.5.

<u>Central Limit Theorem (CLT):</u> if $X_1, X_2, ..., X_n$ are iid with mean μ SD σ , then $(\overline{X_n} - \mu) \div (\sigma/\sqrt{n}) \longrightarrow$ Standard Normal. (mean 0, SD 1). So, 95% of the time, $\overline{X_n}$ is in the interval μ +/- 1.96 (σ/\sqrt{n}).

Typically you know X_n but not μ. Turning the blue statement above around a bit means that 95% of the time, μ is in the interval X_n +/- 1.96 (σ/√n).
This range X_n+/- 1.96 (σ/√n) is called a 95% confidence interval (CI) for μ.
[Usually you don't know σ and have to estimate it using the sample std deviation, s, of your data, and (X_n - μ) ÷ (s/√n) has a t_{n-1} distribution if the X_i are normal.
For n>30, t_{n-1} is so similar to normal though.]

1.96 (σ/\sqrt{n}) is called the *margin of error*.

3. Sample size calculation. How many <u>more</u> hands are needed?

If Dwan keeps winning \$51/hand, then we want n so that the margin of error = \$51. 1.96 (σ/\sqrt{n}) = \$51 means 1.96 (\$10,000) / \sqrt{n} = \$51, so n = [(1.96)(\$10,000)/(\$51)]² ~ 148,000, so about 109,000 *more* hands. **4. Gold vs. Farha.** Gold: 10 **•** 7 **•** Farha: Q **•** Q **•** F

a) Who really is the favorite (ignoring all other players' cards)?

Gold's outs: J, 6, 10, 7. (4 + 4 + 3 + 2 = 13 outs, 32 non-outs)

P(Gold wins) = P(Out Out but not JT or Jx or 6x or $10y [y \neq Q,9,8]$ or 7z

[z≠Q])

 $= [choose(13,2) - 4*3 + 4*32 + 4*32 + 3*24 + 2*30] \div choose(45,2)$

 $=454 \div 990 = 45.86\%$.

b) What would you guess Gold had?

Say he'd do that 50% of the time with a draw,

100% of the time with an overpair,

and 90% of the time with two pairs. (and that's it)

Using Bayes' rule, P(Gold has a DRAW | Gold raises ALL-IN)

 $= \underline{.} \qquad [P(all-in | draw) * P(draw)]$

[P(all-in | draw) P(draw)] + [P(all-in | overpair) P(overpair)] + [P(all-in | 2pairs) P(2 pairs)]

= $[50\% * P(draw)] \div [50\% * P(draw)] + [100\% * P(overpair)] + [90\% * P(2 pairs)]$

5. P(**flop an ace high flush**)? [where the ace might be on the board]

-- 4 suits

-- one of the cards must be an ace. choose(12,4) possibilities for the others. So P(flop ace high flush) = 4 * choose(12,4) / choose(52,5)= 0.0762%, or 1 in **1313**.

P(flop a straight flush)?

-- 4 suits

-- 10 different straight-flushes in each suit. (5 high, 6 high, ..., Ace high) So P(flop straight flush) = 4 * 10 / choose(52,5)= 0.00154%, or 1 in **64974**. **6.** What is the probability that you will be dealt a king and another card of the same suit as the king?

4 * 12 / C(52,2) = 3.62%.

The typical number of hands until this occurs is ...

1/.0362 ~ 27.6. (√96.38%) / 3.62% ~ 27.1. So the answer is 27.6 +/- 27.1.

7. Hellmuth vs. Farha.

P(Hellmuth makes a flush)

 $= \underline{C(11,5) + C(11,4) * 37 + C(11,3) * C(37,2)}_{C(48,5)} = 7.16\%.$

P(Farha makes a flush)

 $= \underline{2 * (C(12,5) + C(12,4) * 36)} = 2.17\%.$

C(48,5)