Stat 100a: Introduction to Probability.

- 1. Exam 2 back.
- 2. Independence.
- 3. Competitions.

NO CLASS or OH Tue Mar 10.

Hw3 is due Mar 12.

Exam 3 is Thu Mar 12.

They are open book, open note.

Bring a calculator and a dark pen or dark pencil.

1. Exam 2 back.

2. Independence.

Events A and B are independent if P(A|B) = P(A), i.e. P(AB) = P(A)P(B). If A and B are independent, then A^c and B are independent, and so are A^c and B^c , and so are A and B^c .

2 discrete *random variables* X and Y are independent if for any c and d, P(X = c and Y = d) = P(X=c) P(Y=d).

For example, let X = your number of $10 \diamondsuit$ you have, i.e. X = 1 if you have the $10 \diamondsuit$ and X = 0 otherwise.

Let Y = the number of pairs you have, again 1 or 0.

Are X and Y independent?

 $P(X = 1 \text{ and } Y = 1) = P(10 \bullet \text{ and another } 10) = 3/C(52,2).$

P(X = 1) = 51/C(52,2). P(Y = 1) = 3/51. So P(X=1)P(Y=1) = 3/C(52,2).

2. Independence, continued.

For another example, let X = your number of 10s you have, and Y = the number of pairs you have.

Are X and Y independent?

Now X could be 0, 1, or 2. In principle you have to check all the possibilities, and verify P(X=c and Y=d) = P(X=c) P(Y=d).

Sometimes one is easy to check though.

Consider P(X = 1 and Y = 1).

 $P(X = 1) = 4 \times 48 / C(52,2)$.

P(Y = 1) = 3/51.

So if X and Y are ind., then P(X=1 and Y=1) needs to be $4 \times 48 \times 3 / [C(52,2) \times 51] \sim 1/117$.

What is P(X=1 and Y=1)?

3. Competitions.

