Stat 100a, Introduction to Probability.

Outline for the day:

- 1. Daniel vs. Gus.
- 2. P(flop 3 of a kind).
- 3. P(eventually make 4 of a kind).
- 4. $P(A \blacklozenge after first ace)$.
- 5. Bayes' rule.

Finish chapters 1-3 and start on ch4.

For problem 2.4, consider a royal flush an example of a straight flush. That is, calculate P(straight flush or royal flush). ♠ ♣ ♥ ♦

1. High Stakes Poker, Daniel vs. Gus.

Which is more likely, given no info about your cards: * flopping 3 of a kind,

or

* eventually making 4 of a kind?

2. P(flop 3 of a kind)?

[including case where all 3 are on board, and not including full houses]

<u>Key idea</u>: forget order! Consider all combinations of your 2 cards and the flop. Sets of 5 cards. Any such combo is equally likely! choose(52,5) different ones.

P(flop 3 of a kind) = # of different 3 of a kinds / choose(52,5)

How many different 3 of a kind combinations are possible?

13 * choose(4,3) different choices for the triple.

For each such choice, there are choose(12,2) choices left for the numbers on the other 2 cards, and for each of these numbers, there are 4 possibilities for its suit. So, P(flop 3 of a kind) = 13 * choose(4,3) * choose(12,2) * 4 * 4 / choose(52,5)

~ 2.11%, or 1 in 47.3.

P(flop 3 of a kind or a full house) = 13 * choose(4,3) * choose(48,2) / choose(52,5)

~ 2.26%, or 1 in 44.3.

3. P(eventually make 4 of a kind)? [including case where all 4 are on board]
Again, just forget card order, and consider all collections of 7 cards.
Out of choose(52,7) different combinations, each equally likely, how many of them involve 4-of-a-kind?

13 choices for the 4-of-a-kind.

For each such choice, there are choose(48,3) possibilities for the other 3 cards.

So, $P(4\text{-of-a-kind}) = 13 * choose(48,3) / choose(52,7) \sim 0.168\%$, or 1 in 595.

4. Deal til first ace appears. Let X = the *next* card after the ace. P(X = A \blacklozenge)? P(X = 2 \clubsuit)?

- (a) How many permutations of the 52 cards are there?52!
- (b) How many of these perms. have A♠ right after the 1st ace?
 (i) How many perms of the *other* 51 cards are there?
 51!

(ii) For *each* of these, imagine putting the A♠ right after the 1st ace.

1:1 correspondence between permutations of the other 51 cards& permutations of 52 cards such that A♠ is right after 1st ace.

So, the answer to question (b) is 51!.

Answer to the overall question is 51! / 52! = 1/52.

Obviously, same goes for 24.

5. Bayes's rule.

Suppose that $B_1, B_2, ..., B_n$ are disjoint events and that exactly one of them must occur.

Suppose you want $P(B_1 | A)$, but you only know $P(A | B_1)$, $P(A | B_2)$, etc., and you also know $P(B_1)$, $P(B_2)$, ..., $P(B_n)$.

Bayes' Rule: If $B_{1,...,}B_n$ are disjoint events with $P(B_1 \text{ or } ... \text{ or } B_n) = 1$, then $P(B_i | A) = P(A | B_i) * P(B_i) \div [\Sigma P(A | B_i)P(B_i)].$

Why? Recall: $P(X | Y) = P(X \& Y) \div P(Y)$. So P(X & Y) = P(X | Y) * P(Y).

 $P(B_1 | A) = P(A \& B_1) \div P(A)$ = P(A & B_1) ÷ [P(A & B_1) + P(A & B_2) + ... + P(A & B_n)] = P(A | B_1) * P(B_1) \div [P(A | B_1)P(B_1) + P(A | B_2)P(B_2) + ... + P(A | B_n)P(B_n)].

Bayes's rule, continued.

Bayes's rule: If $B_{1,...,}B_n$ are disjoint events with $P(B_1 \text{ or } ... \text{ or } B_n) = 1$, then $P(B_i | A) = P(A | B_i) * P(B_i) \div [\Sigma P(A | B_j)P(B_j)].$

See example 3.4.1, p50. If a test is 95% accurate and 1% of the pop. has a condition, then given a random person from the population,

P(she has the condition | she tests positive)

- = P(cond | +)
- = P(+ | cond) P(cond) \div [P(+ | cond) P(cond) + P(+ | no cond) P(no cond)]
- $= 95\% \times 1\% \div [95\% \times 1\% + 5\% \times 99\%]$

~ 16.1%.

Tests for rare conditions must be extremely accurate.

Bayes' rule example.

- Your opponent makes a huge bet of 10 times the big blind.
- Suppose she'd only do that with AA, or 54, or AK.
- Suppose P(huge bet | AA) = 5%. P(huge bet | 54) = 70%. P(huge bet | AK) = 25%.
- What is P(AA | huge bet)?
- P(AA | huge bet) =

P(huge bet | AA) * P(AA)

P(huge bet | AA) * P(AA) + P(huge bet | 54) * P(54) + P(huge bet | AK) * P(AK)

= 5% * C(4,2)/C(52,2)

EG(* C(A A)) C(EA A) + 70G(* 1(C(EA A) + 0EG(* 1(C(EA A)))))

5% * C(4,2)/C(52,2) + 70% * 16/C(52,2) + 25% * 16/C(52,2)

= 1.94%.