Stat 100a, Introduction to Probability. Outline for the day:

- 1. Variance of Bernoulli random variables.
- 2. Poisson random variables.
- 3. Negative binomial random variables.
- 4. Binomial and Geometric review problem.
- 5. Continuous random variables and densities.
- 6. Uniform random variables.

Exam 2 will be on Wed Feb23, 2pm-3:15pm.
The computer project is due on Sat Mar5, 8:00pm.
Read through chapter 5.

Homework 2 is due Mon Feb14, 2pm. Email to STAT100AW22@stat.ucla.edu.

Leave all answers as decimals, not fractions, for all homeworks. http://www.stat.ucla.edu/~frederic/100A/W22 Why does Var(X) = pq if X is Bernoulli?

$$Var(X) = E(X^{2}) - \mu^{2}.$$

$$\mu = E(X) = (1)(p) + (0)(q) = p.$$

$$E(X^{2}) = (1^{2})(p) + (0^{2})(q) = p.$$

Therefore, $Var(X) = p - p^{2}$

$$= p(1-p)$$

$$= pq.$$

Poisson random variables, ch 5.5.

Player 1 plays in a very slow game, 4 hands an hour, and she decides to do a big bluff whenever the second hand on her watch, at the start of the deal, is in some predetermined 15 second interval, i.e. with probability ¹/₄.

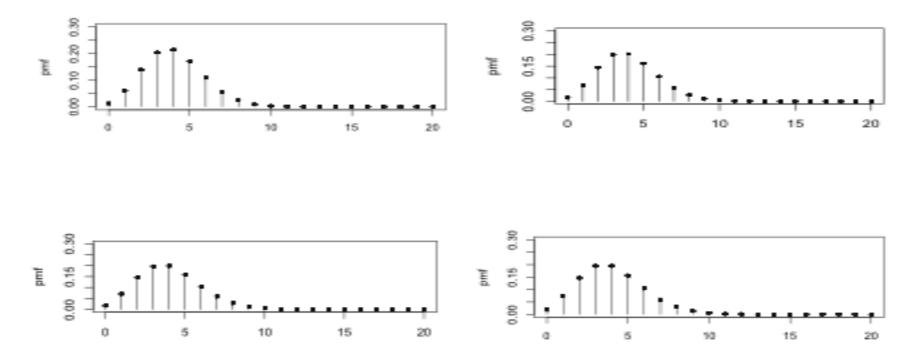
Now suppose Player 2 plays in a game where about 10 hands are dealt per hour, so he similarly looks at his watch at the beginning of each poker hand, but only does a big bluff if the second hand is in a 6 second interval, i.e. with probability 1/10.

Player 3 plays in a faster game where about 20 hands are dealt per hour, and she bluffs only when the second hand on her watch at the start of the deal is in a 3 second interval, with probability 1/20. Each of the three players will thus average one bluff every hour.

Let X_1 , X_2 , and X_3 denote the number of big bluffs attempted in a given 4 hour interval by Player 1, Player 2, and Player 3, respectively.

- Each of these random variables is binomial with an expected value of 4, and a variance approaching 4.
- They are converging toward some limiting distribution, and that limiting distribution is called the *Poisson* distribution.

They are converging toward some limiting distribution, and that limiting distribution is called the *Poisson* distribution. Unlike the binomial distribution which depends on two parameters, *n* and *p*, the Poisson distribution depends only on one parameter, λ , which is called the *rate*. In this example, $\lambda = 4$.



The pmf of the Poisson random variable is $f(k) = e^{-\lambda} \lambda^k / k!$, for k=0,1,2,..., and for $\lambda > 0$, with the convention that 0!=1, and where e = 2.71828.... The Poisson random variable is the limit in distribution of the binomial distribution as $n \to \infty$ while np is held constant. For a Poisson(λ) random variable *X*, $E(X) = \lambda$, and $Var(X) = \lambda$ also. $\lambda = rate$.

Example. Suppose in a certain casino jackpot hands are defined so that they tend to occur about once every 50,000 hands on average. If the casino deals approximately 10,000 hands per day, **a**) what are the expected value and standard deviation of the number of jackpot hands dealt in a 7 day period? **b**) How close are the answers using the binomial distribution and the Poisson approximation? Using the Poisson model, if *X* represents the number of jackpot hands dealt over this week, what are **c**) P(X = 5) and **d**) P(X = 5 | X > 1)?

Answer. It is reasonable to assume that the outcomes on different hands are iid, and this applies to jackpot hands as well. In a 7 day period, approximately 70,000 hands are dealt, so X = the number of occurrences of jackpot hands is binomial(n=70,000, p=1/50,000). Thus **a**) E(X) = np = 1.4, and $SD(X) = \sqrt{(npq)} = \sqrt{(70,000 \times 1/50,000 \times 49,999/50,000)} \sim 1.183204$. **b**) Using the Poisson approximation, $E(X) = \lambda = np = 1.4$, and $SD(X) = \sqrt{\lambda} \sim 1.183216$. The Poisson model is a very close approximation in this case. Using the Poisson model with rate $\lambda = 1.4$, **c**) $P(X=5) = e^{-1.4} 1.4^5/5! \sim 1.105\%$.

d) $P(X = 5 | X > 1) = P(X = 5 \text{ and } X > 1) \div P(X > 1) = P(X = 5) \div P(X > 1) = [e^{-1.4} \ 1.4^{5}/5!] \div [1 - e^{-1.4} \ 1.4^{0}/0! - e^{-1.4} \ 1.4^{1}/1!] \sim 2.71\%.$

Negative binomial random variables, ch5.4.

Recall: if each trial is independent, and each time the probability of an occurrence is p, and X = # of trials until the *first* occurrence, then:

X is Geometric (p), $P(X = k) = p^1 q^{k-1}$, $\mu = 1/p$, $\sigma = (\sqrt{q}) \div p$. Suppose now X = # of trials until the *rth* occurrence.

Then X = *negative binomial (r,p)*.

e.g. the number of hands you have to play til you've gotten r=3 pocket pairs.

Now X could be $3, 4, 5, \ldots$, up to ∞ .

pmf: $P(X = k) = choose(k-1, r-1) p^r q^{k-r}$, for k = r, r+1, ...

e.g. say r=3 & k=7: $P(X = 7) = choose(6,2) p^3 q^4$.

Why? Out of the first 6 hands, there must be exactly r-1 = 2 pairs. Then pair on 7th.

P(exactly 2 pairs on first 6 hands) = choose(6,2) $p^2 q^4$. P(pair on 7th) = p.

If X is negative binomial (r,p), then $\mu = r/p$, and $\sigma = [\sqrt{(rq)}] \div p$.

e.g. Suppose X = the number of hands til your 12th pocket pair. $P(X = 100)? E(X)? \sigma?$

X = Neg. binomial (12, 5.88%).

 $P(X = 100) = choose(99,11) p^{12} q^{88}$

= choose(99,11) * 0.0588 ^ 12 * 0.9412 ^ 88 = 0.104%.

 $E(X) = r/p = 12/0.0588 \sim 204$. $\sigma = sqrt(12*0.9412) / 0.0588 = 57.2$.

So, you'd typically *expect* it to take 204 hands til your 12th pair, +/- around 57.2 hands.

Let X = the # of hands until your 1^{st} pair of black aces. What are E(X) and SD(X)?

X is geometric(p), where
$$p = 1/C(52,2) = 1/1326$$
.
E(X) = 1/p = 1326.
SD = $(\sqrt{q}) / p$, where q = 1325/1326. SD = 1325.5.

What is P(X = 12)? $q^{11}p = 0.0748\%$.

You play 100 hands. Let X = the # of hands where you have 2 black aces. What is E(X)? What is P(X = 4)? X is binomial(100,p), where p = 1/1326. E(X) = np = .0754. $P(X = 4) = C(100,4) p^4 q^{96} = .000118\%$.

Continuous random variables and their densities, ch6.1.

Density (or pdf = Probability Density Function) f(y): $\int_B f(y) dy = P(X \text{ in } B).$

If F(c) is the cumulative distribution function, i.e. $F(c) = P(X \le c)$, then f(c) = F'(c).

The survivor function is S(c) = P(X > c) = 1 - F(c).

Expected value, $\mu = E(X) = \int y f(y) dy$. (= $\sum y P(y)$ for discrete X.)

For any function g, $E(g(X)) = \int g(y) f(y) dy$. For instance $E(X^2) = \int y^2 f(y) dy$.

Variance, $\sigma^2 = V(X) = Var(X) = E(X-\mu)^2 = E(X^2) - \mu^2$.

 $SD(X) = \sqrt{V(X)}.$

For examples of pictures of pdfs, see p104, 106, and 107.

Uniform example.

Recall for a continuous random variable X, the pdf f(y) is a function where $\int_a^b f(y)dy = P\{X \text{ is in } (a,b)\}$, $E(X) = \mu = \int_{\infty}^{\infty} y f(y)dy$, and $\sigma^2 = Var(X) = E(X^2) - \mu^2$. $sd(X) = \sigma$. If X is a continuous rv, then $P(X \le a) = P(X < a)$, because $P(X = a) = \int_a^a f(y)dy = 0$. If X is uniform(a,b), then f(y) = 1/(b-a) for y in (a,b), and f(y) = 0 otherwise.

For example, if X is uniform (100,120), then f(y) = 1/20 for y in (100,120), and f(y) = 0 otherwise. $E(X) = \int_{-\infty}^{\infty} y f(y) dy = \int_{100}^{120} y (1/20) dy = 1/20 (120^2/2 - 100^2/2) = 110.$ $E(X^2) = \int_{-\infty}^{\infty} y^2 (1/20) dy = 1/20 (120^3/3 - 100^3/3) = 12133.33.$ $Var(X) = E(X^2) - \mu^2 = 12133.33 - 110^2 = 33.33.$ SD(X) = 5.77.

Min of Uniforms example.

Suppose X and Y are independent uniform random variables on (0,1), and Z = min(X,Y). **a**) Find the pdf of Z. **b**) Find E(Z). **c**) Find SD(Z).

a. For c in (0,1), $P(Z > c) = P(X > c & Y > c) = P(X > c) P(Y > c) = (1-c)^2 = 1 - 2c + c^2$. So, $P(Z \le c) = 1 - (1 - 2c + c^2) = 2c - c^2$. Thus, $\int_0^c f(c)dc = 2c - c^2$. So f(c) = the derivative of $2c - c^2 = 2 - 2c$, for c in (0,1). Obviously, f(c) = 0 for all other c. **b.** $E(Z) = \int_{-\infty}^{\infty} y f(y)dy = \int_0^1 c (2-2c) dc = \int_0^1 2c - 2c^2 dc = c^2 - 2c^3/3]_{c=0}^{-1} = 1 - 2/3 - (0 - 0) = 1/3$. **c.** $E(Z^2) = \int_{-\infty}^{\infty} y^2 f(y)dy = \int_0^1 c^2 (2-2c) dc = \int_0^1 2c^2 - 2c^3 dc = 2c^3/3 - 2c^4/4]_{c=0}^{-1} = 2/3 - 1/2 - (0 - 0) = 1/6$. So, $\sigma^2 = Var(Z) = E(Z^2) - [E(Z)]^2 = 1/6 - (1/3)^2 = 1/18$. SD(Z) = $\sigma = \sqrt{(1/18)} \sim 0.2357$.