Stat 100a: Introduction to Probability.

- Outline for the day
- 1. Return midterm2.
- 2. Bivariate and marginal density.
- 3. CLT.
- 4. CIs.
- 5. Sample size calculations.

Please keep silent until I am finished returning Midtem 2.

Everyone's score is boosted by 1 point out of 14. So if it says 9 in red, circled, on the last problem of your exam, then you effectively got a score of 10/14.

HW3 is due Wed Mar2, 2pm by email.

Bivariate and marginal density.

Suppose X and Y are random variables.

If X and Y are discrete, we can define the joint pmf f(x,y) = P(X = x and Y = y).

Suppose X and Y are continuous for the rest of this page.

Define the bivariate or joint pdf f(x,y) as a function with the properties that $f(x,y) \ge 0$, and for any a,b,c,d,

 $P(a \le X \le b \text{ and } c \le Y \le d) = \int_a^b \int_c^d f(x,y) dy dx.$

The integral $\int_{-\infty}^{\infty} f(x,y) dy = f(x)$, the pdf of X, and this function f(x) is sometimes called the *marginal* density of X. Similarly $\int_{-\infty}^{\infty} f(x,y) dx$ is the marginal pdf of Y. $E(X) = \int_{-\infty}^{\infty} x f(x) dx = \int_{-\infty}^{\infty} x [\int_{-\infty}^{\infty} f(x,y) dy] dx = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} x f(x,y) dy dx.$

Just as P(A|B) = P(AB)/P(B), f(x|y) = f(x,y)/f(y). X and Y are independent iff. $f(x,y) = f_x(x)f_y(y)$.

Now $E(XY) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} xy f(x,y) dy dx$. This can be useful to find cov(X,Y) = E(XY) - E(X)E(Y). What is $E(X^2Y + e^Y)$? It $= \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} (x^2y + e^y) f(x,y) dy dx$. Bivariate and marginal density.

Suppose the joint density of X and Y is $f(x,y) = a \exp(x+y)$, for X and Y in (0,1) x (0,1). What is a? What is the marginal density of Y? What type of distribution does X have conditional on Y? What is E(X|Y)? What is the mean of X when Y = .2? Are X and Y independent?

 $\iint a \exp(x+y) \, dx dy = 1 = a \iint \exp(x) \exp(y) \, dx dy = a \int_0^1 \exp(x) \, dx \int_0^1 \exp(y) \, dy = a(e-1)^2 ,$ so $a = (e-1)^{-2}$.

The marginal density of Y is $f(y) = \int_0^1 a \exp(x+y) dx = a \exp(y) \int_0^1 \exp(x) dx = a \exp(y)(e-1) = \exp(y)/(e-1).$

Conditional on Y, the density of X is $f(x|y) = f(x,y)/f(y) = a \exp(x+y)(e-1)/\exp(y) = \exp(x)/(e-1)$. So X|Y is like an exponential(1) random variable restricted to (0,1).

 $E(X|Y) = \int_0^1 x \exp(x)/(e-1) dx = 1/(e-1) [x \exp(x) - \int \exp(x) dx] = 1/(e-1) [x \exp(x) - \exp(x)]_0^1 = 1/(e-1) [e - e - 0 + 1] = 1/(e-1).$ When Y = .2, E(X|Y) = 1/(e-1).

 $f(y) = \exp(y)/(e-1)$ and similarly $f(x) = \exp(x)/(e-1)$, so $f(x)f(y) = \exp(x+y)/(e-1)^2 = f(x,y)$. Therefore, X and Y are independent.

Central Limit Theorem (CLT), ch 7.4.

Sample mean $X_n = \sum X_i / n$

iid: independent and identically distributed.

Suppose X_1, X_2 , etc. are iid with expected value μ and sd σ ,

$$\frac{\text{LAW OF LARGE NUMBERS (LLN):}}{\overline{X_n} \longrightarrow \mu}$$

$$\frac{\text{CENTRAL LIMIT THEOREM (CLT):}}{(\overline{X_n} - \mu) \div (\sigma/\sqrt{n}) \longrightarrow \text{Standard Normal.}}$$

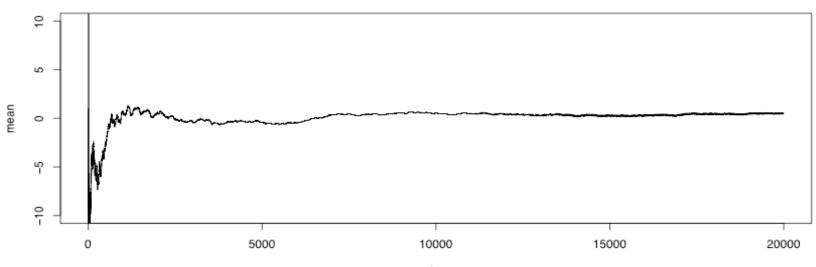
Useful for tracking results.

95% between -1.96 and 1.96

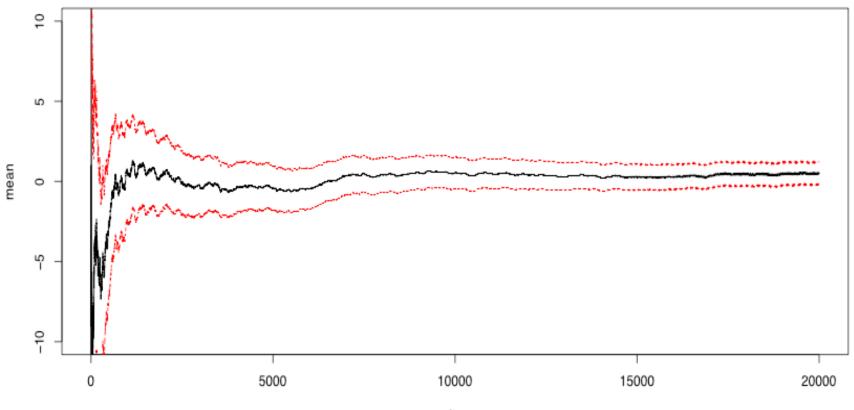


Truth: -49 to 51, exp. value $\mu = 1.0$





Truth: uniform on -49 to 51. $\mu = 1.0$ Estimated using $\overline{X_n}$ +/- 1.96 σ/\sqrt{n} = .95 +/- 0.28 in this example



<u>Central Limit Theorem (CLT)</u>: if $X_1, X_2, ..., X_n$ are iid with mean μ & SD σ , then $(\overline{X_n} - \mu) \div (\sigma/\sqrt{n}) \longrightarrow \text{Standard Normal. (mean 0, SD 1).}$ In other words, X_n has mean μ and a standard deviation of $\sigma \div \sqrt{n}$. Two interesting things about this: (i) As $n \rightarrow \infty$, $X_n \rightarrow normal$. Even if X_i are far from normal. e.g. average number of pairs per hand, out of n hands. X_i are 0-1 (Bernoulli). $\mu = p = P(pair) = 3/51 = 5.88\%$. $\sigma = \sqrt{(pq)} = \sqrt{(5.88\% \times 94.12\%)} = 23.525\%$. (ii) We can use this to find **a range** where $\overline{X_n}$ is likely to be. About 95% of the time, a std normal random variable is within -1.96 to +1.96. So 95% of the time, $(\overline{X_n} - \mu) \div (\sigma/\sqrt{n})$ is within -1.96 to +1.96. So 95% of the time, $(\overline{X_n} - \mu)$ is within -1.96 (σ/\sqrt{n}) to +1.96 (σ/\sqrt{n}) . So 95% of the time, $\overline{X_n}$ is within $\mu - 1.96 (\sigma/\sqrt{n})$ to $\mu + 1.96 (\sigma/\sqrt{n})$. That is, 95% of the time, $\overline{X_n}$ is in the interval μ +/- 1.96 (σ/\sqrt{n}). $= 5.88\% + 1.96(23.525\%)/\sqrt{n}$. For n = 1000, this is 5.88% + 1.458%. For n = 1,000,000 get 5.88% + -0.0461%.

Another CLT Example

<u>Central Limit Theorem (CLT)</u>: if $X_1, X_2, ..., X_n$ are iid with mean μ & SD σ , then $(\overline{X_n} - \mu) \div (\sigma/\sqrt{n}) \longrightarrow$ Standard Normal. (mean 0, SD 1). In other words, $\overline{X_n}$ is like a draw from a normal distribution with mean μ and standard deviation of $\sigma \div \sqrt{n}$.

That is, 95% of the time, $\overline{X_n}$ is in the interval $\mu + -1.96 (\sigma/\sqrt{n})$.

- Q. Suppose you average \$5 profit per hour, with a SD of \$60 per hour. If you play 1600 hours, let Y be your average profit over those 1600 hours. Find a range where Y is 95% likely to fall.
- A. We want $\mu + 1.96 (\sigma/\sqrt{n})$, where $\mu = \$5$, $\sigma = \$60$, and n=1600. So the answer is

 $5 + - 1.96 \times 60 / \sqrt{1600}$

= \$5 +/- \$2.94, or the range [\$2.06, \$7.94].

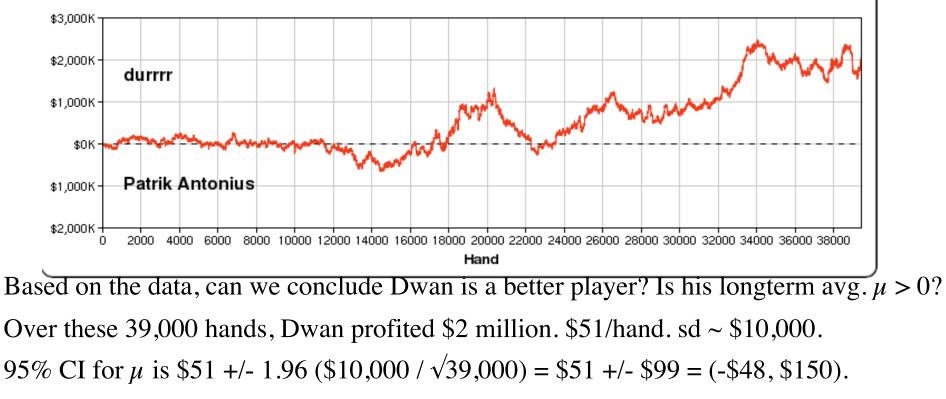
Confidence Intervals (CIs) for μ , ch 7.5.

<u>Central Limit Theorem (CLT):</u> if $X_1, X_2, ..., X_n$ are iid with mean μ SD σ , then $(\overline{X_n} - \mu) \div (\sigma/\sqrt{n}) \longrightarrow$ Standard Normal. (mean 0, SD 1). So, 95% of the time, $\overline{X_n}$ is in the interval μ +/- 1.96 (σ/\sqrt{n}).

Typically you know X̄_n but not μ. Turning the blue statement above around a bit means that 95% of the time, μ is in the interval X̄_n +/- 1.96 (σ/√n).
This range X̄_n +/- 1.96 (σ/√n) is called a 95% confidence interval (CI) for μ.
[Usually you don't know σ and have to estimate it using the sample std deviation, s, of your data, and (X̄_n - μ) ÷ (s/√n) has a t_{n-1} distribution if the X_i are normal.
For n>30, t_{n-1} is so similar to normal though.]

1.96 (σ/\sqrt{n}) is called the *margin of error*.

The range $\overline{X_n}$ +/- 1.96 (σ/\sqrt{n}) is a 95% confidence interval for μ . 1.96 (σ/\sqrt{n}) (from fulltiltpoker.com:)



Results are inconclusive, even after 39,000 hands!

Sample size calculation. How many *more* hands are needed?

If Dwan keeps winning \$51/hand, then we want n so that the margin of error = \$51. 1.96 (σ/\sqrt{n}) = \$51 means 1.96 (\$10,000) / \sqrt{n} = \$51, so n = [(1.96)(\$10,000)/(\$51)]² ~ 148,000, so about 109,000 *more* hands.