
Stat 100a: Introduction to Probability.	


Outline for the day:	


1.  Collect hw.	


2.  Bayes’s rule.	


3.  Pot odds.	


4.  SD and variance.	


5.  Bernoulli random variables.	


6.  Binomial random variables.	


7.  Geometric random variables.	


8.  Poisson random variables.	


9.  Continuous random variables, pdf, expected value, and variance.	


10. Moment generating functions.	


11. Exponential distribution.	


12.  Independent random variables.	



	

 	

 	

 	

Read through chapter 6.4!	


         ♣ ♥ ◆ ♠	





1. Turn in HW.	



2. Bayes’s rule, p49-52.	



Suppose that B1, B2 , Bn are disjoint events and that exactly one of them must occur. 	



Suppose you want P(B1 | A), but you only know P(A | B1 ), P(A | B2 ), etc., 	



and you also know P(B1), P(B2), …, P(Bn).	



Bayes’ Rule:  If B1 , …, Bn are disjoint events with P(B1 or … or Bn) = 1, then	



P(Bi | A) = P(A | Bi ) * P(Bi)  ÷  [ ∑P(A | Bj)P(Bj)].	



Why?  Recall:  P(X | Y) = P(X & Y) ÷ P(Y).       So P(X & Y) = P(X | Y) * P(Y).	



P(B1 | A) = P(A & B1 ) ÷ P(A)	



	

= P(A & B1 ) ÷ [ P(A & B1)      +     P(A & B2)   +   …   +    P(A & Bn) ]	



   = P(A | B1 ) * P(B1)  ÷  [ P(A | B1)P(B1) + P(A | B2)P(B2) + … + P(A | Bn)P(Bn) ]. 	





Bayes’s rule, continued.	



Bayes’s rule:  If B1 , …, Bn are disjoint events with P(B1 or … or Bn) = 1, then	



P(Bi | A) = P(A | Bi ) * P(Bi)  ÷  [ ∑P(A | Bj)P(Bj)].	



See example 3.4.1, p50. If a test is 95% accurate and 1% of the pop. has a condition, 

then given a random person from the population,	



P(she has the condition | she tests positive) 	



  = P(cond | +)	



  = P(+ | cond) P(cond) ÷ [P(+ | cond) P(cond) + P(+ | no cond) P(no cond)] 	



  = 95% x 1% ÷ [95% x 1% + 5% x 99%]	



 ~ 16.1%. 	



Tests for rare conditions must be extremely accurate.	





Bayes’ rule example. 	



Suppose P(your opponent has the nuts) = 1%, and P(opponent has a weak hand) = 10%. 	



Your opponent makes a huge bet. Suppose she’d only do that with the nuts or a weak 

hand, and that P(huge bet | nuts) = 100%,  and P(huge bet | weak hand) = 30%.	



What is P(nuts | huge bet)?	



P(nuts | huge bet) = 	


	

 	

       P(huge bet | nuts) * P(nuts)	



         -------------------------------------------------------------------------------------------     	


           P(huge bet | nuts) P(nuts)  +   P(huge bet | horrible hand) P(horrible hand)	



	

       =          100% * 1%	


	

 	

---------------------------------------	


	

 	

  100% * 1%    +     30% * 10% 	

	



	

       =  25%.	





3. POT ODDS CALCULATIONS.	



Suppose someone bets (or raises) you, going all-in.  What should your chances of 

winning be in order for you to correctly call?	



  Let B = the amount bet to you, i.e. the additional amount you'd need to put in if you 

want to call. So, if you bet 100 & your opponent with 800 left went all-in, B = 700.	



  Let POT = the amount in the pot right now (including your opponent's bet).	



  Let p = your probability of winning the hand if you call. So prob. of losing = 1-p. 	



  Let CHIPS = the number of chips you have right now.	



If you call, then E[your chips at end] = (CHIPS - B)(1-p) + (CHIPS + POT)(p)	



= CHIPS(1-p+p) - B(1-p) + POT(p)  = CHIPS - B + Bp + POTp	



If you fold, then E[your chips at end] = CHIPS.	



You want your expected number of chips to be maximized, so it's worth calling if	



-B + Bp + POTp > 0,  i.e. if p > B / (B+POT).3/39 + 3/39 - C(3,2)/C(39,2) = 15.0% 	





3) Pot odds and expected value, continued.	



From previous slide, to call an all-in, need P(win) >  B ÷  (B+pot).	


Expressed as an odds ratio, this is sometimes referred to as pot odds or express odds. 	



If the bet is not all-in & another betting round is still to come, need	


   P(win)  >  wager ÷ (wager + winnings), 	


where winnings = pot + amount you’ll win on later betting rounds,	


wager  = total amount you will wager including the current round & later rounds, 	


assuming no folding.	



The terms Implied-odds    /    Reverse-implied-odds   describe the cases where 	


             winnings > pot    or where   wager > B,   respectively. See p66.	





Example: 2006 World Series of Poker (WSOP).  ♣ ♥ ◆ ♠	



Blinds: 200,000/400,000, + 50,000 ante.	



Jamie Gold (4♣ 3♣): 60 million chips. Calls.	



Paul Wasicka (8♠ 7♠): 18 million chips. Calls.	



Michael Binger (A♥ 10♥): 11 million chips. Raises to $1,500,000.  	



Gold & Wasicka call.      (pot = 4,650,000)                 Flop:   6♠ 10♣ 5♠.	



• Wasicka checks, Binger bets $3,500,000.  (pot = 8,150,000)	



• Gold moves all-in for 16,450,000.  (pot = 24,600,000)	



• Wasicka folds.   Q: Based on expected value, should he have called?	



If Binger will fold, then Wasicka’s chances to beat Gold must be at least 	



16,450,000 / (24,600,000 + 16,450,000) = 40.1%.	



If Binger calls, it’s a bit complicated, but basically Wasicka’s chances must be at 

least 16,450,000 / (24,600,000 + 16,450,000 + 5,950,000) = 35.0%. 	

	





4. Variance and SD.	



Expected Value: E(X) = µ = ∑k P(X=k). 	


Variance: V(X) = σ2 = E[(X- µ)2].  Turns out this = E(X2) - µ2.   	



Standard deviation = σ = √ V(X).   Indicates how far an observation would typically  
deviate from µ.	



	

 	

Examples: 	


Game 1.  Say X = $4 if red card, X = $-5 if black.  	



E(X) = ($4)(0.5) + ($-5)(0.5) = -$0.50.	


E(X2) = ($42)(0.5) + ($-52)(0.5) = ($16)(0.5) + ($25)(0.5) = $20.5.	



So  σ2 = E(X2) - µ2 = $20.5 - $-0.502 = $20.25.   σ = $4.50.	



Game 2.  Say X = $1 if red card, X = $-2 if black.  	


E(X) = ($1)(0.5) + ($-2)(0.5) = -$0.50.	



E(X2) = 	

($12)(0.5) + ($-22)(0.5) = ($1)(0.5) + ($4)(0.5) = $2.50.	


So  σ2 = E(X2) - µ2 = $2.50 - $-0.502 = $2.25.   σ = $1.50.	





5. Bernoulli Random Variables, ch. 5.1.	



  If X = 1 with probability p, and X = 0 otherwise, then X = Bernoulli (p). 	


  Probability mass function (pmf):	



	

   P(X = 1) = p	


           P(X = 0) = q,    where p+q = 100%.	



If X is Bernoulli (p), then µ = E(X) = p, and σ  = √(pq).	


For example, suppose X = 1 if you have a pocket pair next hand;  X = 0 if not. 	



	

p = 5.88%.   So, q = 94.12%.	


[Two ways to figure out p:  	



(a) Out of choose(52,2) combinations for your two cards,  13 * choose(4,2) are pairs. 	



	

13 * choose(4,2) / choose(52,2) = 5.88%.	


(b) Imagine ordering your 2 cards. No matter what your 1st card is, there are 51 equally 	



likely choices for your 2nd card, and 3 of them give you a pocket pair.  3/51 = 5.88%.]	


        µ = E(X) = .0588.  	

 	

SD = σ  = √(.0588 * 0.9412) = 0.235.	





6. Binomial Random Variables, ch. 5.2.	



Suppose now X = # of times something with prob. p  occurs, out of n  independent trials 	


	

Then X = Binomial (n.p). 	

	



	

e.g. the number of pocket pairs, out of 10 hands. 	


Now X could = 0, 1, 2, 3, …, or n.	



pmf:  P(X = k) = choose(n, k) * pk qn - k. 	



      e.g. say n=10, k=3:  P(X = 3) = choose(10,3) * p3 q7 .	


       Why?  Could have 1 1 1 0 0 0 0 0 0 0,   or 1 0 1 1 0 0 0 0 0 0,   etc.  	



	

choose(10, 3) choices of places to put the 1’s, and for each the prob. is p3 q7 . 	



Key idea: X = Y1 + Y2 + … + Yn , where the Yi  are independent and Bernoulli (p).	



	

If X is Bernoulli (p), then µ = p, and σ  = √(pq).	



	

If X is Binomial (n,p), then µ = np, and σ  = √(npq).	





Binomial Random Variables, continued.	



Suppose X = the number of pocket pairs you get in the next 100 hands.	



What’s P(X = 4)? What’s E(X)? σ?       X = Binomial (100, 5.88%).   	


      P(X = k) = choose(n, k) * pk qn - k. 	



So, P(X = 4) = choose(100, 4) * 0.0588 4  *  0.9412 96  = 13.9%, or 1 in 7.2.	


	

E(X) = np = 100 * 0.0588 = 5.88.    σ  =  √(100 * 0.0588 * 0.9412) = 2.35.	



So, out of 100 hands, you’d typically get about 5.88 pocket pairs, +/- around 2.35.	





7. Geometric Random Variables, ch 5.3.	


Suppose now X = # of trials until the first occurrence.	


(Again, each trial is independent, and each time the probability of an occurrence is p.)	



	

Then X = Geometric (p). 	

	


	

e.g. the number of hands til you get your next pocket pair.  	



[Including the hand where you get the pocket pair.  If you get it right away, then X = 1.]	


Now X could be 1, 2, 3, …, up to ∞.	


pmf:  P(X = k) = p1 qk  - 1. 	


      e.g. say k=5:  P(X = 5) = p1 q 4. Why? Must be  0 0 0 0 1.   Prob. = q * q * q * q * p.	



	

If X is Geometric (p), then µ = 1/p, and σ  = (√q) ÷ p.	



e.g.  Suppose X = the number of hands til your next pocket pair. P(X = 12)? E(X)? σ?	


       X = Geometric (5.88%).   	


       P(X = 12) = p1 q11 = 0.0588  *  0.9412 ^ 11  = 3.02%.	


	

E(X) = 1/p = 17.0.    σ  =  sqrt(0.9412) /  0.0588 = 16.5.	



So, you’d typically expect it to take 17 hands til your next pair, +/- around 16.5 hands.	





8. Poisson random variables, ch 5.5.	


Player 1 plays in a very slow game, 4 hands an hour, and she decides to do a 
big bluff whenever the second hand on her watch, at the start of the deal, is 
in some predetermined 10 second interval. 	



Now suppose Player 2 plays in a game where about 10 hands are dealt per 
hour, so he similarly looks at his watch at the beginning of each poker hand, 
but only does a big bluff if the second hand is in a 4 second interval. 	



Player 3 plays in a faster game where about 20 hands are dealt per hour, and 
she bluffs only when the second hand on her watch at the start of the deal is 
in a 2 second interval. Each of the three players will thus average one bluff 
every hour and a half.	



Let X1, X2, and X3 denote the number of big bluffs attempted in a given 6 
hour interval by Player 1, Player 2, and Player 3, respectively. 	


Each of these random variables is binomial with an expected value of 4, and 
a variance approaching 4. 	


They are converging toward some limiting distribution, and that limiting 
distribution is called the Poisson distribution.	





They are converging toward some limiting distribution, and that limiting 
distribution is called the Poisson distribution. Unlike the binomial 
distribution which depends on two parameters, n and p, the Poisson 
distribution depends only on one parameter, λ, which is called the rate. In 
this example, λ = 4.	



The pmf of the Poisson random variable is f(k) = e-λλk/k!, for k=0,1,2,..., and 
for λ > 0, with the convention that 0!=1, and where e = 2.71828…. 	


The Poisson random variable is the limit in distribution of the binomial 
distribution as n -> ∞ while np is held constant.	





For a Poisson(λ) random variable X, E(X) = λ, and Var(X) = λ also. λ = rate.	



Example. Suppose in a certain casino jackpot hands are defined so that they tend 
to occur about once every 50,000 hands on average. If the casino deals 
approximately 10,000 hands per day, a) what are the expected value and standard 
deviation of the number of jackpot hands dealt in a 7 day period? b) How close are 
the answers using the binomial distribution and the Poisson approximation? Using 
the Poisson model, if X represents the number of jackpot hands dealt over this 
week, what are c) P(X = 5) and d) P(X = 5 | X > 1)?	



Answer. It is reasonable to assume that the outcomes on different hands are iid, 
and this applies to jackpot hands as well. In a 7 day period, approximately 70,000 
hands are dealt, so X = the number of occurrences of jackpot hands is binomial
(n=70,000, p=1/50,000). Thus a) E(X) = np = 1.4, and SD(X) = √(npq) = √
(70,000 x 1/50,000 x 49,999/50,000) ~  1.183204. b) Using the Poisson 
approximation, E(X) = λ = np = 1.4, and SD(X) = √λ ~ 1.183216. The Poisson 
model is a very close approximation in this case. Using the Poisson model with 
rate λ = 1.4, 	


c) P(X=5) = e-1.4 1.45/5! ~ 1.105%. 	


d) P(X = 5 | X > 1) = P(X = 5 and X > 1) ÷ P(X > 1) = P(X = 5) ÷ P(X>1) = 
[e-1.4  1.45/5!] ÷ [1 - e-1.4  1.40/0! – e-1.4 1.41/1!] ~ 2.71%.	





9. Continuous random variables and their densities, p103-107.	



  Density (or pdf = Probability Density Function) f(y): 	



	

∫B f(y) dy = P(X in B). 	



Expected value, µ = E(X) = ∫ y f(y) dy.  (=  ∑ y P(y)  for discrete X.)	



Variance, σ2 = V(X) = E(X2) – µ2.	



SD(X) = √V(X). 	

 	

 	

 	

 	

	



For examples of pdfs, see p104, 106, and 107.	





10. Moment generating functions, ch. 4.7	



Suppose X is a random variable. E(X), E(X2), E(X3), etc. are the moments of X.	



øX(t) = E(etX) is called the moment generating function of X.	



Take derivatives with respect to t of øX(t) and evaluate at t=0 to get moments of X.	



1st derivative (d/dt) etX = X etX, 	

(d/dt)2 etX = X2 etX, etc.	



(d/dt)k E(etX) = E[(d/dt)k etX] = E[Xk etX],   (see p.84)	



so ø’X(0) = E[X1 e0X] = E(X),	



 ø’’X(0) = E[X2 e0X] = E(X2), etc.	



The moment gen. function øX(t) uniquely characterizes the distribution of X.	



So to show that X is, say, Poisson, you just need to show that it has the moment 

generating function of a Poisson random variable.	



Also, if Xi are random variables with cdfs Fi, and øXi(t) -> ø(t), where øX(t) is the 

moment generating function of X which has cdf F, then Xi -> X in distribution, i.e.	



Fi(y) -> F(y) for all y where F(y) is continuous, see p85.	





Moment generating functions, continued.	



øX(t) = E(etX) is called the moment generating function of X.	



Suppose X is Bernoulli (0.4). What is øX(t)?	



E(etX) = (0.6) (et(0)) + (0.4) (et(1)) = 0.6 + 0.4 et.	



  Suppose X is Bernoulli (0.4) and Y is Bernoulli (0.7) and X and Y are independent.	



What is the distribution of XY?	



øXY(t) = E(etXY) = P(XY=0) (et(0)) + P(XY=1)(et(1))	



= P(X=0 or Y=0) (1) + P(X=1 and Y=1)et	



= [1 – P(X=1)P(Y=1)] + P(X=1)P(Y=1)et	



= [1 – 0.4 x 0.7] + 0.4x0.7et	



= 0.72 + 0.28et, which is the moment generating function of a Bernoulli (0.28) random 

variable. Therefore XY is Bernoulli (0.28).	



  What about Z = min{X,Y}?	



Z = XY in this case, since X and Y are 0 or 1, so the answer is the same.	





11. Exponential distribution, ch 6.4.	



Useful for modeling waiting times til something happens (like the 

geometric).	



pdf of an exponential random variable is f(y) = λ exp(- λ y), for y ≥ 0, 	


and f(y) = 0 otherwise. 	


If X is exponential with parameter λ, then E(X) = SD(X) = 1/λ	



If the total numbers of events in any disjoint time spans are independent, 
then these totals are Poisson random variables. If in addition the events are 
occurring at a constant rate λ, then the times between events, or interevent 
times, are exponential random variables with mean 1/λ.	



Example. Suppose you play 20 hands an hour, with each hand lasting 
exactly 3 minutes, and let X be the time in hours until the end of the first 
hand in which you are dealt pocket aces. Use the exponential distribution to 
approximate P(X ≤ 2) and compare with the exact solution using the 
geometric distribution.	





Answer.  Each hand takes 1/20 hours, and the probability of being dealt 
pocket aces on a particular hand is 1/221, so the rate λ = 1 in 221 hands	


 = 1/(221/20) hours ~ 0.0905 per hour. 	


Using the exponential model, P(X ≤ 2 hours) = 1 - exp(-2λ) ~ 16.556%. 	


This is an approximation, however, since by assumption X is not continuous 
but must be an integer multiple of 3 minutes. 	


Let Y = the number of hands you play until you are dealt pocket aces. Using 
the geometric distribution, P(X ≤ 2 hours) = P(Y ≤ 40 hands) 	


= 1 - (220/221)40 ~ 16.590%.	



The survivor function for an exponential random variable is particularly 
simple: P(X > c) = ∫c∞ f(y)dy = ∫c∞ λ exp(-λ y)dy = -exp(-λ y)]c

∞ = exp(-λ c). 	



Like geometric random variables, exponential random variables have the 
memorylessness property: if X is exponential, then for any non-negative 
values a and b, P(X > a+b | X > a) = P(X > b). 	


Thus, with an exponential (or geometric) random variable, if after a certain 
time you still have not observed the event you are waiting for, then the 
distribution of the future, additional waiting time until you observe the event 
is the same as the distribution of the unconditional time to observe the event 
to begin with.	





12. Independent random variables.	



If X and Y are independent random variables, then 	



E[f(X) g(Y)] = E[f(X)] E[g(Y)], for any functions f and g.	



See Exercise 7.12. This is useful for problem 5.4.	




