Stat 100a: Introduction to Probability.

Outline for the day:

- 1. Gold vs. Farha and Bayes's rule.
- 2. Luck and skill.
- 3. Yang and Kravchenko.
- 4. P(flop an ace high flush), P(flop a straight flush), etc.
- 5. Review list.
- 6. Cards til 2nd king.
- 7. P(2 pairs).
- 8. P(suited King).
- 9. Hellmuth vs. Farha.
- 10. Covariance and correlation.
- 11. Pareto random variables.
- 12. Deal making.

Read through chapter 7.1.

🔶 🖊 🔶 🔶

1. Gold vs. Farha. Gold: $10 \blacklozenge 7 \bigstar$ Farha: $Q \blacklozenge Q \bigstar$ Flop: $9 \blacklozenge 8 \blacktriangledown 7 \bigstar$

a) Who really is the favorite (ignoring all other players' cards)?

Gold's outs: J, 6, 10, 7. (4 + 4 + 3 + 2 = 13 outs, 32 non-outs)

 $P(Gold wins) = P(Out Out or Jx [x \neq 10] or 6x or 10y [y \neq Q,9,8] or 7z [z \neq Q])$

 $= [choose(13,2) + 4*28 + 4*32 + 3*24 + 2*30] \div choose(45,2)$

 $= 450 \div 990 = 45.45\%$.

b) What would you guess Gold had?

Say he'd do that 50% of the time with a draw,

100% of the time with an overpair,

and 90% of the time with two pairs. (and that's it)

Using Bayes' rule, P(Gold has a DRAW | Gold raises ALL-IN)

 $= \underline{.} \qquad [P(all-in | draw) * P(draw)]$

[P(all-in | draw) P(draw)] + [P(all-in | overpair) P(overpair)] + [P(all-in | 2pairs) P(2 pairs)]

= $[50\% * P(draw)] \div [50\% * P(draw)] + [100\% * P(overpair)] + [90\% * P(2 pairs)]$

2. Luck vs. skill. pp 71-79. Any thoughts?

3. Yang / Kravchenko.

Yang A 10 Pot is 19million. Bet is 8.55 million. Needs P(win) > 8.55 ÷ (8.55 + 19) = 31%.

vs. AA: 8.5%. AJ-AK: 25-27%. KK-TT: 29%. 99-22: 44-48%. KQs: 56%. Bayesian method: average these probabilities, weighting each by its *likelihood*. See p49-53.

Yang / Kravchenko.

Yang A \bigstar 10 \blacklozenge . Pot is 19.0 million. Bet is 8.55 million.

Suppose that, averaging the different probabilities, P(Yang wins) = 30%.

And say Yang *calls*. Let X = the number of chips Kravchenko has after the hand.

What is E(X)? [Note, if Yang *folds*, then X = 19.0 million for sure.]

$$E(X) = \sum [k * P(X=k)]$$

= [0 * 30%] + [27.55 million * 70%]

= **19.285** million.

4. P(**flop an ace high flush**)? [where the ace might be on the board]

-- 4 suits

-- one of the cards must be an ace. choose(12,4) possibilities for the others. So P(flop ace high flush) = 4 * choose(12,4) / choose(52,5)= 0.0762%, or 1 in **1313**.

P(flop a straight flush)?

-- 4 suits

-- 10 different straight-flushes in each suit. (5 high, 6 high, ..., Ace high) So P(flop straight flush) = 4 * 10 / choose(52,5)= 0.00154%, or 1 in **64974**.

5. <u>**Review List.</u>** We have basically done up through ch7.1.</u>

- 1) Basic principles of counting.
- 2) Axioms of probability, and addition rule.
- 3) Permutations & combinations.
- 4) Conditional probability.
- 5) Independence.
- 6) Multiplication rules.

$$P(AB) = P(A) P(B|A)$$
 [= $P(A)P(B)$ if ind.]

- 7) Odds ratios.
- 8) Random variables (RVs).
- 9) Discrete and continuous RVs, pmf, cdf, pdf, survivor function.
- 10) Expected value, variance, and SD.
- 11) Pot odds calculations.
- 12) Bayes's rule.
- 13) Bernoulli RV. [0-1. $\mu = p, \sigma = \sqrt{(pq)}$.]
- 14) Binomial RV. [# of successes, out of n tries. $\mu = np, \sigma = \sqrt{(npq)}$.]
- 15) Geometric RV. [# of tries til 1st success. $\mu = 1/p, \sigma = (\sqrt{q}) / p.$]
- 16) Negative binomial RV. [# of tries til rth success. $\mu = r/p, \sigma = (\sqrt{rq}) / p$.]
- 17) Poisson RV. $[\mu = \lambda, \sigma = \sqrt{\lambda}.]$
- 18) E(X+Y), V(X+Y), and E[f(X) g(Y)] when X and Y are ind.
- 19) Moment generating functions.
- 20) Uniform, exponential, and normal random variables.
- 21) Markov and Chebyshev inequalities.

6. Cards til 2nd king.

Deal the cards face up, without reshuffling.

Let Z = the number of cards til the 2nd king.

What is E(Z)?

The solution uses the fact

E(X+Y+Z + ...) = E(X) + E(Y) + E(Z) +

E(cards til 2nd king).

Z = the number of cards til the 2nd king. What is E(Z)?

Let X_1 = number of non-king cards before 1st king.

Let X_2 = number of non-kings after 1st king til 2nd king.

Let X_3 = number of non-kings after 2nd king til 3rd king.

Let X_4 = number of non-kings after 3rd king til 4th king.

Let X_5 = number of non-kings after 4th king til the end of the deck.

Clearly, $X_1 + X_2 + X_3 + X_4 + X_5 + 4 = 52$. By symmetry, $E(X_1) = E(X_2) = E(X_3) = E(X_4) = E(X_5)$. Therefore, $E(X_1) = E(X_2) = 48/5$. $Z = X_1 + X_2 + 2$, so $E(Z) = E(X_1) + E(X_2) + 2 = 48/5 + 48/5 + 2 = 21.2$.

7. P(flop two pairs).

If you're sure to be all-in next hand, what is P(you will flop two pairs)?

This is a tricky one. Don't double-count $(4 \bigstar 4 \blacktriangledown 9 \bigstar 9 \blacktriangledown Q \bigstar)$ and $(9 \bigstar 9 \blacktriangledown 4 \bigstar 4 \blacktriangledown Q \bigstar)!$

There are choose(13,2) possibilities for the NUMBERS of the two pairs.

For each such choice (such as 4 & 9),

there are choose(4,2) choices for the suits of the lower pair,

and same for the suits of the higher pair.

So, choose(13,2) * choose(4,2) * choose(4,2) different possibilities for the two pairs. For each such choice, there are 44 [52 - 8 = 44] different possibilities for your fifth card, so that it's not a full house but simply two pairs. So,

P(flop two pairs) = choose(13,2) * choose(4,2) * choose(4,2) * 44 / choose(52,5)

~ 4.75%, or 1 in **21**.

8. What is the probability that you will be dealt a king and another card of the same suit as the king?

4 * 12 / C(52,2) = 3.62%.

The typical number of hands until this occurs is ...

1/.0362 ~ 27.6. (√96.38%) / 3.62% ~ 27.1. So the answer is 27.6 +/- 27.1.

9. Hellmuth vs. Farha.

P(Hellmuth makes a flush)

 $= \underline{C(11,5) + C(11,4) * 37 + C(11,3) * C(37,2)}_{C(48,5)} = 7.16\%.$

P(Farha makes a flush)

 $= \underline{2 * (C(12,5) + C(12,4) * 36)} = 2.17\%.$

C(48,5)

10. Covariance and correlation, p127.

For any random variables X and Y,

 $var(X+Y) = E[(X+Y)]^2 - [E(X) + E(Y)]^2$

 $= E(X^{2}) - [E(X)]^{2} + E(Y^{2}) - [E(Y)]^{2} + 2E(XY) - 2E(X)E(Y)$

 $= \operatorname{var}(X) + \operatorname{var}(Y) + 2[E(XY) - E(X)E(Y)].$

cov(X,Y) = E(XY) - E(X)E(Y) is called the *covariance* between X and Y, cor(X,Y) = cov(X,Y) / [SD(X) SD(Y)] is called the *correlation* bet. X and Y. If X and Y are ind., then E(XY) = E(X)E(Y),

so cov(X,Y) = 0, and var(X+Y) = var(X) + var(Y). Just as E(aX + b) = aE(X) + b, for any real numbers a and b, cov(aX + b,Y) = E[(aX+b)Y] - E(aX+b)E(Y)

 $= aE(XY) + bE(Y) - [aE(X)E(Y) + bE(Y)] = a \operatorname{cov}(X,Y).$

Ex. 7.1.3 is worth reading.

X = the # of 1^{st} card, and Y = X if 2^{nd} is red, -X if black.

E(X)E(Y) = (8)(0).

 $P(X = 2 \text{ and } Y = 2) = 1/13 * \frac{1}{2} = 1/26$, for instance, and same with any other combination,

so E(XY) = 1/26 [(2)(2)+(2)(-2)+(3)(3)+(3)(-3) + ... + (14)(14) + (14)(-14)] = 0.

So X and Y are *uncorrelated*, i.e. cor(X,Y) = 0.

But X and Y are not independent.

P(X=2 and Y=14) = 0, but P(X=2)P(Y=14) = (1/13)(1/26).

11. Pareto random variables. ch6.6

Pareto random variables are an example of heavy-tailed random variables,

which means they have very, very large outliers much more frequently than other distributions like the normal or exponential.

For a Pareto random variable, the pdf is $f(y) = (b/a) (a/y)^{b+1}$, and the cdf is $F(y) = 1 - (a/y)^{b}$,

for y>a, where a>0 is the *lower truncation point*, and b>0 is a parameter

called the *fractal dimension*.

Figure 6.6.1: Relative frequency histogram of the chip counts of the leading 110 players in the 2010 WSOP main event after day 5. The curve is the Pareto density with a = 900,000 and b = 1.11.

12. Deal-making. (Expected value, game theory)

<u>Game-theory</u>: For a symmetric-game tournament, the probability of winning is approx. optimized by the *myopic rule* (in each hand, maximize your expected number of chips),

and

P(you win) = your proportion of chips (Theorems 7.6.6 and 7.6.7 on pp 151-152).

For a *fair* deal, the amount you win = the *expected value* of the amount you will win. See p61.

For instance, suppose a tournament is winner-take-all, for \$8600.

With 6 players left, you have 1/4 of the chips left.

An *EVEN SPLIT* would give you $\$8600 \div 6 = \1433 .

A *PROPORTIONAL SPLIT* would give you \$8600 x (your fraction of chips)

= \$8600 x (1/4) = \$2150.

A *FAIR DEAL* would give you the *expected value* of the amount you will win = $\$8600 \times P(you \text{ get 1st place}) = \$2150.$

But suppose the tournament is not winner-take-all, but pays \$3800 for 1st, \$2000 for 2nd, \$1200 for 3rd, \$700 for 4th, \$500 for 5th, \$400 for 6th. Then a *FAIR DEAL* would give you $3800 \times P(1st place) + 2000 \times P(2nd) + 1200 \times P(3rd) + 700 \times P(4th) + 500 \times P(5th) + 400 \times P(6th).$ Hard to determine these probabilities. But, P(1st) = 25%, and you might roughly estimate the others as $P(2nd) \sim 20\%$, $P(3rd) \sim 20\%$, $P(4th) \sim 15\%$, $P(5th) \sim 10\%$, $P(6th) \sim 10\%$, and get

 $3800 \times 25\% + 2000 \times 25\% + 1200 \times 20\% + 700 \times 15\% + 500 \times 10\% + 400 \times 5\% = 1865.$

If you have 40% of the chips in play, then:

EVEN SPLIT = **\$1433**. *PROPORTIONAL SPLIT* = **\$3440**. *FAIR DEAL* ~ **\$2500**! Another example. Before the Wasicka/Binger/Gold hand,

Gold had 60M, Wasicka 18M, Binger 11M.

Payouts: 1st place \$12M, 2nd place \$6.1M, 3rd place \$4.1M.

Proportional split: of the total prize pool left, you get your proportion of chips in play.
e.g. \$22.2M left, so Gold gets 60M/(60M+18M+11M) x \$22.2M ~ \$15.0M.
A *fair* deal would give you

P(you get 1st place) x 12M + P(you get 2nd place) x 6.1M + P(3rd pl.) x 4.1M.

* <u>Even split</u> :	Gold \$7.4M,	Wasicka \$7.4M,	Binger \$7.4M.
*Proportional split:	Gold \$15.0M ,	Wasicka \$4.5M,	Binger \$2.7M .
* <u>Fair split</u> :	Gold \$10M,	Wasicka \$6.5M,	Binger \$5.7M.
*End result:	Gold \$12M,	Wasicka \$6.1M,	Binger \$4.1M.